首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contamination of groundwater with the gasoline additive methyl tert-butyl ether (MTBE) is often accompanied by many aromatic components such as benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene (BTEX). In this study, a laboratory-scale biotrickling filter for groundwater treatment inoculated with a microbial consortium degrading MTBE was studied. Individual or mixtures of BTEX compounds were transiently loaded in combination with MTBE. The results indicated that single BTEX compound or BTEX mixtures inhibited MTBE degradation to varying degrees, but none of them completely repressed the metabolic degradation in the biotrickling filter. Tert-butyl alcohol (TBA), a frequent co-contaminant of MTBE had no inhibitory effect on MTBE degradation. The bacterial consortium was stable and showed promising capabilities to remove TBA, ethylbenzene and toluene, and partially degraded benzene and xylenes without significant lag time. The study suggests that it is feasible to deploy a mixed bacterial consortia to degrade MTBE, BTEX and TBA at the same time.  相似文献   

2.
Summary Methyl tert-Butyl Ether (MTBE) has been used in gasoline as a substitute for lead-based additives, which have been demonstrated to be toxic. MTBE however, is persistent in soil and water, showing high affinity for water and low affinity for soil, and has become an important contaminant. Therefore, the aim of this work was to isolate and identify soil microorganisms capable of degrading MTBE. Two samples were taken from a gasoline-contaminated soil at a service station and 59 different bacterial strains were isolated by enrichment culture with three consecutive selective transfers. Biochemical and morphological characterization of the bacterial isolates classified them into the following groups: Bacillus, Rhodococcus, Micrococcus, Aureobacterium and Proteus. Twelve strains were selected for evaluation of MTBE biodegradation depending on visual growth and biomass production of the isolates in minimal salt broth. Six strains significantly reduced MTBE concentration (22–37%) compared to an abiotic control after 5 days of incubation. Although it has been considered that MTBE is degraded mainly by cometabolism, our results demonstrate that these microorganisms are able to reduce MTBE concentration when MTBE is the sole source of carbon.  相似文献   

3.
4.
The addition of methyl tert-butyl ether (MTBE) to gasoline has resulted in public uncertainty regarding the continued reliance on biological processes for gasoline remediation. Despite this concern, researchers have shown that MTBE can be effectively degraded in the laboratory under aerobic conditions using pure and mixed cultures with half-lives ranging from 0.04 to 29 days. Ex-situ aerobic fixed-film and aerobic suspended growth bioreactor studies have demonstrated decreases in MTBE concentrations of 83% and 96% with hydraulic residence times of 0.3 hrs and 3 days, respectively. In microcosm and field studies, aerobic biodegradation half-lives range from 2 to 693 days. These half-lives have been shown to decrease with increasing dissolved oxygen concentrations and, in some cases, with the addition of exogenous MTBE-degraders. MTBE concentrations have also been observed to decrease under anaerobic conditions; however, these rates are not as well defined. Several detailed field case studies describing the use of ex-situ reactors, natural attenuation, and bioaugmentation are presented in this paper and demonstrate the potential for successful remediation of MTBE-contaminated aquifers. In conclusion, a substantial amount of literature is available which demonstratesthat the in-situ biodegradation of MTBE is contingent on achieving aerobic conditions in the contaminated aquifer.  相似文献   

5.
Due to a greater understanding of the behavior of the fuel oxygenate Methyl Tertiary Butyl Ether (MTBE) in groundwater, the United States Environmental Protection Agency (EPA) and the American Petroleum Institute (API) recently have acknowledged the need for the development and application of additional remedial strategies to address the more extensive, longer lived, and faster moving dissolved MTBE plumes often associated with oxygenated fuel releases (API, 2000 and USEPA, 2000a). The need for alternative methods for managing dissolved MTBE plumes is particularly evident in the case of the Upper Glacial aquifer of Long Island, New York. Hydrogeologic conditions in the this water table aquifer (i. e., high hydraulic conductivity, high average pore velocities, low organic carbon, and high rates of recharge) have been found to contribute to the formation of extensive, long, narrow, and three-dimensional dissolved MTBE plumes that plunge into the aquifer in response to recharge (Weaver et. al. 1999). The characteristics of MTBE plumes in the Upper Glacial aquifer in combination with abundant sensitive receptors (mainly drinking water supply wells), often renders monitored natural attenuation (MNA) plume management strategies inappropriate, resulting in the need for plume control, frequently via pumping and treating (NYSDEC, 2000). In such cases, remedial costs can rise well beyond those associated with similar fuel releases that did not contain MTBE (USEPA, 1998a). Consequently, the application of remedial technologies for MTBE other than MNA, or pumping and treating, are of great interest to those responsible for the management of dissolved MTBE plumes on Long Island or in similar hydrogeologic settings. An alternative strategy for the remediation of dissolved MTBE plumes was recently field tested at an oxygenated fuel spill site on Long Island. The strategy was enhanced biodegradation via the application of Hydrogen Release Compound (HRCTM). HRCTM is a form of polylactate ester that slowly releases biodegradation stimulating constituents into the aquifer and has been shown in other studies to foster methanogenic conditions that advance the reductive dechlorina-tion of perchloroethene (PCE) and trichloroethene (TCE) (Koenigsberg, 1998). Numerous reports have been written that discuss the biodegradation of MTBE under aerobic conditions, as well as microcosm studies in which MTBE biodegradation was observed under anaerobic conditions. However, there are limited reports that document the natural anaerobic biodegradation of dissolved MTBE (McLoughlin, 2000). Despite the lack of documented natural anaerobic biodegradation of MTBE, it has been observed that MTBE transport often occurs under anoxic conditions at oxygenated fuel releases as the result of the biodegradation of other fuel constituents, such as benzene, toluene, ethylbenzene and xylene (BTEX), which deplete the available dissolved oxygen as well as other electron acceptors (nitrate, ferric iron, manganese, etc.) (USEPA, 2000c and API, 1996). Therefore, an anaerobic biodegradation strategy is attractive due to its synergy with the existing geochemical conditions. Consequently, the study was conceived and designed to test the ability of HRC(tm) to foster the anaerobic bio-degradation of MTBE under methano-genic conditions (McLoughlin, 2000). The application of HRC(tm) did result in the formation of a large area of enhanced reducing conditions in the vicinity and down gradient of the application zone. However, under these site conditions, the HRC(tm) application did not induce measurable methanogenic conditions with the associated elevated dissolved hydrogen concentrations required for significant MTBE anaerobic biodegradation. The high hydraulic conductivity and high average pore velocity at the site were likely responsible. Despite this, the study can be viewed as a success since much was learned that can be used in future studies of anaerobic biodegradation of MTBE and the application of HRC(tm).  相似文献   

6.
Raynal M  Pruden A 《Biodegradation》2008,19(2):269-282
This study explores the effect of microbial consortium composition and reactor configuration on methyl tert-butyl ether (MTBE) biodegradation in the presence of benzene, toluene, ethylbenzene and p-xylenes(BTEX). MTBE biodegradation was monitored in the presence and absence of BTEX in duplicate batch reactors inoculated with distinct enrichment cultures: MTBE only (MO—originally enriched on MTBE) and/or MTBE BTEX (MB—originally enriched on MTBE and BTEX). The MO culture was also applied in a semi-batch reactor which received both MTBE and BTEX periodically in fresh medium after allowing cells to settle. The composition of the microbial consortia was explored using a combination of 16S rRNA gene cloning and quantitative polymerase chain reaction targeting the known MTBE-degrading strain PM1T. MTBE biodegradation was completely inhibited by BTEX in the batch reactors inoculated with the MB culture, and severely retarded in those inoculated with the MO culture (0.18 ± 0.04 mg/L-day). In the semi-batch reactor, however, the MTBE biodegradation rate in the presence of BTEX was almost three times as high as in the batch reactors (0.48 ± 0.2 mg/L-day), but still slower than MTBE biodegradation in the absence of BTEX in the MO-inoculated batch reactors (1.47 ± 0.47 mg/L-day). A long lag phase in MTBE biodegradation was observed in batch reactors inoculated with the MB culture (20 days), but the ultimate rate was comparable to the MO culture (0.95 ± 0.44 mg/L-day). Analysis of the cultures revealed that strain PM1T concentrations were lower in cultures that successfully biodegraded MTBE in the presence of BTEX. Also, other MTBE degraders, such as Leptothrix sp. and Hydrogenophaga sp. were found in these cultures. These results demonstrate that MTBE bioremediation in the presence of BTEX is feasible, and that culture composition and reactor configuration are key factors.  相似文献   

7.
Squamate reptiles represent an ideal group for studies of viviparity, because they have evolved this reproductive pattern frequently, relatively recently, and at low taxonomic levels. A phylogenetic approach shows particular promise in helping us interpret anatomical, physiological, and ecological diversity. This review summarizes four major categories of active investigation: (1) reproductive anatomy and physiology; (2) placental structure and function; (3) reproductive endocrinology; and (4) reproductive and physiological ecology. Evolutionary reconstructions suggest that on many occasions viviparity has evolved concomitantly with functional placentation, through reduction of the shell membrane and hormonal modifications that prolong gestation. Studies of placentotrophic clades as well as reproductively bimodal species offer great potential for explaining the evolution of viviparity and placentation. However, live-bearing squamates are reproductively diverse, and appear to have solved physiological problems associated with viviparity by a variety of mechanisms. Consequently, studies on one or a few squamate species appear increasingly unlikely to yield all-inclusive explanations. Future studies and analyses should abandon assumptions of universal physiological mechanisms and a single historical sequence, in favor of the documentation of diversity in phylogenetic and quantitative terms.  相似文献   

8.
9.
The purpose of the present study was to provide new methods that would increase the rates of biodegradation of petroleum hydrocarbons in soil, thus reducing the time required to achieve a satisfactory level of residual hydrocarbon in an ex situ bioremediation. Results of laboratory studies on several techniques were used to guide our implementation of these methods in controlled field studies. Soils contaminated with nonvolatile hydrocarbons were treated with various combinations of (1) an anionic surfactant guanidinium cocoate (CGS), (2) a consortium of hydrocarbon‐degrading microorganisms, (3) a slow‐release form of nitrogen:urea, and (4) the bulking agent vermiculite. Laboratory results describing the activity of CGS have been presented previously (Jain et al., 1992). The amount and rate of hydrocarbon loss in treated soil was compared with hydrocarbon lost in soil that received no amendment other than water (water only). We also used a sheen screen method (Nelson et al., 1995), to assess the effectiveness of our field application of microorganisms.  相似文献   

10.
11.
Methyl tertiary butyl ether (MTBE), an important gasoline additive, is a recalcitrant compound posing serious environmental health problems. In this study, MTBE-degrading bacteria were enriched from five environmental samples. Enrichments from Stewart Lake sediments and an MTBE contaminated soil displayed the highest rate of MTBE removal; 29.6 and 27.8% respectively, in 28 days. A total of 12 bacterial monocultures isolated from enrichment cultures were screened for MTBE degradation in liquid cultures. In a nutrient-limited medium containing MTBE as the sole source of carbon and energy, the highest rate of MTBE elimination was achieved with IsoSL1, which degraded 30.6 and 50.2% in 14 and 28 days, respectively. In a nutrient-rich medium containing ethanol and yeast extract, the bacterium (Iso2A) substantially removed MTBE (20.3 and 28.1% removal in 14 and 28 days, respectively). Based upon analysis of the 16s rRNA gene sequence and data base comparison, IsoSL1 and Iso2A were identified as a Streptomyces sp. and Sphingomonas sp., respectively. The Streptomyces sp. is a new genera of bacteria degrading MTBE and could be useful for MTBE bioremediation.  相似文献   

12.
Neurotransmitters: past, present, and future directions   总被引:3,自引:0,他引:3  
As originally conceived, central neurotransmitters operated uniformly, exciting or inhibiting postsynaptic targets by receptors that activated passive ionic conductances. As the list of transmitter substances and their actions expanded, concepts of transmitter actions have broadened and grown more complex to include a variety of intramembranous and intracytoplasmic second messengers that can regulate both active and passive ionic conductances. Present-day research directions center on further expansion of the lists of identified transmitter candidates, and on the more precise characterization of their sites and mechanisms of receptor regulation and transduction. Current research is also illuminating the means by which neurotransmitters act in a coordinated fashion to regulate common synaptic targets. Future directions will likely include new forms of interneuronal, intraneuronal, and glial signals, including lipids, steroids, and as-yet-undiscovered superfamilies of peptides and receptors. Although recent advances in understanding specific transmitters have been achieved largely through in vitro electrophysiological analyses, it is hoped that future research will recast these events in the context of the intact functioning brain. Neurotransmitters are likely to remain a productive focus of future research.  相似文献   

13.
In October 2013, the International Life Sciences Institute - Health and Environmental Sciences Institute Immunotoxicology Technical Committee (ILSI-HESI ITC) held a one-day workshop entitled, “Workshop on Cytokine Release: State-of-the-Science, Current Challenges and Future Directions”. The workshop brought together scientists from pharmaceutical, academic, health authority, and contract research organizations to discuss novel approaches and current challenges for the use of in vitro cytokine release assays (CRAs) for the identification of cytokine release syndrome (CRS) potential of novel monoclonal antibody (mAb) therapeutics. Topics presented encompassed a regulatory perspective on cytokine release and assessment, case studies regarding the translatability of preclinical cytokine data to the clinic, and the latest state of the science of CRAs, including comparisons between mAb therapeutics within one platform and across several assay platforms, a novel physiological assay platform, and assay optimization approaches such as determination of FcR expression profiles and use of statistical tests. The data and approaches presented confirmed that multiple CRA platforms are in use for identification of CRS potential and that the choice of a particular CRA platform is highly dependent on the availability of resources for individual laboratories (e.g. positive and negative controls, number of human blood donors), the assay through-put required, and the mechanism-of-action of the therapeutic candidate to be tested. Workshop participants agreed that more data on the predictive performance of CRA platforms is needed, and current efforts to compare in vitro assay results with clinical cytokine assessments were discussed. In summary, many laboratories continue to focus research efforts on the improvement of the translatability of current CRA platforms as well explore novel approaches which may lead to more accurate, and potentially patient-specific, CRS prediction in the future.  相似文献   

14.
Marine actinobacteria: perspectives,challenges, future directions   总被引:11,自引:0,他引:11  
In this paper we evaluate the current state of research on the biology and biotechnology of marine actinobacteria. The topics covered include the abundance, diversity, novelty and biogeographic distribution of marine actinobacteria, ecosystem function, bioprospecting, and a new approach to the exploration of actinobacterial taxonomic space. An agenda for future marine actinobacterial research is suggested based upon consideration of the above issues.  相似文献   

15.
Methyl tert-butyl ether (MTBE) is a major gasoline oxygenate worldwide and a widespread groundwater contaminant. Natural attenuation of MTBE is of practical interest as a cost effective and non-invasive approach to remediation of contaminated sites. The effectiveness of MTBE attenuation can be difficult to demonstrate without verification of the occurrence of in-situ biodegradation. The aim of this paper is to discuss the recent progress in assessing in-situ biodegradation. In particular, compound-specific isotope analysis (CSIA), molecular techniques based on nucleic acids analysis and in-situ application of stable isotope labels will be discussed. Additionally, attenuation of tert-butyl alcohol (TBA) is of particular interest, as this compound tends to occur alongside MTBE introduced from the gasoline or produced by (mainly anaerobic) biodegradation of MTBE.  相似文献   

16.
聚乙烯(polyethylene,PE)塑料是全球通用合成树脂中产量最丰富的品种,也是最难降解的塑料之一,其在环境中大量积累已造成严重的生态污染。传统的垃圾填埋、堆肥和焚烧处理技术难以满足生态环境的保护要求,生物降解是解决塑料污染问题的一种生态友好、成本低廉、前景可期的方法。本文对PE塑料的化学结构、降解微生物的种类、降解酶和代谢途径等方面进行了综述,结合国内外PE塑料生物降解的前沿和热点问题,建议重点开展高效降解菌株筛选、人工合成菌群构建、降解酶的挖掘与改造等方面的研究,为PE塑料生物降解研究提供路径选择和理论借鉴。  相似文献   

17.
Pruden A  Suidan M 《Biodegradation》2004,15(4):213-227
The effect of a BTEX mixture on the biodegradation of methyl tert-butyl ether (MTBE) and its degradation intermediate, tert-butyl alcohol (TBA) was investigated in the pure bacterial culture UC1, which has been identified to be a strain of the known MTBE-degrader PM1 based on greater than 99% 16S rDNA similarity. Several degradation studies were carried out on UC1 at three initial concentration levels of MTBE or TBA: 6-7; 15-17; and 40-45 mg/l, both with and without BTEX present cumulatively at about half of the MTBE or TBA molar mass in the system. The BTEX mixture was observed not to affect either the rate or the degradation lag period of MTBE or TBA degradation, except that the TBA degradation rate actually increased when BTEX was present initially in the highest concentration studies. When serving as the sole substrate, the MTBE degradation rate ranged from 48 +/- 1.2 to 200 +/- 7.0 mg(MTBE)/g(dw) h, and the TBA degradation rate from 140 +/- 18 to 530 +/- 70 mg(TBA)/g(dw) h. When present with BTEX, MTBE and TBA rates ranged from 46 +/- 2.2 to 210 +/- 14 and 170 +/- 28 to 780 +/- 43 mg(TBA)/g(dw) h, respectively. In studies where varying concentrations of TBA were present with 5 mg/l MTBE, both compounds were degraded simultaneously with no obvious preference for either substrate. In the highest concentration study of TBA with 5 mg/l MTBE, BTEX was also observed to increase the ultimate rate of TBA degradation. In addition to exploring the affect of BTEX, this study also provides general insight into the metabolism of MTBE and TBA by pure culture UC1.  相似文献   

18.
Elucidation of the mechanisms controlling early development and organogenesis is currently progressing in several model species and a new field of research, evolutionary developmental biology, which integrates developmental and comparative approaches, has emerged. Although the expression pattern of many genes during tooth development in mammals is known, data on other lineages are virtually non-existent. Comparison of tooth development, and particularly of gene expression (and function) during tooth morphogenesis and differentiation, in representative species of various vertebrate lineages is a prerequisite to understand what makes one tooth different from another. Amphibians appear to be good candidates for such research for several reasons: tooth structure is similar to that in mammals, teeth are renewed continuously during life (=polyphyodonty), some species are easy to breed in the laboratory, and a large amount of morphological data are already available on diverse aspects of tooth biology in various species. The aim of this review is to evaluate current knowledge on amphibian teeth, principally concerning tooth development and replacement (including resorption), and changes in morphology and structure during ontogeny and metamorphosis. Throughout this review we highlight important questions which remain to be answered and that could be addressed using comparative morphological studies and molecular techniques. We illustrate several aspects of amphibian tooth biology using data obtained for the caudate Pleurodeles waltl. This salamander has been used extensively in experimental embryology research during the past century and appears to be one of the most favourable amphibian species to use as a model in studies of tooth development.  相似文献   

19.
Herein we review the current state-of-the-art of plant hydraulics in the context of plant physiology,ecology, and evolution, focusing on current and future research opportunities. We explain the physics of water transport in plants and the limits of this transport system,highlighting the relationships between xylem structure and function. We describe the great variety of techniques existing for evaluating xylem resistance to cavitation. We address several methodological issues and their connection with current debates on conduit refilling and exponentially shaped vulnerability curves. We analyze the trade-offs existing between water transport safety and efficiency. We also stress how little information is available on molecular biology of cavitation and the potential role of aquaporins in conduit refilling. Finally,we draw attention to how plant hydraulic traits can be used for modeling stomatal responses to environmental variables and climate change, including drought mortality.  相似文献   

20.
Anaerobic biodegradation of BTEX and gasoline in various aquatic sediments   总被引:1,自引:0,他引:1  
We examined the extent of biodegradation of benzene, toluene, ethylbenzene and the three isomers of xylene (BTEX) as a mixture and from gasoline in four different sediments: the New York/New Jersey Harbor estuary (polluted); Tuckerton, N.J. (pristine); Onondaga Lake, N.Y. (polluted) and Blue Mtn. Lake, N.Y. (pristine). Enrichment cultures were established with each sediment using denitrifying, sulfidogenic, methanogenic and iron reducing media, as well as site water. BTEX loss, as measured by GC-FID, was extensive in the sediments which had a long history of pollution, with all compounds being utilized within 21–91 days in the most active cultures, and was very slight or non-existent in the pristine sediments. Also, the pattern of loss was different under the various reducing conditions within each sediment and between sediments. For example benzene loss was only observed in sulfidogenic cultures from the NY/NJ Harbor sediments while toluene was degraded under all redox conditions. The loss of BTEX was correlated to the reduction of the various electron acceptors. In cultures amended with gasoline the degradation was much slower and incomplete. These results show that the fate of the different BTEX components in anoxic sediments is dependent on the prevailing redox conditions as well as on the characteristics and pollution history of the sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号