首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The canga of the Serra dos Carajás, in Eastern Amazon, is home to a unique open plant community, harboring several endemic and rare species. Although a complete flora survey has been recently published, scarce to no genetic information is available for most plant species of the ironstone outcrops of the Serra dos Carajás. In this scenario, DNA barcoding appears as a fast and effective approach to assess the genetic diversity of the Serra dos Carajás flora, considering the growing need for robust biodiversity conservation planning in such an area with industrial mining activities. Thus, after testing eight different DNA barcode markers (matK, rbcL, rpoB, rpoC1, atpF‐atpH, psbK‐psbI, trnH‐psbA, and ITS2), we chose rbcL and ITS2 as the most suitable markers for a broad application in the regional flora. Here we describe DNA barcodes for 1,130 specimens of 538 species, 323 genera, and 115 families of vascular plants from a highly diverse flora in the Amazon basin, with a total of 344 species being barcoded for the first time. In addition, we assessed the potential of using DNA metabarcoding of bulk samples for surveying plant diversity in the canga. Upon achieving the first comprehensive DNA barcoding effort directed to a complete flora in the Brazilian Amazon, we discuss the relevance of our results to guide future conservation measures in the Serra dos Carajás.  相似文献   

2.
3.
There is a push to fully document the biodiversity of the world within 25 years. However, the magnitude of this challenge, particularly in marine environments, is not well known. In this study, we apply DNA barcoding to explore the biodiversity of gonodactylid stomatopods (mantis shrimp) in both the Coral Triangle and the Red Sea. Comparison of sequences from 189 unknown stomatopod larvae to 327 known adults representing 67 taxa in the superfamily Gonodactyloidea revealed 22 distinct larval operational taxonomic units (OTUs). In the Western Pacific, 10 larval OTUs were members of the Gonodactylidae and Protosquillidae where success of positive identification was expected to be 96.5%. However, only five OTUs could be identified to species and at least three OTUs represent new species unknown in their adult form. In the Red Sea where the identification rate was expected to be 75% in the Gonodactylidae, none of four larval OTUs could be identified to species; at least two represent new species unknown in their adult forms. Results indicate that the biodiversity in this well-studied group in the Coral Triangle and Red Sea may be underestimated by a minimum of 50% to more than 150%, suggesting a much greater challenge in lesser-studied groups. Although the DNA barcoding methodology was effective, its overall success was limited due to the newly discovered taxonomic limitations of the reference sequence database, highlighting the importance of synergy between molecular geneticists and taxonomists in understanding and documenting our world's biodiversity, both in marine and terrestrial environments.  相似文献   

4.
5.
DNA barcoding methodologies are being increasingly applied not only for scientific purposes but also for diverse real-life uses. Fisheries assessment is a potential niche for DNA barcoding, which serves for species authentication and may also be used for estimating within-population genetic diversity of exploited fish. Analysis of single-sequence barcodes has been proposed as a shortcut for measuring diversity in addition to the original purpose of species identification. Here we explore the relative utility of different mitochondrial sequences (12S rDNA, COI, cyt b, and D-Loop) for application as barcodes in fisheries sciences, using as case studies two marine and two freshwater catches of contrasting diversity levels. Ambiguous catch identification from COI and cyt b was observed. In some cases this could be attributed to duplicated names in databases, but in others it could be due to mitochondrial introgression between closely related species that may obscure species assignation from mtDNA. This last problem could be solved using a combination of mitochondrial and nuclear genes. We suggest to simultaneously analyze one conserved and one more polymorphic gene to identify species and assess diversity in fish catches.  相似文献   

6.

Background

Recent studies have demonstrated the utility of DNA barcoding in the discovery of overlooked species and in the connection of immature and adult stages. In this study, we use DNA barcoding to examine diversity patterns in 121 species of Nymphalidae from the Yucatan Peninsula in Mexico. Our results suggest the presence of cryptic species in 8 of these 121 taxa. As well, the reference database derived from the analysis of adult specimens allowed the identification of nymphalid caterpillars providing new details on host plant use.

Methodology/Principal Findings

We gathered DNA barcode sequences from 857 adult Nymphalidae representing 121 different species. This total includes four species (Adelpha iphiclus, Adelpha malea, Hamadryas iphtime and Taygetis laches) that were initially overlooked because of their close morphological similarity to other species. The barcode results showed that each of the 121 species possessed a diagnostic array of barcode sequences. In addition, there was evidence of cryptic taxa; seven species included two barcode clusters showing more than 2% sequence divergence while one species included three clusters. All 71 nymphalid caterpillars were identified to a species level by their sequence congruence to adult sequences. These caterpillars represented 16 species, and included Hamadryas julitta, an endemic species from the Yucatan Peninsula whose larval stages and host plant (Dalechampia schottii, also endemic to the Yucatan Peninsula) were previously unknown.

Conclusions/Significance

This investigation has revealed overlooked species in a well-studied museum collection of nymphalid butterflies and suggests that there is a substantial incidence of cryptic species that await full characterization. The utility of barcoding in the rapid identification of caterpillars also promises to accelerate the assembly of information on life histories, a particularly important advance for hyperdiverse tropical insect assemblages.  相似文献   

7.
DNA barcoding has greatly accelerated the pace of specimen identification to the species level, as well as species delineation. Whereas the application of DNA barcoding to the matching of unknown specimens to known species is straightforward, its use for species delimitation is more controversial, as species discovery hinges critically on present levels of haplotype diversity, as well as patterning of standing genetic variation that exists within and between species. Typical sample sizes for molecular biodiversity assessment using DNA barcodes range from 5 to 10 individuals per species. However, required levels that are necessary to fully gauge haplotype variation at the species level are presumed to be strongly taxon‐specific. Importantly, little attention has been paid to determining appropriate specimen sample sizes that are necessary to reveal the majority of intraspecific haplotype variation within any one species. In this paper, we present a brief outline of the current literature and methods on intraspecific sample size estimation for the assessment of COI DNA barcode haplotype sampling completeness. The importance of adequate sample sizes for studies of molecular biodiversity is stressed, with application to a variety of metazoan taxa, through reviewing foundational statistical and population genetic models, with specific application to ray‐finned fishes (Chordata: Actinopterygii). Finally, promising avenues for further research in this area are highlighted.  相似文献   

8.
DNA barcoding has greatly facilitated studies of taxonomy, biodiversity, biological conservation, and ecology. Here, we establish a reliable DNA barcoding library for Chinese snakes, unveiling hidden diversity with implications for taxonomy, and provide a standardized tool for conservation management. Our comprehensive study includes 1638 cytochrome c oxidase subunit I (COI) sequences from Chinese snakes that correspond to 17 families, 65 genera, 228 named species (80.6% of named species) and 36 candidate species. A barcode gap analysis reveals gaps, where all nearest neighbour distances exceed maximum intraspecific distances, in 217 named species and all candidate species. Three species-delimitation methods (ABGD, sGMYC, and sPTP) recover 320 operational taxonomic units (OTUs), of which 192 OTUs correspond to named and candidate species. Twenty-eight other named species share OTUs, such as Azemiops feae and A. kharini, Gloydius halys, G. shedaoensis, and G. intermedius, and Bungarus multicinctus and B. candidus, representing inconsistencies most probably caused by imperfect taxonomy, recent and rapid speciation, weak taxonomic signal, introgressive hybridization, and/or inadequate phylogenetic signal. In contrast, 43 species and candidate species assign to two or more OTUs due to having large intraspecific distances. If most OTUs detected in this study reflect valid species, including the 36 candidate species, then 30% more species would exist than are currently recognized. Several OTU divergences associate with known biogeographic barriers, such as the Taiwan Strait. In addition to facilitating future studies, this reliable and relatively comprehensive reference database will play an important role in the future monitoring, conservation, and management of Chinese snakes.  相似文献   

9.
Replacing animal procedures with methods such as cells and tissues in vitro, volunteer studies, physicochemical techniques and computer modelling, is driven by legislative, scientific and moral imperatives. Non-animal approaches are now considered as advanced methods that can overcome many of the limitations of animal experiments. In testing medicines and chemicals, in vitro assays have spared hundreds of thousands of animals. In contrast, academic animal use continues to rise and the concept of replacement seems less well accepted in university research. Even so, some animal procedures have been replaced in neurological, reproductive and dentistry research and progress is being made in fields such as respiratory illnesses, pain and sepsis. Systematic reviews of the transferability of animal data to the clinical setting may encourage a fresh look for novel non-animal methods and, as mainstream funding becomes available, more advances in replacement are expected.  相似文献   

10.
Heterogeneity is a ubiquitous feature of biological systems. A complete understanding of such systems requires a method for uniquely identifying and tracking individual components and their interactions with each other. We have developed a novel method of uniquely tagging individual cells in vivo with a genetic ‘barcode’ that can be recovered by DNA sequencing. Our method is a two-component system comprised of a genetic barcode cassette whose fragments are shuffled by Rci, a site-specific DNA invertase. The system is highly scalable, with the potential to generate theoretical diversities in the billions. We demonstrate the feasibility of this technique in Escherichia coli. Currently, this method could be employed to track the dynamics of populations of microbes through various bottlenecks. Advances of this method should prove useful in tracking interactions of cells within a network, and/or heterogeneity within complex biological samples.  相似文献   

11.
DNA barcoding potentially offers scientists who are not expert taxonomists a powerful tool to support the accuracy of field studies involving taxa that are diverse and difficult to identify. The taxonomy of rays has received reasonable attention in Australia, although the fauna in remote locations such as Ningaloo Reef, Western Australia is poorly studied and the identification of some species in the field is problematic. Here, we report an application of DNA-barcoding to the identification of 16 species (from 10 genera) of tropical rays as part of an ecological study. Analysis of the dataset combined across all samples grouped sequences into clearly defined operational taxonomic units, with two conspicuous exceptions: the Neotrygon kuhlii species complex and the Aetobatus species complex. In the field, the group that presented the most difficulties for identification was the spotted whiptail rays, referred to as the 'uarnak' complex. Two sets of problems limited the successful application of DNA barcoding: (1) the presence of cryptic species, species complexes with unresolved taxonomic status and intra-specific geographical variation, and (2) insufficient numbers of entries in online databases that have been verified taxonomically, and the presence of lodged sequences in databases with inconsistent names. Nevertheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to highlight species complexes where taxonomic uncertainty might confound ecological data.  相似文献   

12.
Recently it was decided that portions of rbcL and matK gene regions are approved and required standard barcode regions for land plants. Ideally, DNA barcoding can provide a fast and reliable way to identify species. Compiling a library of barcodes can be enhanced by the numerous specimens available in botanic gardens, museums and herbaria and in other ex situ conservation collections. Barcoding can strengthen ongoing efforts of botanic gardens and ex situ conservation collections to preserve Earth’s biodiversity. Our study aimed to detect the usability of the universal primers of the standard DNA barcode, to produce standard barcodes for species identification and to detect the discriminatory power of the standard barcode in a set of different groups of plant and fungal taxa. We studied Betula species originating from different parts of the world, and Salix taxa, bryophytes and edible and poisonous fungal species originating from Finland. In Betula and Salix, the standard DNA barcode regions, portions of matK and rbcL, were able to identify species to genus level, but did not show adequate resolution for species discrimination. Thus, supplementary barcode regions are needed for species identification. In Salix, the trnH-psbA spacer was also used, and it proved to have more resolution but, yet, not adequate levels of interspecific divergence for all studied taxa. In a set of bryophyte species, the rbcL gene region was found to possess adequate resolution for species discrimination for most genera studied. In bryophytes, matK failed to amplify properly. In fungi, the combination of ITS1 and ITS2 proved to be effective for species discrimination, although alignment difficulties were encountered. In general, closely related or recently diverged species are the greatest challenge, and the problem is most difficult in plants, both in terms of a suitable combination of barcoding regions and the universality of used primers.  相似文献   

13.
14.
DNA barcoding: promise and pitfalls   总被引:14,自引:1,他引:13       下载免费PDF全文
  相似文献   

15.
Pakistan is bestowed by a diversified array of wild bird species including collared doves of which the taxonomy has been least studied and reported. DNA barcoding is a geno-taxonomic tool that has been used for characterization of bird species using mitochondrial cytochrome c oxidase I gene (COI). This study aimed to identify taxonomic order of Pakistani collared dove using DNA barcoding. Purposely herein, we present a phylogenetic analysis of Pakistani collared dove based on 650 base pairs of COI gene sequences. Analysis of phylogenetic tree revealed that Pakistani collared dove shared a common clade with Eurasian collared dove (Streptopelia decaocto) and African collared dove (Streptopelia roseogrisea) which indicated a super-species group in Streptopelia genus. This is the first report of molecular classification of Pakistani collared dove using DNA barcoding.  相似文献   

16.
This study represents the first comprehensive molecular assessment of freshwater fishes and lampreys from Germany. We analysed COI sequences for almost 80% of the species mentioned in the current German Red List. In total, 1056 DNA barcodes belonging to 92 species from all major drainages were used to (i) build a reliable DNA barcode reference library, (ii) test for phylogeographic patterns, (iii) check for the presence of barcode gaps between species and (iv) evaluate the performance of the barcode index number (BIN) system, available on the Barcode of Life Data Systems. For over 78% of all analysed species, DNA barcodes are a reliable means for identification, indicated by the presence of barcode gaps. An overlap between intra‐ and interspecific genetic distances was present in 19 species, six of which belong to the genus Coregonus. The Neighbour‐Joining phenogram showed 60 nonoverlapping species clusters and three singleton species, which were related to 63 separate BIN numbers. Furthermore, Barbatula barbatula, Leucaspius delineatus, Phoxinus phoxinus and Squalius cephalus exhibited remarkable levels of cryptic diversity. In contrast, 11 clusters showed haplotype sharing, or low levels of divergence between species, hindering reliable identification. The analysis of our barcode library together with public data resulted in 89 BINs, of which 56% showed taxonomic conflicts. Most of these conflicts were caused by the use of synonymies, inadequate taxonomy or misidentifications. Moreover, our study increased the number of potential alien species in Germany from 14 to 21 and is therefore a valuable groundwork for further faunistic investigations.  相似文献   

17.
Surveys of larval diversity consistently increase biodiversity estimates when applied to poorly documented groups of marine invertebrates such as phoronids and hemichordates. However, it remains to be seen how helpful this approach is for detecting unsampled species in well‐studied groups. Echinoids represent a large, robust, well‐studied macrofauna, with low diversity and low incidence of cryptic species, making them an ideal test case for the efficacy of larval barcoding to discover diversity in such groups. We developed a reference dataset of DNA barcodes for the shallow‐water adult echinoids from both coasts of Panama and compared them to DNA sequences obtained from larvae collected primarily on the Caribbean coast of Panama. We sequenced mitochondrial cytochrome c oxidase subunit I (COI) for 43 species of adult sea urchins to expand the number and coverage of sequences available in GenBank. Sequences were successfully obtained for COI and 16S ribosomal DNA from 272 larvae and assigned to 17 operational taxonomic units (OTUs): 4 from the Pacific coast of Panama, where larvae were not sampled as intensively, and 13 from the Caribbean coast. Of these 17 OTUs, 13 were identified from comparisons with our adult sequences and belonged to species well documented in these regions. Another larva was identified from comparisons with unpublished sequences in the Barcode of Life Database (BOLD) as belonging to Pseudoboletia, a genus scarcely known in the Caribbean and previously unreported in Panama. Three OTUs remained unidentified. Based on larval morphology, at least two of these OTUs appeared to be spatangoids, which are difficult to collect and whose presence often goes undetected in standard surveys of benthic diversity. Despite its ability to capture unanticipated diversity, larval sampling failed to collect some species that are locally common along the Caribbean coast of Panama, such as Leodia sexiesperforata, Diadema antillarum, and Clypeaster rosaceus.  相似文献   

18.
Peanut worm (Sipunculus nudus) is a cosmopolitan species mainly distributed in tropical and subtropical coastal waters. Analysis of the mitochondrial cytochrome c oxidase subunit I (COI) gene sequences among S. nudus from GenBank revealed high genetic variation (p‐distance, 0.115–0.235; k2p, 0.128–0.297) and paraphyletic relationships. These indicated misidentification and/or cryptic diversity may be present in the genus Sipunculus. To understand the genetic diversity and to manage the recourse of S. nudus, we collected specimens from coastal waters of southern China and Taiwan. In the phylogenetic topology, specimens can be separated into four distinct clades; three of these clades (clade A, B and C) were only represented from this region (southern China and Taiwan), but the clade D grouped with individuals from Central America (Atlantic coast). Furthermore, individuals of clades A and D were collected at the same location, which does not support the hypothesis that this genetic break reflects contemporary geographical isolation. The four distinct clades observed among coastal waters of southern China and Taiwan indicated underestimated diversity. It is noteworthy that the cryptic diversity is vulnerable under high pressure of human activity.  相似文献   

19.

Background

Although polychaetes are one of the dominant taxa in marine communities, their distributions and taxonomic diversity are poorly understood. Recent studies have shown that many species thought to have broad distributions are actually a complex of allied species. In Canada, 12% of polychaete species are thought to occur in Atlantic, Arctic, and Pacific Oceans, but the extent of gene flow among their populations has not been tested.

Methodology/Principal Findings

Sequence variation in a segment of the mitochondrial cytochrome c oxidase I (COI) gene was employed to compare morphological versus molecular diversity estimates, to examine gene flow among populations of widespread species, and to explore connectivity patterns among Canada''s three oceans. Analysis of 1876 specimens, representing 333 provisional species, revealed 40 times more sequence divergence between than within species (16.5% versus 0.38%). Genetic data suggest that one quarter of previously recognized species actually include two or more divergent lineages, indicating that richness in this region is currently underestimated. Few species with a tri-oceanic distribution showed genetic cohesion. Instead, large genetic breaks occur between Pacific and Atlantic-Arctic lineages, suggesting their long-term separation. High connectivity among Arctic and Atlantic regions and low connectivity with the Pacific further supports the conclusion that Canadian polychaetes are partitioned into two distinct faunas.

Conclusions/Significance

Results of this study confirm that COI sequences are an effective tool for species identification in polychaetes, and suggest that DNA barcoding will aid the recognition of species overlooked by the current taxonomic system. The consistent geographic structuring within presumed widespread species suggests that historical range fragmentation during the Pleistocene ultimately increased Canadian polychaete diversity and that the coastal British Columbia fauna played a minor role in Arctic recolonization following deglaciation. This study highlights the value of DNA barcoding for providing rapid insights into species distributions and biogeographic patterns in understudied groups.  相似文献   

20.
Phoronid larvae, actinotrochs, are beautiful and complicated organisms which have attracted as much, if not more, attention than their adult forms. We collected actinotrochs from the waters of the Pacific and Caribbean coasts of Panama, and used DNA barcoding of mtCOI, as well as 16S and 18S sequences, to estimate the diversity of phoronids in the region. We discovered three operational taxonomic units (OTUs) in the Bay of Panama on the Pacific coast and four OTUs in Bocas del Toro on the Caribbean coast. Not only did all OTUs differ from each other by >10% pairwise distance in COI, but they also differed from all phoronid sequences in GenBank, including the four species for which adults have been reported for the Pacific of Panama, Phoronopsis harmeri, Phoronis psammophila, Phoronis muelleri, and Phoronis hippocrepia. In each ocean region, one common OTU was more abundant and occurred more frequently than other OTUs in our samples. The other five OTUs were relatively rare, with only one to three individuals collected during the entire project. Species accumulation curves were relatively flat but suggest that at least one more species is likely to be present at each site. Actinotrochs from the seven sequenced OTUs had morphologies typical of species with non‐brooded planktotrophic development and, in some cases, may be distinguished by differences in pigmentation and the arrangement of blood masses. We found one larva with morphology typical of brooded planktotrophic larvae for which sequencing failed, bringing the total number of potential species detected to eight and representing >50% of the adult species currently recognized globally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号