首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cantharidin and its analogues have been of considerable interest as potent inhibitors of the serine/threonine protein phosphatases 1 and 2A (PP1 and PP2A). However, limited modifications to the parent compounds is tolerated. As part of an on-going study we have developed a new series of cantharidin analogues, the cantharimides. Inhibition studies indicate that cantharimides possessing a D- or L-histidine, are more potent inhibitors of PP1 and PP2A (PP1 IC(50)=3.22+/-0.7 microM; PP2A IC(50)=0.81+/-0.1 microM and PP1 IC(50)=2.82+/-0.6 microM; PP2A IC(50)=1.35+/-0.3 microM, respectively) than norcantharidin (PP1 IC(50)=5.31+/-0.76 microM; PP2A IC(50)=2.9+/-1.04 microM) and essentially equipotent with cantharidin (PP1 IC(50)=3.6+/-0.42 microM; PP2A IC(50)=0.36+/-0.08 microM). Cantharimides with non-polar or acidic amino acid residues are only poor inhibitors of PP1 and PP2A.  相似文献   

2.
Tetraketones: a new class of tyrosinase inhibitors   总被引:1,自引:0,他引:1  
Twenty-eight tetraketones (1-28) with variable substituents at C-7 were synthesized and evaluated as tyrosinase inhibitors. Remarkably compounds 25 (IC(50)=2.06 microM), 11 (IC(50)=2.09 microM), 15 (IC(50)=2.61 microM), and 27 (IC(50)=3.19 microM) were found to be the most active compounds of the series, even better than both standards kojic acid (IC(50)=16.67 microM) and L-mimosine (IC(50)=3.68 microM). This study may lead to the discovery of therapeutically potent agents against clinically very important dermatological disorders including hyperpigmentation as well as skin melanoma.  相似文献   

3.
The synthesis and biological evaluation of corosolic acid derivatives and related compounds as inhibitors of rabbit muscle glycogen phosphorylase a is described. Within this series of compounds, 8 (IC(50)=7.31 microM), 12d (IC(50)=3.26 microM), and 12e (IC(50)=5.1 microM) exhibited more potent activities than the parent compound 1 (IC(50)=20 microM). SAR of these compounds is also discussed.  相似文献   

4.
2,4-Disubstituted pyrimidines were synthesized as a novel class of KDR kinase inhibitors. Evaluation of the SAR of the screening lead compound 1 (KDR IC(50)=105 nM, Cell IC(50)=8% inhibition at 500 nM) led to the potent 3,5-dimethylaniline derivative 2d (KDR IC(50)=6 nM, cell IC(50)=19 nM).  相似文献   

5.
A number of aza-steroids were synthesized as potent phosphatidylinositol phospholipase C (PI-PLC) inhibitors. The epimeric mixtures 22,25-diazacholesterol (8a) and 3beta-hydroxy-22,25-diazacholestane (8b) were among the most active of these inhibitors, with IC(50) values of 7.4 and 7.5 microM, respectively. The 20alpha epimer, 8a2 (IC(50)=0.64 microM), whose stereochemistry at C-20 coincides with that of cholesterol, was found 50 times more potent than the 20beta epimer, 8a1 (IC(50)=32.2 microM). In diaza-estrone derivatives, the 3-methoxy group on the aromatic A-ring of 23 exhibited moderate PI-PLC inhibitory activity (IC(50)=19.7 microM), while compound with a free hydroxyl group (21) was inactive. However, in diaza-pregnane derivatives, epimers with a 3-hydroxyl group (8a, IC(50)=7.4 microM) exhibited more potent PI-PLC inhibitory activity than their counterparts with 3-methoxyl group on the non-aromatic A-ring (26, IC(50)=17.4 microM). We have illustrated in our previous publication that 3-hydroxyl-6-aza steroids are potent PI-PLC inhibitors.(3) However, simultaneous presence of the 6-aza and 22,25-diaza moieties in one molecule as in 13, led to loss of activity. Epimeric mixture 8a showed selective growth inhibition effects in the NCI in vitro tumor cell screen with a mean GI(50) value (MG-MID) of 5.75 microM for 54 tumors.  相似文献   

6.
We report the synthesis, biochemical evaluation and rationalisation of the inhibitory activity of a number of azole-based compounds as inhibitors of the two components of the cytochrome P-450 enzyme 17alpha-hydroxylase/17,20-lyase (P450(17alpha)), i.e. 17alpha-hydroxylase (17alpha-OHase) and 17,20-lyase (lyase). The results suggest that the compounds synthesised are potent inhibitors, with 7-phenyl heptyl imidazole (11) (IC(50)=320 nM against 17alpha-OHase and IC(50)=100 nM against lyase); 1-[7-(4-fluorophenyl) heptyl] imidazole (14) (IC(50)=170 nM against 17alpha-OHase and IC(50)=57 nM against lyase); 1-[5-(4-bromophenyl) pentyl] imidazole (19) (IC(50)=500 nM against 17alpha-OHase and IC(50)=58 nM against lyase) being the most potent inhibitors within the current study, in comparison to ketoconazole (KTZ) (IC(50)=3.76 microM against 17alpha-OHase and IC(50)=1.66 microM against lyase). Furthermore, consideration of the inhibitory activity against the two components shows that all of the compounds tested are less potent towards the 17alpha-OHase in comparison to the lyase component, a desirable property in the development of novel inhibitors of P450(17alpha). From the modelling of these compounds onto the novel substrate heme complex (SHC) for the overall enzyme complex, the length of the compound, along with its ability to undergo interaction with the active site corresponding to the C(3) area of the steroidal backbone, are suggested to play a key role in determining the overall inhibitory activity.  相似文献   

7.
Plasmodium falciparum thioredoxin reductase (PfTrxR: NADPH+Trx(S)2+H+<-->NADP++Trx(SH)2) is a high Mr flavin-dependent TrxR that reduces thioredoxin (Trx) via a CysXXXXCys pair located penultimately to the C-terminal Gly. In this respect, PfTrxR differs significantly from its human counterpart which bears a Cys-Sec redox pair at the same position. PfTrxR is essentially involved in antioxidant defense and redox regulation of the parasite and has been previously validated by knock-out studies as a potential drug target for malaria chemotherapy. Moreover, human TrxR is present in most cancer cells at levels tenfold higher than in normal cells. Here we report the discovery of a series of potent inhibitors of PfTrxR. The three most promising inhibitors, 3(IC50(PfTrxR)=2 microM and IC50(hTrxR)=50 microM), 7(IC50(PfTrxR)=2 microM and IC50(hTrxR)=140 microM), and 11(IC50(PfTrxR)=0.5 microM and IC50(hTrxR)=4 microM) were selective for the parasite enzyme. Detailed mechanistic characterization of the effects of these compounds on the PfTrxR-catalyzed reaction showed clear uncompetitive inhibition with respect to both substrate and cofactor. For the most specific PfTrxR inhibitor 7, an alkylation mechanism study based on a thiol conjugation model was performed. Furthermore, all three compounds were active in the lower micromolar range on the chloroquine-resistant P. falciparum strain K1 in vitro.  相似文献   

8.
A hitherto unknown class of celecoxib analogs was designed for evaluation as dual inhibitors of the 5-lipoxygenase/cyclooxygenase-2 (5-LOX/COX-2) enzymes. These compounds possess a SO(2)Me (11a), or SO(2)NH(2) (11b) COX-2 pharmacophore at the para-position of the N(1)-phenyl ring in conjunction with a 5-LOX N-hydroxypyrid-2(1H)one iron-chelating moiety in place of the celecoxib C-5 tolyl group. The title compounds 11a-b are weak inhibitors of the COX-1 and COX-2 isozymes (IC(50)=7.5-13.2 microM range). In contrast, the SO(2)Me (11a, IC(50)=0.35 microM), and SO(2)NH(2) (11b, IC(50)=4.9 microM), compounds are potent inhibitors of the 5-LOX enzyme comparing favorably with the reference drug caffeic acid (5-LOX IC(50)=3.47 microM). The SO(2)Me (11a, ED(50)=66.9 mg/kg po), and SO(2)NH(2) (11b, ED(50)=99.8 mg/kg po) compounds exhibited excellent oral anti-inflammatory (AI) activities being more potent than the non-selective COX-1/COX-2 inhibitor drug aspirin (ED(50)=128.9 mg/kg po) and less potent than the selective COX-2 inhibitor celecoxib (ED(50)=10.8 mg/kg po). The N-hydroxypyridin-2(1H)one moiety constitutes a novel pharmacophore for the design of cyclic hydroxamic mimetics capable of chelating 5-LOX iron for exploitation in the design of 5-LOX inhibitory AI drugs.  相似文献   

9.
Simple modifications to the anhydride moiety of norcantharidin have lead to the development of a series of analogues displaying modest PP1 inhibition (low muM IC(50)s) comparable to that of norcantharidin (PP1 IC(50)=10.3+/-1.37 microM). However, unlike norcantharidin, which is a potent inhibitor of PP2A (IC(50)=2.69+/-1.37 microM), these analogues show reduced PP2A inhibitory action resulting in the development of selective PP1 inhibitory compounds. Data indicates that the introduction of two ortho-disposed substituents on an aromatic ring, or para-substituent favours PP1 inhibition over PP2A inhibition. Introduction of a p-morphilinoaniline substituent, 35, affords an inhibitor displaying PP1 IC(50)=6.5+/-2.3 microM; and PP2A IC(50)=7.9+/-0.82 microM (PP1/PP2A=0.82); and a 2,4,6-trimethylaniline, 23, displaying PP1 IC(50)=48+/-9; and PP2A IC(5) 85+/-3 microM (PP1/PP2A=0.56). The latter shows a 7-fold improvement in PP1 versus PP2A selectivity when compared with norcantharidin. Subsequent analysis of 23 and 35 as potential PP2B inhibitors revealed modest inhibition with IC(50)s of 89+/-6 and 42+/-3 microM, respectively, and returned with PP1/PP2B selectivities of 0.54 and 0.15. Thus, these analogues are the simplest and most selective PP1 inhibitors retaining potency reported to date.  相似文献   

10.
N-Acetyl-2-carboxybenzenesulfonamide (11), and a group of analogues possessing an appropriately substituted-phenyl substituent (4-F, 2,4-F(2), 4-SO(2)Me, 4-OCHMe(2)) attached to its C-4, or C-5 position, were synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. In vitro COX-1/COX-2 inhibition studies showed that 11 is a more potent inhibitor (COX-1 IC(50)=0.06microM; COX-2 IC(50)=0.25microM) than aspirin (COX-1 IC(50)=0.35microM; COX-2 IC(50)=2.4microM), and like aspirin [COX-2 selectivity index (S.I.)=0.14], 11 is a nonselective COX-2 inhibitor (COX-2 S.I.=0.23). Regioisomers having a 2,4-difluorophenyl substituent attached to the C-4 (COX-2 IC(50)=0.087microM; COX-2 S.I. >1149), or C-5 (COX-2 IC(50)=0.77microM, SI>130), position of 11 exhibited the most potent and selective COX-2 inhibitory activity relative to the reference drug celecoxib (COX-1 IC(50)=33.1microM; COX-2 IC(50)=0.07microM; COX-2 S.I.=472). N-Acetyl-2-carboxybenzenesulfonamide (11, ED(50)=49 mg/kg), and its C-4 2,4-difluorophenyl derivative (ED(50)=91 mg/kg), exhibited superior antiinflammatory activity (oral dosing) in a carrageenan-induced rat paw edema assay compared to aspirin (ED(50)=129 mg/kg). These latter compounds exhibited comparable analgesic activity to the reference drug diflunisal, and superior analgesic activity compared to aspirin, in a 4% NaCl-induced abdominal constriction assay. A molecular modeling (docking) study indicated that the SO(2)NHCOCH(3) substituent present in N-acetyl-2-carboxy-4-(2,4-fluorophenyl)benzenesulfonamide, like the acetoxy substituent in aspirin, is suitably positioned to acetylate the Ser(530) hydroxyl group in the COX-2 primary binding site. The results of this study indicate that the SO(2)NHCOCH(3) pharmacophore present in N-acetyl-2-carboxybenzenesulfonamides is a suitable bioisostere for the acetoxy (OCOMe) group in aspirin.  相似文献   

11.
Three tyrosyl gallate derivatives (1-3) with variable hydroxyl substituent at the aromatic ring of tyrosol were synthesized and evaluated as potent inhibitors on tyrosinase activity and melanin formation in melan-a cells. Among three tyrosyl gallate derivatives, 4-hydroxyphenethyl 3,4,5-trihydroxybenote (1) (IC(50)=4.93 microM), 3-hydroxyphenethyl 3,4,5-trihydroxybenote (2) (IC(50)=15.21 microM), and 2-hydroxyphenethyl 3,4,5-trihydroxybenote (3) (IC(50)=14.50 microM) exhibited significant inhibitory effect on tyrosinase activity. Compound 1 was the most active compound, though it did not show the inhibitory effect on melanin formation in melan-a cells. However, compounds 2 (IC(50)=8.94 microM) and 3 (IC(50)=13.67 microM) significantly suppressed the cellular melanin formation without cytotoxicity. This study shows that the position of hydroxyl substituent at the aromatic ring of tyrosol plays an important role in the intracellular regulation of melanin formation in cell-based assay system.  相似文献   

12.
We have recently reported the discovery of orally active sulfonylalkylamide Factor Xa (FXa) inhibitors, as typified by compound 1 (FXa IC(50)=0.061 microM). Since the pyridylpiperidine moiety was not investigated in our previous study, we conducted detailed structure-activity relationship studies on this S4 binding element. This investigation led to the discovery of piperazinylimidazo[1,2-a]pyridine 2b as a novel and potent FXa inhibitor (FXa IC(50)=0.021 microM). Further modification resulted in the discovery of 2-hydroxymethylimidazo[1,2-a]pyridine 2e (FXa IC(50)=0.0090 microM), which was found to be a selective and orally bioavailable FXa inhibitor with reduced CYP3A4 inhibition.  相似文献   

13.
The discovery, synthesis and in vitro activity of a novel series of rhodanine based phosphodiesterase-4 (PDE4) inhibitors is described. Structure-activity relationship studies directed toward improving potency led to the development of submicromolar inhibitors 2n and 3i (IC(50)=0.89 & 0.74 microM). The replacement of rhodanine with structurally related heterocycles was also investigated and led to the synthesis of pseudothiohydantoin 7 (IC(50)=0.31 microM).  相似文献   

14.
The structure-based elucidation of 2,4,6-tri-substituted phenols for their antioxidative and anti-peroxidative effects has been investigated using TX-1952 (2,6-diprenyl-4-iodophenol), TX-1961, TX-1980, BTBP and BHT. In the inhibition of mitochondrial lipid peroxidation, the inhibitory activity of 2,6-di-tert-butyl-4-bromophenol (BTBP) (IC(50)=0.17 microM) was twice as high as that of 2,6-di-tert-butyl-4-methylphenol (BHT) (IC(50)=0.31 microM). This result shows that the 4-halogen group increases inhibitory activity for mitochondrial lipid peroxidation. Besides, TX-1952 (IC(50)=0.60 microM) was the highest inhibitor among 2,6-diprenyl-4-halophenols, followed by TX-1961 (IC(50)=0.93 microM) and TX-1980 (IC(50)=1.2 microM). In 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging experiments, the activity of TX-1952 (IC(0.200)=53.1 microM) was lower than that of BHT (IC(0.200)=33.7 microM) and BTBP (IC(0.200)=16.0 microM), but TX-1952 and BHT showed the same HOMO energy (-8.991 eV). These results suggest that the two prenyl groups at ortho position hinder the phenolic hydrogen abstraction by DPPH radical. These findings demonstrated that TX-1952 was a novel and potent inhibitor for lipid peroxidation.  相似文献   

15.
6-aryl-2-morpholin-4-yl-4H-pyran-4-ones and 6-aryl-2-morpholin-4-yl-4H-thiopyran-4-ones were synthesised and evaluated as potential inhibitors of the DNA repair enzyme DNA-dependent protein kinase (DNA-PK). Several compounds in each series exhibited superior activity to the chromenone LY294002, and were of comparable potency to the benzochromenone NU7026 (IC(50)=0.23 microM). Importantly, members of both structural classes were found to be selective inhibitors of DNA-PK over related phosphatidylinositol 3-kinase-related kinase (PIKK) family members. A multiple-parallel synthesis approach, employing Suzuki cross-coupling methodology, was utilised to prepare libraries of thiopyran-4-ones with a range of aromatic groups at the 3'- and 4'-positions on the thiopyran-4-one 6-aryl ring. Screening of the libraries resulted in the identification of 6-aryl-2-morpholin-4-yl-4H-thiopyran-4-ones bearing naphthyl or benzo[b]thienyl substituents at the 4'-position, as potent DNA-PK inhibitors with IC(50) values in the 0.2-0.4 microM range.  相似文献   

16.
Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) is a thiamin diphosphate- (ThDP)- and FAD-dependent enzyme that catalyzes the first common step in the biosynthetic pathway of the branched-amino acids (BCAAs) leucine, isoleucine, and valine. The gene from Haemophilus influenzae that encodes the AHAS catalytic subunit was cloned, overexpressed in Escherichia coli BL21(DE3), and purified to homogeneity. The purified H. influenzae AHAS catalytic subunit (Hin-AHAS) appeared as a single band on SDS-PAGE gel, with a molecular mass of approximately 63 kDa. The enzyme catalyzes the condensation of two molecules of pyruvate to form acetolactate, with a K(m) of 9.2mM and the specific activity of 1.5 micromol/min/mg. The cofactor activation constant (K(c)=13.5 microM) and the dissociation constant (K(d)=3.3 microM) of ThDP were also determined by enzymatic assay and tryptophan fluorescence quenching studies, respectively. We screened a chemical library to discover new inhibitors of the Hin AHAS catalytic subunit. Through which, AVS-2087 (IC(50)=0.53 microM), KSW30191 (IC(50)=1.42 microM), and KHG20612 (IC(50)=4.91 microM) displayed potent inhibition as compare to sulfometuron methyl (IC(50)=276.31 microM).  相似文献   

17.
Xanthine oxidase (XO) is a key enzyme which can catalyze xanthine to uric acid causing hyperuricemia in humans. By using the fractionation technique and inhibitory activity assay, an active compound that prevents XO from reacting with xanthine was isolated from wheat leaf. It was identified by the Mass and NMR as 6-aminopurine (adenine). A structure-activity study based on 6-aminopurine was conducted. The inhibition of XO activity by 6-aminopurine (IC(50)=10.89+/-0.13 microM) and its analogues was compared with that by allopurinol (IC(50)=7.82+/-0.12 microM). Among these analogues, 2-chloro-6(methylamino)purine (IC(50)=10.19+/-0.10 microM) and 4-aminopyrazolo[3,4-d] pyrimidine (IC(50)=30.26+/-0.23 microM) were found to be potent inhibitors of XO. Kinetics study showed that 2-chloro-6(methylamino)purine is non-competitive, while 4-aminopyrazolo[3,4-d]pyrimidine is competitive against XO.  相似文献   

18.
A series of potent p38 inhibitors based on the dihydroquinazoline scaffold was synthesized using a novel Pd-catalyzed cyclization reaction of aryl-benzyl ureas. Optimization of this compound class led to compound 20, which inhibits p38alpha in vitro with IC(50)=14 nM and is active in the mouse TNFalpha-release model.  相似文献   

19.
The cytochrome P450 enzyme, 17alpha-hydroxylase/17,20-lyase (P450(17alpha)), is a potential target in hormone-dependent cancers. We report the synthesis, biochemical evaluation and rationalisation of the inhibitory activity of a number of azole-based compounds as inhibitors of the two components of P450(17alpha), i.e., 17alpha-hydroxylase (17alpha-OHase) and 17,20-lyase (lyase). The results suggest that the imidazole-based compounds are highly potent inhibitors of both components, with N-7-phenyl heptyl imidazole (21) (IC(50)=0.32 microM against 17alpha-OHase and IC(50)=0.10 microM against lyase) and N-8-phenyl octyl imidazole (23) (IC(50)=0.25 microM against 17alpha-OHase and IC(50)=0.21 microM against lyase) being the two most potent compounds within the current study, in comparison to ketoconazole (KTZ) (IC(50)=3.76 microM against 17alpha-OHase and IC(50)=1.66 microM against lyase). Furthermore, consideration of the inhibitory activity against the two components show that the compounds tested are less potent towards the 17alpha-OHase component, a desirable property in the development of novel inhibitors of P450(17alpha). Structure-activity relationship determination of the range of compounds synthesised suggests that logP (log of the partition coefficient) is a key physicochemical factor in determining the overall inhibitory activity. In an effort to determine the viability of these compounds becoming potential drug candidates as well as to show specificity of these compounds, we undertook the biochemical evaluation of the synthesised compounds against two isozymes of 17beta-hydroxysteroid dehydrogenase [namely type 1 (17beta-HSD1) and type 3 (17beta-HSD3)] and 3beta-hydroxysteroid dehydrogenase (3beta-HSD). Consideration of the inhibitory activity possessed by the compounds considered within the current study against 3beta-HSD, 17beta-HSD1 and 17beta-HSD3 shows that there is no clear structure-activity relationship and that the compounds appear to possess similar inhibitory activity against both 3beta-HSD and 17beta-HSD3 whilst against 17beta-HSD1, the compounds appear to possess poor inhibitory activity at [I]=100 microM. Indeed, two of the most potent inhibitors of P450(17alpha), (compounds 21 and 23), were found to possess relatively good levels of inhibition against the three enzymes-compound 21 was found to possess approximately 32%, approximately 21% and approximately 37% inhibition whilst compound 23 was found to possess approximately 38%, approximately 30% and approximately 28% inhibition against 3beta-HSD, 17beta-HSD1 and 17beta-HSD3 respectively. We therefore concluded that the azole-based compounds synthesised within the current study are not suitable for further consideration as potential drug candidates due to their lack of specificity.  相似文献   

20.
Both of aminopeptidase N (APN) and matrix metalloproteinase (MMP) are essential metallopeptidases in the development of tumor invasion and angiogenesis. Novel potent peptidomimetic inhibitors, containing 3-galloylamido-N'-substituted-2,6-piperidinedione-N-acetamide, have been designed and synthesized according to the conformational constraint strategy. The preliminary biological test showed that most of the compounds displayed high inhibitory activity against MMP-2 and low activity against APN except compounds 6 (IC(50)=3.1microM) and 4l (IC(50)=5.2microM) which exhibit similar potency to Bestatin (IC(50)=2.4microM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号