首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the influence of detection probability (i.e., the probability of detecting the disease or organism of interest) on the repeatability of results reported from bacterial culture tests used to demonstrate the presence of species in the Pasteurellaceae family that infect bighorn sheep (Ovis canadensis). We also estimated occupancy probabilities (i.e., the probability an individual bighorn in a herd is infected) for each cultured biovariant and examined the effects of detection probability on the number of samples needed to detect the Pasteurellaceae biovariants from within an individual sheep as well as from within a herd. We collected 5-15 samples from free-ranging bighorns in Colorado, using oropharyngeal swabs or swabs of lungs, and submitted these swabs either immediately or after 2 days for bacterial culture. We saw significant variability in results for repeated samples from each of the sheep, and detection probabilities were ≤ 0.71 for all Pasteurellaceae biovariants cultured. The delayed (≥ 2 days) sample submission reduced both the microbial diversity detected and the detection probability for the biovariants characterized when compared to samples submitted immediately. Oropharyngeal sampling had higher detection probabilities of the individual biovariants than did lung swabs, and there was a difference in the biovariants detected between oropharyngeal and lung sampling. Depending on the biovariant of interest, estimates of occupancy probabilities ranged from 0.37-0.89, and we estimated that three to >30 swab samples were necessary to obtain a 95% confidence of detecting the cultured biovariants if they were present in an individual sheep. We estimated that the optimal sample sizes to detect the observed biovariants within a sheep herd with a 95% confidence ranged from sampling two bighorns twice to sampling 40 individuals once. Detection probability impacts the results reported from bacterial cultures for Pasteurellaceae in bighorn sheep, and confounding effects of the detection process should be addressed to improve the rigor of surveillance.  相似文献   

2.
Persistence of microorganisms or reinfections are the main reasons for failure of root canal therapy. Very few studies to date have included culture-independent methods to assess the microbiota, including non-cultivable microorganisms. The aim of this study was to combine culture methods with culture-independent cloning methods to analyze the microbial flora of root-filled teeth with periradicular lesions. Twenty-one samples from previously root-filled teeth were collected from patients with periradicular lesions. Microorganisms were cultivated, isolated and biochemically identified. In addition, ribosomal DNA of bacteria, fungi and archaea derived from the same samples was amplified and the PCR products were used to construct clone libraries. DNA of selected clones was sequenced and microbial species were identified, comparing the sequences with public databases. Microorganisms were found in 12 samples with culture-dependent and -independent methods combined. The number of bacterial species ranged from 1 to 12 in one sample. The majority of the 26 taxa belonged to the phylum Firmicutes (14 taxa), followed by Actinobacteria, Proteobacteria and Bacteroidetes. One sample was positive for fungi, and archaea could not be detected. The results obtained with both methods differed. The cloning technique detected several as-yet-uncultivated taxa. Using a combination of both methods 13 taxa were detected that had not been found in root-filled teeth so far. Enterococcus faecalis was only detected in two samples using culture methods. Combining the culture-dependent and –independent approaches revealed new candidate endodontic pathogens and a high diversity of the microbial flora in root-filled teeth with periradicular lesions. Both methods yielded differing results, emphasizing the benefit of combined methods for the detection of the actual microbial diversity in apical periodontitis.  相似文献   

3.
Cocoa bean fermentation is a spontaneous process involving a succession of microbial activities, starting with yeasts, followed by lactic acid bacteria and acetic acid bacteria. So far, all microbiological studies about cocoa bean fermentation were based on culture-dependent (isolation, cultivation, and identification), or, more recently, culture-independent (PCR-DGGE, or polymerase chain reaction denaturing gradient gel electrophoresis) methods. Using a metagenomic approach, total DNA was extracted from heap and box fermentations at different time points and from different locations (Ghana and Brazil, respectively) to generate a 16 S rDNA clone library that was sequenced. The sequencing data revealed a low bacterial diversity in the fermentation samples and were in accordance with the results obtained through culture-dependent and a second, culture-independent analysis (PCR-DGGE), suggesting that almost all bacteria involved in the fermentation process are cultivable. One exception was the identification by 16 S rDNA library sequencing of Gluconacetobacter species of acetic acid bacteria that were not detected by the two other approaches. The presence of Enterobacteriaceae related to Erwinia/Pantoea/Tatumella, as revealed by 16 S rDNA library sequencing, suggests an impact of these bacteria on fermentation.  相似文献   

4.
东北太平洋深海沉积物细菌多样性   总被引:1,自引:0,他引:1  
采用两种方法提取中国结核合同区东区沉积物不同层次总DNA,通过克隆测序构建了含有79个克隆子的细菌16S rRNA基因文库,分析了该海域沉积物中细菌的多样性.79个克隆在系统发育树中形成了11个大分支,包括Gamma proteobacteria(22.8%),Alpha proteobacteria(16.5%),Planctomycetacia(7.6%),Delta proteobacteria(6.3%), Nitrospira(6.3%),Actinobacteria(6.3%),Beta proteobacteria(5%),Acidobacteria(5.1%),Sphingobacteria(3.8%),Firmicutes(2.5%),Other bacteria(17.7%),其中Gamma proteobacteria在总文库中所占比例最高,该分支细菌在0~2cm、4~6cm层也是优势菌种.Gamma proteobacteria中假单胞菌(Pseudomonas)为优势属(22.2%).各个层次中所含细菌类群有所不同,Alpha proteobacteria、Gamma proteobacteria、Delta proteobacteria 、Planctomycetacia、Nitrospira 、Actinobacteria和Acidobacteria为三层样品共有类群.  相似文献   

5.
6.
AIMS: The microbial community of different types of unripened Pasta Filata cheese was investigated by culture-independent methods with the aim of rapidly achieving knowledge about cheese microbiota and discriminating traditional and industrial cheeses. METHODS AND RESULTS: The microbial DNA extracted directly from the samples was used as a template in PCR experiments to amplify the 16S-23S rDNA spacer region and the V3 region of the 16S rDNA. Conventional electrophoresis of the amplified spacers allowed known classes of these DNA fragments belonging to genera and species of lactic acid bacteria to be distinguished. Denaturing gradient gel electrophoresis analysis of V3 amplicons was supported by reference cultures of LAB used as markers. CONCLUSION: Both molecular approaches furnished the expected information about microbial diversity and were quite valid for discriminating industrial, semi-artisanal or traditional cheeses, characterized by increasingly complex DNA profiles. SIGNIFICANCE AND IMPACT OF THE STUDY: Both methods could be used for legal purposes when products obtained through prescribed manufacturing regulations are to be analysed.  相似文献   

7.
Two culture-independent methods, namely ribosomal DNA libraries and denaturing gradient gel electrophoresis (DGGE), were adopted to examine the microbial community of a Malaysian light crude oil. In this study, both 16S and 18S rDNAs were PCR-amplified from bulk DNA of crude oil samples, cloned, and sequenced. Analyses of restriction fragment length polymorphism (RFLP) and phylogenetics clustered the 16S and 18S rDNA sequences into seven and six groups, respectively. The ribosomal DNA sequences obtained showed sequence similarity between 90 to 100% to those available in the GenBank database. The closest relatives documented for the 16S rDNAs include member species of Thermoincola and Rhodopseudomonas, whereas the closest fungal relatives include Acremonium, Ceriporiopsis, Xeromyces, Lecythophora, and Candida. Others were affiliated to uncultured bacteria and uncultured ascomycete. The 16S rDNA library demonstrated predomination by a single uncultured bacterial type by >80% relative abundance. The predomination was confirmed by DGGE analysis.  相似文献   

8.
The bacterial diversity inherent to the biofilm community structure of a modified rotating biological contactor wastewater treatment process, referred to as the Rotating Activated Bacillus Contactor (RABC) process, was characterized in this study, via both culture-dependent and culture-independent methods. On the basis of culture-dependent methods, Bacillus sp. were found to exist in large numbers on the biofilm (6.5% of the heterotrophic bacteria) and the microbial composition of the biofilms was quite simple. Only three phyla were identified-namely, the Proteobacteria, the Actinobacteria (High G+C Gram-positive bacteria), and the Firmicutes (Low G+C Gram-positive bacteria). The culture-independent partial 16S rDNA sequence analysis revealed a considerably more diverse microbial composition within the biofilms. A total of eight phyla were recovered in this case, three of which were major groups: the Firmicutes (43.9%), the Proteobacteria (28.6%), and the Bacteroidetes (17.6%). The remaining five phyla were minor groups: the Planctomycetes (4.4%), the Chlorobi (2.2%), the Actinobacteria (1.1%), the Nitrospirae (1.1%), and the Verrucomicrobia (1.1%). The two most abundant genera detected were the endospore-forming bacteria (31.8%), Clostridium and Bacillus, both of which are members of the Firmicutes phylum. This finding indicates that these endospore-forming bacteria successfully colonized and dominated the RABC process biofilms. Many of the colonies or clones recovered from the biofilms evidenced significantly high homology in the 16S rDNA sequences of bacteria stored in databases associated with advanced wastewater treatment capabilities, including nitrification and denitrification, phosphorus accumulation, the removal of volatile odors, and the removal of chlorohydrocarbons or heavy metals. The microbial community structures observed in the biofilms were found to correlate nicely with the enhanced performance of advanced wastewater treatment protocols.  相似文献   

9.
传统分离培养结合DGGE法检测榨菜腌制过程的细菌多样性   总被引:6,自引:0,他引:6  
采用传统分离培养和基于16S rRNA 作为分子标记的变性梯度凝胶电泳(Denaturing gradient gel electrophoresis, DGGE)的方法, 分析榨菜腌制过程中不同时期的可培养细菌数量、多样性及其群落结构。结果表明, 用传统分离与分子鉴定方法获得7个属的细菌类群, 其中乳杆菌属(Acidobacterium)是优势菌群, 明串珠菌属(Leuconostoc)是次优势菌群。对通过DGGE方法得到的11条16S rRNA优势条带序列进行了比对, 结果表明明串珠菌属(Leucon  相似文献   

10.
[目的]通过比较分析油藏样品的微生物群落结构特点,认识油藏微生物的生态功能.[方法]利用3种油藏微生物研究中常用的富集培养方法,对胜利油田单12区块S12-4油井产出水样品进行了选择性富集培养,运用构建16S rRNA基因文库的方法分析了富集样品和非培养样品的细菌多样性.[结果]通过16S rRNA基因序列比对发现,非培养样品、异养菌富集样品、烃降解菌富集样品和硫酸盐还原菌富集样品中的优势菌分别为Pseudomonas属,Thermotoga属,Thermaerobacter属和Thermotoga属的成员.多样性分析结果表明,非培养样品的微生物多样性最丰富,同时非培养样品和富集样品的微生物群落结构存在很大的差异,富集样品中的微生物包括优势菌在油藏原位环境中含量很低.[结论]细菌组成差异的比较结果,对油藏微生物的生态功能研究和微生物驱油潜力评估具有重要意义.  相似文献   

11.
The microbial community associated with the reef building coral Pocillopora damicornis located on the Great Barrier Reef was investigated using culture-independent molecular microbial techniques. The microbial communities of three separate coral colonies were assessed using clone library construction alongside restriction fragment length polymorphism and phylogenetic analysis. Diversity was also investigated spatially across six replicate samples within each single coral colony using 16S rDNA and rpoB-DGGE analysis. Clone libraries demonstrated that the majority of retrieved sequences from coral tissue slurry libraries affiliated with gamma-Proteobacteria. This contrasted with clone libraries of seawater and coral mucus, which were dominated by alpha-Proteobacteria. A number of retrieved clone sequences were conserved between coral colonies; a result consistent with previous studies suggesting a specific microbe-coral association. rpoB-DGGE patterns of replicate tissue slurry samples underestimated microbial diversity, but demonstrated that fingerprints were identical within the same coral. These fingerprints were also conserved across coral colonies. The 16S rDNA-DGGE patterns of replicate tissue slurry samples were more complex, although non-metric multidimensional scaling (nMDS) analysis showed groupings of these banding patterns indicating that some bacterial diversity was uniform within a coral colony. Sequence data retrieved from DGGE analysis support clone library data in that the majority of affiliations were within the gamma-Proteobacteria. Many sequences retrieved also affiliated closely with sequences derived from previous studies of microbial diversity of healthy corals in the Caribbean. Clones showing high 16S rDNA sequence identity to both Vibrio shiloi and Vibrio coralliilyticus were retrieved, suggesting that these may be opportunist pathogens. Comparisons of retrieved microbial diversity between two different sampling methods, a syringe extracted coral mucus sample and an airbrushed coral tissue slurry sample were also investigated. Non-metric multidimensional scaling of clone library data highlighted that clone diversity retrieved from a coral mucus library more closely reflected the diversity of surrounding seawater than a corresponding coral tissue clone library.  相似文献   

12.

Background  

Child-care facilities appear to provide daily opportunities for exposure and transmission of bacteria and viruses. However, almost nothing is known about the diversity of microbial contamination in daycare facilities or its public health implications. Recent culture-independent molecular studies of bacterial diversity in indoor environments have revealed an astonishing diversity of microorganisms, including opportunistic pathogens and many uncultured bacteria. In this study, we used culture and culture-independent methods to determine the viability and diversity of bacteria in a child-care center over a six-month period.  相似文献   

13.
To examine the bacterial community structure in the Fildes Peninsula, King George Island, Antarctica, we examined the bacterial diversity and community composition of samples collected from lacustrine sediment, marine sediment, penguin ornithogenic sediments, and soils using culture-dependent and culture-independent methods. The 70 strains fell into five groups: Actinobacteria, Bacteroidetes, Firmicutes, Gammaproteobacteria, and Betaproteobacteria. Bacterial diversity at the phylum level detected in Denaturing Gradient Gel Electrophoresis (DGGE) profiles comprised Proteobacteria (including the subphyla Alpha-, Beta-, Gamma-, Deltaproteobacteria), Bacteroidetes, Firmicutes, Chlorobi, and Deinococcus-Thermus. Gammaproteobacteria was identified to be the dominant bacterial subphylum by cultivation and DGGE method. By cluster analysis, the overall structure and composition of bacterial communities in the soil and lacustrine sediment were similar to one another but significantly different from bacterial communities in penguin ornithogenic sediment and marine sediment, which were similar to one another. The majority of 16S rDNA sequences from cultured bacteria were closely related to sequences found in cold environments. In contrast, a minority of 16S rDNA sequences from the DGGE approach were closely related to sequences found in cold environments.  相似文献   

14.
A molecular approach based on the construction of 16S ribosomal DNA clone libraries was used to investigate the microbial diversity of an underground in situ reactor system filled with the original aquifer sediments. After chemical steady state was reached in the monochlorobenzene concentration between the original inflowing groundwater and the reactor outflow, samples from different reactor locations and from inflowing and outflowing groundwater were taken for DNA extraction. Small-subunit rRNA genes were PCR-amplified with primers specific for Bacteria, subsequently cloned and screened for variation by restriction fragment length polymorphism (RFLP). A total of 87 bacterial 16S rDNA genes were sequenced and subjected to phylogenetic analysis. The original groundwater was found to be dominated by a bacterial consortium affiliated with various members of the class of Proteobacteria, by phylotypes not affiliated with currently recognized bacterial phyla, and also by sporulating and non-sporulating sulfate-reducing bacteria. The most occurring clone types obtained from the sediment samples of the reactor were related to the beta-Proteobacteria, dominated by sequences almost identical to the widespread bacterium Alcaligenes faecalis, to low G+C gram-positive bacteria and to Acidithiobacillus ferrooxidans (formerly Thiobacillus ferrooxidans) within the gamma subclass of Proteobacteria in the upper reactor sector. Although bacterial phylotypes originating from the groundwater outflow of the reactors also grouped within different subdivisions of Proteobacteria and low G+C gram-positive bacteria, most of the 16S rDNA sequences were not associated with the sequence types observed in the reactor samples. Our results suggest that the different environments were inhabited by distinct microbial communities in respect to their taxonomic diversity, particular pronounced between sediment attached microbial communities from the reactor samples and free-living bacteria from the groundwater in- and outflow.  相似文献   

15.
Given the complexity of the airway microbiota in the respiratory tract of cystic fibrosis (CF) patients, it seems crucial to compile the most exhaustive and exact list of the microbial communities inhabiting CF airways. The aim of the present study was to compare the bacterial and fungal diversity of sputa from adult CF patients during non-exacerbation period by culture-based and molecular methods, and ultra-deep-sequencing (UDS). Sputum samples from four CF patients were cultured and analysed by DNA extractions followed by terminal restriction fragment length polymorphism analysis through resolution of bacterial ribosomal gene (rDNA) fragments, and cloning plus sequencing of part of fungal rRNA genes. These approaches were compared with UDS method targeting 16S rDNA gene and the internal transcribed spacer (ITS) 2 region of rDNA. A total of 27 bacterial and 18 fungal genera were detected from the four patients. Five (18%) and 3 (16%) genera were detected by culture for bacteria and fungi, respectively, 9 (33%) and 3 (16%) by first generation sequencing (FGS) methods, and 26 (96%) and 18 (100%) by UDS. The mean number of genera detected by UDS per patient was statistically higher than by culture or FGS methods. Patients with severe airway disease as assessed by standard spirometry exhibited a reduced fungal and bacterial diversity. UDS approach evaluates more extensively the diversity of fungal and bacterial flora compared with cultures. However, it currently remains difficult to routinely use UDS mainly because of the lack of standardization, and the current cost of this method.  相似文献   

16.
Microbial community structure in the depth profile of a deep-sea sedimentary rock collected from the Sanriku Escarpment in the Japan Trench at a depth of 6337 m were analyzed using enrichment culture methods and culture-independent molecular phylo-genetic techniques. The rock was subsampled at four depths (S1 to S4; from the surface to the inside), and carbon concentrations and colony-forming units (CFU) were determined under several culture conditions. Terminal-restriction fragment length polymorphism (T-RFLP) analysis of PCR-amplified 16S rRNA gene (rDNA) sequences indicated that a shift in bacterial and archaeal ribotype structures occurred in the sections at different depths from the surface. rDNA clone analysis revealed a significant change in microbial rDNA community structure. Bacterial community rDNA in sections S1 to S3 consisted of typical marine bacteria mainly members of the f and n -subclass of Proteobacteria, while the inner most section, S4, contained rDNA signatures for the g -subclass of Proteobacteria and the High G + C Gram-Positive Group. Major archaeal rDNA clones shifted from Marine Group I (S1) to Thermococcales (S2-S4). The changes in bacterial and archaeal rDNA community structure indicated the possible infiltration of seawater and microorganisms into the rock and strongly suggested the isolation of endolithic microbial communities over the geological history of the rock.  相似文献   

17.
The structure of the microbial rhizoplane community of the important crop plant oilseed rape was studied by using a culture-dependent as well as a culture-independent approach based on 16S rDNA amplification. After isolation of the microbial community from the rhizoplane of oilseed rape (Brassica napus cv. Westar), the collected suspension was divided into two parts. One part was used for cultivation of bacteria onto three different growth media to establish a culture collection. From the other part of the rhizoplane suspension, genomic DNA was isolated and purified. Thereafter, 16S rDNA was amplified by PCR and cloned to obtain a library of 16S rDNA genes representative for the bacterial communities of this habitat. Phylogenetic 16S rDNA sequence analysis of 103 clones of this library revealed considerable differences from the corresponding nucleotide sequences of 111 cultured bacteria. Whereas the 16S rDNA clone library was dominated by a-Proteobacteria and bacteria of the Cytophaga-Flavobacterium-Bacteroides (CFB) phylum (51% and 30%, respectively), less than 17% of the cultured bacteria belonged to these two groups. More than 64% of the cultivated isolates were allocated to the b- and g-subclasses of the Proteobacteria, which were present in the clone library at about 14%. Most of the clones of the a-Proteobacteria of the library showed highest similarity to Bradyrhizobium sp. No such bacteria were found in the culture collection. Similarly, the second dominant group of the clone library comprising members of the CFB phylum was represented in the culture collection by a single isolate. The phylogenetic analysis of isolates of the culture collection clearly emphasized the need to use different growth media for recovery of rhizoplane bacteria. Whereas most of the a-Proteobacteria were recovered on complex medium, most of the b-Proteobacteria were isolated onto minimal media. Our results demonstrate that the combined approach pursued in this paper is necessary to explore the biodiversity of bacterial rhizoplane communities.  相似文献   

18.
Very little is known about the microbial composition of animal bedding wastes, including poultry litter, and what is known has been deduced from standard culture methods, by which some fastidious organisms that exist in the environment may not be detected. We evaluated the bacterial composition of poultry litter by using a combination of culture and molecular detection. Total aerobic bacteria in poultry litter were detected by culture at 10(9) CFU/g of material. Enteric bacteria such as Enterococcus spp. and coliforms composed 0.1 and 0.01%, respectively, of the total aerobic cultivatable bacteria in poultry litter; no Salmonella strains were detected by culture. In order to characterize the most abundant bacterial groups, we sequenced 16S ribosomal DNA (rDNA) genes amplified by PCR with microbial community DNA isolated from poultry litter as the template. From the 16S rDNA library, 31 genera were identified. Twelve families or groups were identified with lactobacilli and Salinococcus spp. forming the most abundant groups. In fact, 82% of the total sequences were identified as gram-positive bacteria with 62% of total belonging to low G+C gram-positive groups. In addition to detection of 16S rDNA sequences associated with the expected fecal bacteria present in manure, we detected many bacterial sequences for organisms, such as Globicatella sulfidofaciens, Corynebacterium ammoniagenes, Corynebacterium urealyticum, Clostridium aminovalericum, Arthrobacter sp., and Denitrobacter permanens, that may be involved in the degradation of wood and cycling of nitrogen and sulfur. Several sequences were identified in the library for bacteria associated with disease in humans and poultry such as clostridia, staphylococci, and Bordetella spp. However, specific PCR targeting other human and veterinary pathogens did not detect the presence of Salmonella, pathogenic Escherichia coli, Campylobacter spp., Yersinia spp., Listeria spp., or toxigenic staphylococci. PCR and DNA hybridization revealed the presence of class 1 integrons with gene cassettes that specify resistance to aminoglycosides and chloramphenicol. Only from understanding the microbial community of animal wastes such as poultry litter can we manage animal disease and limit the impact of animal waste on the environment and human and animal health.  相似文献   

19.
Limitations in obtaining sufficient specimens and difficulties in extracting high quality DNA from environmental samples have impeded understanding of the structure of microbial communities. In this study, multiple displacement amplification (MDA) using phi29 polymerase was applied to overcome these hindrances. Optimization of the reaction conditions for amplification of the bacterial genome and evaluation of the MDA product were performed using cyanobacterium Synechocystis sp. strain PCC6803. An 8-h MDA reaction yielded a sufficient quantity of DNA from an initial amount of 0.4 ng, which is equivalent to approximately 10(5) cells. Uniform amplification of genes randomly selected from the cyanobacterial genome was confirmed by real-time polymerase chain reaction. The metagenome from bacteria associated with scleractinian corals was used for whole-genome amplification using phi29 polymerase to analyse the microbial diversity. Unidentified bacteria with less than 93% identity to the closest 16S rDNA sequences deposited in DNA Data Bank of Japan were predominantly detected from the coral-associated bacterial community before and after the MDA procedures. Sequencing analysis indicated that alpha-Proteobacteria was the dominant group in Pocillopora damicornis. This study demonstrates that MDA techniques are efficient for genome wide investigation to understand the actual microbial diversity in limited bacterial samples.  相似文献   

20.
AIMS: To investigate microbial diversity of swine manure composts in the initial stage and the spatial distribution due to gradient effect. METHODS AND RESULTS: Samples in different locations of a composting pile were taken and analysed by using a culture-independent approach. Total community DNA was extracted and bacterial 16S rRNA genes were subsequently amplified, cloned, restriction fragment length polymorphism-screened and sequenced. Thirty-three unique sequence types were found among the 110 analysed positive clones from superstratum sample; 56 among 122 from middle-level sample and 32 among 114 from substrate sample, respectively. The sequences related to Clostridium sp. were most common in the composts. One hundred and thirteen out of 121 16S rDNA sequence types displayed homology with those in the GenBank database. Seven 16S rDNA sequence types were not closely related to any known species. The middle-level sample had the highest microbial diversity, containing unique sequences related to Lactosphaera pasteurii, Firmicutes sp., Aerococcus sp., Megasphaera sp. and Stenotrophomonas sp. CONCLUSIONS: Pile temperature significantly affected microbial community in the initial stage of the composting. Microbial community in different locations is quite different resulting from gradient effect. SIGNIFICANCE AND IMPACT OF THE STUDY: Results of this study reveal high bacterial diversity in manure composts, and provide molecular evidence to support gradient effect on microbial diversity in initial stage as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号