首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Superoxide dismutase (SOD) proteins, which are widely present in the plant kingdom, play vital roles in response to abiotic stress. However, the functions of cucumber SOD genes in response to environmental stresses remain poorly understood. In this study, a SOD gene CsCSD1 was identified and functionally characterized from cucumber (Cucumis sativus). The CsCSD1 protein was successfully expressed in E. coli, and its overexpression significantly improved the tolerance of host E. coli cells to salinity stress. Besides, overexpression of CsCSD1 enhanced salinity tolerance during germination and seedling development in transgenic Arabidopsis plants. Further analyses showed that the SOD and CAT (catalase) activities of transgenic plants were significantly higher than those of wild-type (WT) plants under normal growth conditions as well as under NaCl treatment. In addition, the expression of stress-response genes RD22, RD29B and LEA4-5 was significantly elevated in transgenic plants. Our results demonstrate that the CsCSD1 gene functions in defense against salinity stress and may be important for molecular breeding of salt-tolerant plants.  相似文献   

3.
4.
Drought and salinity are major abiotic stresses affecting rice production. To improve plant tolerance to salinity and drought, we overexpressed rice Na+/H+ exchangers (OsNHX1) and H+-pyrophosphatase in tonoplasts (OsVP1) in a japonica elite rice cultivar, Zhonghua 11. Compared with our wild-type control, transgenic plants overexpressing both genes incurred less damage when exposed to long-term treatment with 100 mM NaCl or water deprivation. Under high-saline conditions, the transformants accumulated less Na+ and malondialdehyde in the leaves, thereby allowing the plants to maintain a low level of leaf water potential and reduce stress-induced damage. Those transgenics also had higher photosynthetic activity during the stress period. Under those conditions, they also showed an increase in root biomass, which enabled more water uptake. These results suggest that OsVP1 and OsNHX1 improve the tolerance of rice crops against drought and salt by employing multiple strategies in addition to osmotic regulation.  相似文献   

5.
Salinity reduces plant growth and crop production globally. The discovery of genes in salinity tolerant plants will provide the basis for effective genetic engineering strategies, leading to greater stress tolerance in economically important crops. In this study, we have identified and isolated 107 salinity tolerant candidate genes from a mangrove plant, Acanthus ebracteatus Vahl by using bacterial functional assay. Sequence analysis of these putative salinity tolerant cDNA candidates revealed that 65% of them have not been reported to be stress related and may have great potential for the elucidation of unique salinity tolerant mechanisms in mangrove. Among the genes identified were also genes that had previously been linked to stress response including salinity tolerance, verifying the reliability of this method in isolating salinity tolerant genes by using E. coli as a host.  相似文献   

6.
7.
Late embryogenesis abundant (LEA) proteins are closely related to abiotic stress tolerance of plants. In the present study, we identified a novel Em-like gene from lettuce, termed LsEm1, which could be classified into group 1 LEA proteins, and shared high homology with Cynara cardunculus Em protein. The LsEm1 protein contained three different 20-mer conserved elements (C-element, N-element, and M-element) in the C-termini, N-termini, and middle-region, respectively. The LsEm1 mRNAs were accumulated in all examined tissues during the flowering and mature stages, with a little accumulation in the roots and leaves during the seedling stage. Furthermore, the LsEm1 gene was also expressed in response to salt, dehydration, abscisic acid (ABA), and cold stresses in young seedlings. The LsEm1 protein could effectively reduce damage to the lactate dehydrogenase (LDH) and protect LDH activity under desiccation and salt treatments. The Escherichia coli cells overexpressing the LsEm1 gene showed a growth advantage over the control under drought and salt stresses. Moreover, LsEm1-overexpressing rice seeds were relatively sensitive to exogenously applied ABA, suggesting that the LsEm1 gene might depend on an ABA signaling pathway in response to environmental stresses. The transgenic rice plants overexpressing the LsEm1 gene showed higher tolerance to drought and salt stresses than did wild-type (WT) plants on the basis of the germination performances, higher survival rates, higher chlorophyll content, more accumulation of soluble sugar, lower relative electrolyte leakage, and higher superoxide dismutase activity under stress conditions. The LsEm1-overexpressing rice lines also showed less yield loss compared with WT rice under stress conditions. Furthermore, the LsEm1 gene had a positive effect on the expression of the OsCDPK9, OsCDPK13, OsCDPK15, OsCDPK25, and rab21 (rab16a) genes in transgenic rice under drought and salt stress conditions, implying that overexpression of these genes may be involved in the enhanced drought and salt tolerance of transgenic rice. Thus, this work paves the way for improvement in tolerance of crops by genetic engineering breeding.  相似文献   

8.
Salinity and alkalinity are the two main environmental factors that limit rice production. Better understanding of the mechanisms responsible for salinity and alkaline stress tolerance would allow researchers to modify rice to increase its resistance to salinity and alkaline stress. MicroRNAs (miRNAs) are ~21-nucleotide RNAs that are ubiquitous regulators of gene expression in eukaryotic organisms. Some miRNAs acts as an important endogenous regulator in plant responses to abiotic stressors. miR393 is a conservative miRNA family that occurs in a variety of different plants. The two members of the miR393 family found in rice are named osa-MIR393 and osa-MIR393b. We found that the osa-MIR393 expression level changed under salinity and alkaline stress, whereas that of osa-MIR393b did not. Target genes of osa-MIR393 were predicted, and some of these putative targets are abiotic related genes. Furthermore, we generated transgenic rice and Arabidopsis thaliana that over-expressed osa-MIR393, and the phenotype analysis showed that these transgenic plants were more sensitive to salt and alkali treatment compared to wild-type plants. These results illustrate that over-expression of osa-MIR393 can negatively regulate rice salt-alkali stress tolerance.  相似文献   

9.
Chalcone synthase (CHS) is one of the key enzymes in flavonoid biosynthesis pathway in plants. However, the roles of AeCHS gene from Abelmoschus esculentus in flavonoid accumulation and tolerance to abiotic stresses have not been studied. In this study, the AeCHS gene was cloned from Abelmoschus esculentus. The open reading frame contained 1170 nucleotides encoding 389 amino acids. The coding region of AeCHS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis to obtain transgenic plants. Overexpression of AeCHS increased the production of downstream flavonoids and the expression of related genes in the flavonoid biosynthesis pathway. It also improved resistance to salt and mannitol stresses during seed germination and root development. Further component and enzymatic analyses showed the decreased content of H2O2 and malondialdehyde and the increased activities of superoxide dismutase (SOD) and peroxidase (POD) in transgenic seedlings. Meanwhile, the expression level of AtSOD and AtPOD genes was up-regulated against salt and osmotic stresses. Together, our finding indicated that changing the expression level of AeCHS in plants alters the accumulation of flavonoids and regulates plantlet tolerance to abiotic stress by maintaining ROS homeostasis. The AeCHS gene has the potential to be used to increase the content of valuable flavonoids and improve the tolerance to abiotic stresses in plants.  相似文献   

10.
Peng Y  Lin W  Cai W  Arora R 《Planta》2007,226(3):729-740
Water movement across cellular membranes is regulated largely by a family of water channel proteins called aquaporins (AQPs). Since several abiotic stresses such as, drought, salinity and freezing, manifest themselves via altering water status of plant cells and are linked by the fact that they all result in cellular dehydration, we overexpressed an AQP (tonoplast intrinsic protein) from Panax ginseng, PgTIP1, in transgenic Arabidopsis thaliana plants to test its role in plant’s response to drought, salinity and cold acclimation (induced freezing tolerance). Under favorable conditions, PgTIP1 overexpression significantly increased plant growth as determined by the biomass production, and leaf and root morphology. PgTIP1 overexpression had beneficial effect on salt-stress tolerance as indicated by superior growth status and seed germination of transgenic plants under salt stress; shoots of salt-stressed transgenic plants also accumulated greater amounts of Na+ compared to wild-type plants. Whereas PgTIP1 overexpression diminished the water-deficit tolerance of plants grown in shallow (10 cm deep) pots, the transgenic plants were significantly more tolerant to water stress when grown in 45 cm deep pots. The rationale for this contrasting response, apparently, comes from the differences in the root morphology and leaf water channel activity (speed of dehydration/rehydration) between the transgenic and wild-type plants. Plants overexpressed with PgTIP1 exhibited lower (relative to wild-type control) cold acclimation ability; however, this response was independent of cold-regulated gene expression. Our results demonstrate a significant function of PgTIP1 in growth and development of plant cells, and suggest that the water movement across tonoplast (via AQP) represents a rate-limiting factor for plant vigor under favorable growth conditions and also significantly affect responses of plant to drought, salt and cold stresses.  相似文献   

11.
12.
Transgenic lines of indica rice were generated by Agrobacterium-mediated transformation with the choline oxidase ( codA) gene from Arthrobacter globiformis. Choline oxidase catalyses conversion of choline to glycine betaine. Glycine betaine is known to provide tolerance against a variety of stresses. Molecular analyses of seven independent transgenic lines as performed by Southern, Northern and Western hybridization revealed integration and expression of the transgene as well as inheritance in the progeny plants. A good correlation was observed between levels of mRNA and protein accumulation, and a significant amount of choline oxidase product, i.e. glycine betaine, accumulated in R0 as well as R1 plants. Mendelian as well as non-Mendelian segregation patterns were obtained in the progeny plants. Challenge studies performed with R1 plants by exposure to salt stress (0.15 M NaCl) for 1 week, followed by a recovery period, revealed that in some cases more than 50% of the transgenic plants could survive salt stress and set seed whereas wild-type plants failed to recover.  相似文献   

13.
Plant glutathione S-transferases (GSTs) are involved in protecting plants against both diverse biotic and abiotic stresses. In the present study, a novel GST gene (LbGST1) was cloned from Limonium bicolor (Bunge) Kuntze (Plumbaginaceae). To characterize its function in salt tolerance, tobacco lines transformed with LbGST1 were generated. Compared with wild-type (WT) tobacco, transgenic plants overexpressing LbGST1 exhibited both GST and glutathione peroxidase activities. Moreover, superoxide dismutase, peroxidase (POD), and catalase activities in transgenic plants were significantly higher than those in WT plants, particularly when grown under conditions of salt stress. Similarly, levels of proline in transgenic plants were also higher than those in WT plants grown under NaCl stress conditions. Whereas, Malondialdehyde contents in transgenic plants were lower than those in WT plants under NaCl conditions. Furthermore, Na+ content in transgenic plants was lower than that in WT plants under these stress conditions. Subcellular localization analysis revealed that the LbGST1 protein was localized in the nucleus. These results suggested that overexpression of LbGST1 gene can affect many physiological processes associated with plant salt tolerance. Therefore, we hypothesize that LbGST1 gene can mediate many physiological pathways that enhance stress resistance in plants.  相似文献   

14.
The influence of betaine aldehyde dehydrogenase (BADH) and salinity pretreatment on oxidative stress under cadmium (Cd) toxicity was investigated in rice cv. Xiushui 11 and its BADH-transgenic line Bxiushui 11. The results showed that plants previously treated with 4.25 and 8.5 mM NaCl, respectively, for 5 days each had higher Cd concentrations in both roots and shoots of the two rice genotypes compared with the controls. Malondialdehyde (MDA) content in both leaves and roots was increased by salinity pretreatment and was significantly lower in the salinity-pretreatment plants than in the controls when the plants were consequently exposed to Cd stress. Salinity pretreatment also increased proline content and the activities of superoxide dismutase (SOD) and peroxidase (POD) in both leaves and roots. It can be assumed that salinity pretreatment enhances the defensive ability of plants against oxidative stress through increasing activities of antioxidative enzymes. The BADH-transgenic line (Bxiushui 11) had lower Cd and MDA content, higher SOD and POD activities, and higher proline content than its wild type (Xiushui 11). The current results suggest that betaine, a product of BADH expression, improves the tolerance of rice plants to Cd stress through increasing the activities of antioxidative enzymes and osmoprotectant content.  相似文献   

15.
Recent environmental issues have increased the demand for woody biomass as a renewable resource for industry and energy. For a stable supply of woody biomass, it is critical to decrease the effects of abiotic stresses, such as drought and salinity, which hinder plant growth. For the goal to develop practical stress-tolerant trees, we generated transgenic poplar plants (P. tremula × tremuloides), in which a key Arabidopsis regulatory factor involved in stress responses, SNF1-related protein kinase 2C (AtSRK2C), or galactinol synthase 2 (AtGolS2), was overexpressed. Both types of transgenic poplar plants displayed higher tolerance to abiotic stresses, in comparison with nontransgenic plants, indicating that AtSRK2C and AtGolS2 can function in the abiotic stress response pathway of poplar. We also examined the expression profiles of ten poplar genes putatively homologous to well-known Arabidopsis stress response genes and found that several of the poplar genes showed different responses to abiotic stress from their Arabidopsis counterparts. Whereas the overexpression of AtSRK2C in transgenic Arabidopsis plants was reported to upregulate the expression of endogenous genes, the overexpression of AtSRK2C or AtGolS2 in transgenic poplar did not. Taken together, our findings suggest that the details of the underlying molecular mechanisms of the abiotic stress response may differ, but that the key regulatory factors in Arabidopsis and poplar have common features and are effective molecular targets for further breeding to enhance abiotic stress tolerance in poplar.  相似文献   

16.
Rice yield is severely affected by high-salt concentration in the vicinity of the plant. In an effort to engineer rice for improved salt tolerance Agrobacterium-mediated transformation of rice cv. Binnatoa was accomplished with the Pennisetum glaucum vacuolar Na+/H+ antiporter gene (PgNHX1) under the constitutive CaMV35S promoter. For the molecular analysis of putative transgenic plants, PCR and RT-PCR were performed. Transgenic rice plants expressing PgNHX1 showed better physiological status and completed their life cycle by setting flowers and seeds in salt stress, while wild-type plants exhibited rapid chlorosis and growth inhibition. Moreover, transgenic rice plants produced higher grain yields than wild-type plants under salt stress. Assessment of the salinity tolerance of the transgenic plants at seedling and reproductive stages demonstrated the potential of PgNHX1 for imparting enhanced salt tolerance capabilities and improved yield.  相似文献   

17.
18.
Although glutathione S-transferase (GST, EC 2.5.1.18) is thought to play important roles in abiotic stress, limited information is available regarding the function of its gene in grapes. In this study, a GST gene from grape, VvGSTF13, was cloned and functionally characterized. Transgenic Arabidopsis plants containing this gene were normal in terms of growth and maturity compared with control plants but had enhanced resistance to salt, drought, and methyl viologen stress. The increased tolerance of the transgenic plants correlated with changes in activities of antioxidative enzymes. Our results indicate that the gene from grape plays a positive role in improving tolerance to salinity, drought, and methyl viologen stresses in Arabidopsis.  相似文献   

19.
The glyoxalase system catalyzes the conversion of cytotoxic methylglyoxal to d-lactate via the intermediate S-d-lactoylglutathione. It comprises two enzymes, Glyoxalase I (Gly I) and Glyoxalase II (Gly II), and reduced glutathione which acts as a cofactor by anchoring the substrates in the active sites of the two enzymes. The overexpression of both Gly I and Gly II, either alone or in combination, has earlier been reported to confer tolerance to multiple abiotic stresses. In the present study, we sought to evaluate the consequences of constitutive and stress-induced overexpression of Gly I on the performance and productivity of plants. Towards this end, several Gly I transgenic Brassica juncea lines (designated as R and S lines) were generated in which the glyoxalase I (gly I) gene was expressed under the control of either a stress-inducible rd29A promoter or a constitutive CaMV 35S promoter. Both the R and S lines showed enhanced tolerance to salinity, heavy metal, and drought stress when compared to untransformed control plants. However, the S lines showed yield penalty under non-stress conditions while no such negative effect was observed in the R lines. Our results indicate that the overexpression of the gly I gene under the control of stress-inducible rd29A promoter is a better option for improving salt, drought and heavy metal stress tolerance in transgenic plants.  相似文献   

20.
Stress responsive RNA helicases are involved in translation initiation sustain protein synthesis. In this study, a stress responsive DEAD box RNA helicase, AhRH47 from peanut cDNA library was identified and characterised during stress. In silico analysis of AhRH47 showed the nine conserved motifs characteristic of an RNA helicase. The phylogenetic and amino acid sequence alignment analyses revealed that AhRH47 is highly homologous to an important DEAD box RNA helicase (eIF4A), which is involved in translation initiation. AhRH47 is stress responsive, being highly expressed under salinity and moisture stress, which is induced to a lesser extent under PEG and ABA treatments. Constitutive overexpression of AhRH47 in Arabidopsis conferred enhanced tolerance to salinity and mannitol-induced stresses. In addition, the transgenic plants showed improved tolerance under moisture stress and exhibited improved recovery growth on stress alleviation. Overexpressing plants showed increased 14C-labelled amino acids incorporation in to protein especially under stress condition. The results suggest AhRH47 transgenic lines maintained higher protein synthesis under stress and thus improved adaptation to osmotic and desiccation stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号