首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The syntheses and biological evaluation of a series of novel indeno[1,2-d]thiazole derivatives are described. Several groups reported 5-HT(3) receptor agonists which were mainly evaluated for their activities on the von Bezold-Jarisch reflex (B-J reflex). We discovered that tetrahydrothiazolopyridine derivative 1b had a contractile effect on the isolated guinea pig colon with weak B-J reflex. Our efforts to find a new type of 5-HT(3) receptor agonists on the isolated guinea pig colon focused on the synthesis of a fused thiazole derivative 1d modified from 1b and reverse-fused thiazole derivatives (7-10). In this series, 10f (YM-31636) showed high affinity and selectivity for the cloned human 5-HT(3) receptor; furthermore, it showed potent and selective 5-HT(3) receptor agonistic activity. YM-31636 was examined for its effects on defecation in animals, thus evaluating the compound as an agent against constipation.  相似文献   

2.
Nagakura Y  Kiso T  Ito H  Miyata K  Yamaguchi T 《Life sciences》2000,66(24):PL331-PL338
The role of 5-hydroxytryptamine (5-HT)3 and 5-HT4 receptors in the regulation of gut motility in the ferret was investigated. The selective 5-HT3 receptor antagonist ramosetron (1 - 10 microg/kg s.c.) prolonged the interval of gastric antral migrating motor complex, but had only slight effect on small intestinal and colonic motility in unfed animals. The selective 5-HT4 receptor antagonist SB 204070 did not affect motility throughout gut in unfed animals. Neither ramosetron nor SB 204070 affected the motility throughout gut in fed animals. In conclusion, neither 5-HT3 nor 5-HT4 receptors tonically regulate ferret gut motility except that 5-HT3 receptors have a key role in the occurrence of migrating motor complex specifically in the stomach. The role of 5-HT3 and 5-HT4 receptor system in the regulation of gut motility in ferrets is similar to that in other mammalian species studied, including humans. This similarity suggests that the ferret is a suitable model animal to study gut motor functions in humans.  相似文献   

3.
Gut-derived 5-hydroxytryptamine (5-HT) is well known for its role in mediating colonic motility function. However, it is not very clear whether brain-derived 5-HT is involved in the regulation of colonic motility. In this study, we used central 5-HT knockout (KO) mice to investigate whether brain-derived 5-HT mediates colonic motility, and if so, whether it involves oxytocin (OT) production in the hypothalamus and OT receptor in the colon. Colon transit time was prolonged in KO mice. The OT levels in the hypothalamus and serum were decreased significantly in the KO mice compared to wild-type (WT) controls. OT increased colonic smooth muscle contraction in both KO and WT mice, and the effects were blocked by OT receptor antagonist and tetrodotoxin but not by hexamethonium or atropine. Importantly, the OT-induced colonic smooth muscle contraction was decreased significantly in the KO mice relative to WT. The OT receptor expression of colon was detected in colonic myenteric plexus of mice. Central 5-HT is involved in the modulation of colonic motility which may modulate through its regulation of OT synthesis in the hypothalamus. Our results reveal a central 5-HT - hypothalamus OT - colonic OT receptor axis, providing a new target for the treatment of brain-gut dysfunction.  相似文献   

4.
It is thought that selective 5-HT(4) receptor agonists-such as 4-amino-5-chloro-2-methoxy-N-[1-(6-oxo-6-phenylhexyl)piperidin-4ylmethyl]benzamide (2)-have the ability to enhance both upper and lower gastrointestinal motility without any significant adverse effects. Modification of 2 was performed. Variation of the piperidin-4ylmethyl moiety of 2 led to a decrease in the binding affinity for the 5-HT(4) receptor. Following conversion of the carbonyl group on the benzoyl part to a hydroxyl or sulfoxide group, the binding affinity for the 5-HT(4) receptor was retained although the effect on defecation was reduced. Many of the 4-amino-5-chloro-2-methoxy-N-(piperidin-4ylmethyl)benzamides that had a ether or sulfide moiety in the side-chain part at the 1-position of the piperidine exhibited high affinity for the 5-HT(4) receptor. Among these, phenylthio 41c and benzylthio derivative 44 were selective 5-HT(4) receptor agonists, and had a similar effect on defecation to compound 2.  相似文献   

5.
Enterochromaffin (EC) cells of the epithelial cells release 5-HT into the lumen, as well as basolateral border. However, the physiological role of released 5-HT into the lumen is poorly understood. Concentrations of 5-HT in the colonic mucosa, colonic lumen, and feces were measured by HPLC in rats. To investigate whether intraluminal 5-HT accelerates colonic transit, 5-HT and (51)Cr were administered into the lumen of the proximal colon, and colonic transit was measured. To investigate whether 5-HT is released into the lumen, we used an ex vivo model of isolated vascularly and luminally perfused rat proximal colon. To investigate whether luminal 5-HT is involved in regulating stress-induced colonic motility, the distal colonic motility was recorded under the stress loading, and a 5-HT(3) receptor antagonist (ondansetron, 10(-6) M, 0.5 ml) was administered intraluminally of the distal colon. Tissue content of 5-HT in the proximal colon (15.2 +/- 4.3 ng/mg wet tissue) was significantly higher than that in the distal colon (3.3 +/- 0.7 ng/mg wet tissue), while fecal content and luminal concentration of 5-HT was almost the same between the proximal and distal colon. Luminal administration of 5-HT (10(-6)-10(-5) M) significantly accelerated colonic transit. Elevation of intraluminal pressure by 10 cmH(2)O significantly increased the luminal concentration of 5-HT but not the vascular concentration of 5-HT. Stress-induced stimulation of the distal colonic motility was significantly attenuated by the luminal administration of ondansetron. These results suggest that luminally released 5-HT from EC cells plays an important role in regulating colonic motility in rats.  相似文献   

6.
We studied whether physiological concentration of short-chain fatty acids (SCFAs) affects colonic transit and colonic motility in conscious rats. Intraluminal administration of SCFAs (100-200 mM) into the proximal colon significantly accelerated colonic transit. The stimulatory effect of SCFAs on colonic transit was abolished by perivagal capsaicin treatment, atropine, hexamethonium, and vagotomy, but not by guanethidine. The stimulatory effect of SCFAs on colonic transit was also abolished by intraluminal pretreatment with lidocaine and a 5-hydroxytryptamine (HT)(3) receptor antagonist. Intraluminal administration of SCFAs provoked contractions at the proximal colon, which migrated to the mid- and distal colon. SCFAs caused a significant increase in the luminal concentration of 5-HT of the vascularly isolated and luminally perfused rat colon ex vivo. It is suggested that the release of 5-HT from enterochromaffin cells in response to SCFAs stimulates 5-HT(3) receptors located on the vagal sensory fibers. The sensory information is transferred to the vagal efferent and stimulates the release of acetylcholine from the colonic myenteric plexus, resulting in muscle contraction.  相似文献   

7.
A series of 4-amino-5-chloro-2-methoxy-N-(piperidin-4-ylmethyl)benzamides with a polar substituent group at the 1-position of the piperidine ring was synthesized and evaluated for its effect on gastrointestinal motility. The benzoyl, phenylsulfonyl, and benzylsulfonyl derivatives accelerated gastric emptying and increased the frequency of defecation. One of them, 4-amino-N-[1-[3-(benzylsulfonyl)propyl]piperidin-4-ylmethyl]-5-chloro-2-methoxybenzamide (13a, Y-36912), was a selective 5-HT4 receptor agonist offering potential as a novel prokinetic with reduced side effects derived from 5-HT3- and dopamine D2 receptor-binding affinity. In the oral route of administration, this compound enhanced gastric emptying and defecation in mice, and has a possibility as a prokinetic agent, which is effective on both the upper and the lower gastrointestinal tract.  相似文献   

8.
Serotonin (5-hydroxytryptamine: 5-HT) affects numerous functions in the gut, such as secretion, muscle contraction, and enteric nervous activity, and therefore to clarify details of 5-HT's actions leads to good therapeutic strategies for gut functional disorders. The role of interstitial cells of Cajal (ICC), as pacemaker cells, has been recognised relatively recently. We thus investigated 5-HT actions on ICC pacemaker activity. Muscle preparations with myenteric plexus were isolated from the murine ileum. Spatio-temporal measurements of intracellular Ca(2+) and electric activities in ICC were performed by employing fluorescent Ca(2+) imaging and microelectrode array (MEA) systems, respectively. Dihydropyridine (DHP) Ca(2+) antagonists and tetrodotoxin (TTX) were applied to suppress smooth muscle and nerve activities, respectively. 5-HT significantly enhanced spontaneous Ca(2+) oscillations that are considered to underlie electric pacemaker activity in ICC. LY-278584, a 5-HT(3) receptor antagonist suppressed spontaneous Ca(2+) activity in ICC, while 2-methylserotonin (2-Me-5-HT), a 5-HT(3) receptor agonist, restored it. GR113808, a selective antagonist for 5-HT(4), and O-methyl-5-HT (O-Me-5-HT), a non-selective 5-HT receptor agonist lacking affinity for 5-HT(3) receptors, had little effect on ICC Ca(2+) activity. In MEA measurements of ICC electric activity, 5-HT and 2-Me-5-HT caused excitatory effects. RT-PCR and immunostaining confirmed expression of 5-HT(3) receptors in ICC. The results indicate that 5-HT augments ICC pacemaker activity via 5-HT(3) receptors. ICC appear to be a promising target for treatment of functional motility disorders of the gut, for example, irritable bowel syndrome.  相似文献   

9.
Serotonin [5-hydroxytryptamine (5-HT)] acts as a modulator of colonic motility and secretion. We characterized the action of the 5-HT precursor 5-hydroxytryptophan (5-HTP) on colonic myenteric neurons and propulsive motor activity in conscious mice. Fos immunoreactivity (IR), used as a marker of neuronal activation, was monitored in longitudinal muscle/myenteric plexus whole mount preparations of the distal colon 90 min after an intraperitoneal injection of 5-HTP. Double staining of Fos IR with peripheral choline acetyltransferase (pChAT) IR or NADPH-diaphorase activity was performed. The injection of 5-HTP (0.5, 1, 5, or 10 mg/kg ip) increased fecal pellet output and fluid content in a dose-related manner, with a peak response observed within the first 15 min postinjection. 5-HTP (0.5-10 mg/kg) dose dependently increased Fos expression in myenteric neurons, with a maximal response of 9.9 +/- 1.0 cells/ganglion [P < 0.05 vs. vehicle-treated mice (2.3 +/- 0.6 cells/ganglion)]. There was a positive correlation between Fos expression and fecal output. Of Fos-positive ganglionic cells, 40 +/- 4% were also pChAT positive and 21 +/- 5% were NADPH-diaphorase positive in response to 5-HTP, respectively. 5-HTP-induced defecation and Fos expression were completely prevented by pretreatment with the selective 5-HT4 antagonist RS-39604. These results show that 5-HTP injected peripherally increases Fos expression in different populations of cholinergic and nitrergic myenteric neurons in the distal colon and stimulates propulsive colonic motor function through 5-HT4 receptors in conscious mice. These findings suggest an important role of activation of colonic myenteric neurons in the 5-HT4 receptor-mediated colonic propulsive motor response.  相似文献   

10.
Crk-associated substrate (CAS), a 130-kDa adaptor protein, was discovered as a tyrosine kinase substrate of Src that was important to cellular motility and actin filament formation. As the tyrosine kinase Src is utilized by the 5-hydroxytryptamine (5-HT)(2A) receptor in arterial contraction, we tested the hypothesis that CAS was integral to 5-HT(2A) receptor-mediated vasoconstriction. Rat thoracic aorta was used as a model of the arterial 5-HT(2A) receptor. Western and immunohistochemistry analyses validated the presence of CAS in the aorta, and tissue bath experiments demonstrated reduction of contraction to 5-HT (13.5 +/- 5% control maximum) and the 5-HT(2) receptor agonist alpha-methyl-5-HT (6 +/- 2% maximum) by latrunculin B (10(-6) mol/l), an actin disruptor. In aorta contracted with 5-HT (10(-5) mol/l), tyrosine phosphorylation (Tyr410) of CAS was significantly increased (approximately 225%), and both contraction and CAS phosphorylation were reduced by the 5-HT(2A/2C) receptor antagonist ketanserin (3 x 10(-8) mol/l). Src is one candidate for 5-HT-stimulated CAS tyrosyl-phosphorylation as 5-HT promoted interaction of Src and CAS in coimmunoprecipitation experiments, and the Src tyrosine kinase inhibitor PP1 (10(-5) mol/l) abolished 5-HT-induced tyrosyl-phosphorylation of CAS and reduced 5-HT- and alpha-methyl-5-HT-induced contraction. Antisense oligodeoxynucleotides delivered to the aorta reduced CAS expression (33% control) and arterial contraction to alpha-methyl-5-HT (45% of control), independent of changes in myosin light chain phosphorylation. These data are the first to implicate CAS in the signal transduction of 5-HT.  相似文献   

11.
Serotonin receptors are potential targets for treating functional bowel disorders. This study investigated the functional roles and expression of the 5-HT4 and the 5-HT7 receptor, which coexist in human colon circular smooth muscle. 5-HT3 receptor expression was also investigated. Part of the relaxant response to 5-HT was due to activation of 5-HT4 receptors as the apparent pKB value of the selective 5-HT4 antagonist, GR 113808, was 9.36. 5-HT4 mRNA levels were low in five tissues and undetectable in four others, but all responded to 5-HT with an EC50 value of 102.54+/-19.32 nM. The contribution of 5-HT7 receptors to the response was not readily demonstrated using the selective 5-HT7 antagonist, SB-269970, as its apparent pKB value of 7.19 (5-HT4 block with 1 microM GR 113808) was lower than the value obtained using the 5-HT7 guinea pig ileum assay (8.62). Nevertheless, the 5-HT7 receptor was expressed more consistently than the 5-HT4, but at similar levels. The 5-HT(3Ashort) and 5-HT(3B) subunits were co-expressed at similar levels, but the 5-HT(3Along) subunit was detected in only five of the nine samples tested. The findings show that 5-HT4-induced relaxation occurs at low to undetectable levels of tissue mRNA, as measured by qPCR. Although 5-HT7 receptor mRNA is detected at low, but consistent levels, the functional activity of this receptor is not readily identified given the currently available drugs.  相似文献   

12.
New antiemetic drugs   总被引:4,自引:0,他引:4  
Three major areas of medicine are identified in which there is a need for new antiemetic drugs. These are the nausea and vomiting arising from gastrointestinal motility disturbances (functional dyspepsia, diabetic neuropathy, classical migraine), the sickness evoked by abnormal motion, and the severe emesis experienced by cancer patients as a result of certain cytotoxic therapies. For gastrointestinal-related nausea, selective stimulants of gut motility are suggested to form the basis for a new type of antiemetic therapy. In motion sickness, there has been progress in the understanding of the illness, but little advance in the development of new drugs that selectively prevent this type of sickness. In cancer chemo- and radio-therapy, the discovery that selective 5-HT3 (5-HT, 5-hydroxytryptamine) receptor antagonists can prevent severe cytotoxic-evoked emesis now promises to radically change the type of antiemetic therapy given to these patients. This type of antiemetic compound and the pharmacology of the new 5-HT3 receptor antagonists are, therefore, discussed in detail.  相似文献   

13.
Although restraint stress accelerates colonic transit via a central corticotropin-releasing factor (CRF), the precise mechanism still remains unclear. We tested the hypothesis that restraint stress and central CRF stimulate colonic motility and transit via a vagal pathway and 5-HT(3) receptors of the proximal colon in rats. (51)Cr was injected via the catheter positioned in the proximal colon to measure colonic transit. The rats were subjected to a restraint stress for 90 min or received intracisternal injection of CRF. Ninety minutes after the administration of (51)Cr, the entire colon was removed, and the geometric center (GC) was calculated. Four force transducers were sutured on the proximal, mid, and distal colon to record colonic motility. Restraint stress accelerated colonic transit (GC of 6.7 +/- 0.4, n=6) compared with nonrestraint controls (GC of 5.1 +/- 0.2, n=6). Intracisternal injection of CRF (1.0 microg) also accelerated colonic transit (GC of 7.0 +/- 0.2, n=6) compared with saline-injected group (GC of 4.6 +/- 0.5, n=6). Restraint stress-induced acceleration of colonic transit was reduced by perivagal capsaicin treatment. Intracisternal injection of CRF antagonists (10 microg astressin) abolished restraint stress-induced acceleration of colonic transit. Stimulated colonic transit and motility induced by restraint stress and CRF were significantly reduced by the intraluminal administration of 5-HT(3) antagonist ondansetron (5 x 10(-6) M; 1 ml) into the proximal colon. Restraint stress and intracisternal injection of CRF significantly increased the luminal content of 5-HT of the proximal colon. It is suggested that restraint stress stimulates colonic motility via central CRF and peripheral 5-HT(3) receptors in conscious rats.  相似文献   

14.
Short-chain fatty acids (SCFAs) accelerate colonic transit. This study examined whether this action was mediated by activation of the peristaltic reflex. SCFAs (acetate, butyrate, or propionate) were applied to the central compartment of a three-compartment flat-sheet preparation of the rat middle to distal colon. The release of serotonin (5-HT), brain-derived neurotrophic factor (BDNF), and CGRP was measured in all three compartments. Ascending contraction and descending relaxation were measured in the orad and caudad compartments. The addition of SCFAs at physiological to supraphysiological concentrations (0.5-100 mM) to the central compartment elicited concentration-dependent ascending contraction and descending relaxation (EC50 approximately 5 mM). At this concentration, SCFAs induced an 8- to 11-fold increase in 5-HT release and a 2- to 3-fold increase in CGRP release in the central compartment only. They had no effect on BDNF release. CGRP release was inhibited by a 5-HT4 but not a 5-HT3 receptor antagonist. Ascending contraction and descending relaxation were also inhibited by 5-HT4 and by CGRP receptor antagonists added to the central compartment. 5-HT and CGRP release, as well as ascending contraction and descending relaxation induced by mechanical stimulation of the mucosa (2-8 strokes), were significantly augmented by 1 mM acetate. Acetate (1 mM) also doubled propulsive velocity in isolated whole segments of the guinea pig colon. In conclusion, chemical stimulation of the mucosa by SCFAs triggers a peristaltic reflex mediated by the release of 5-HT from mucosal cells and activation of 5-HT4 receptors on sensory CGRP-containing nerve terminals. This SCFA-induced peristaltic pathway augments the peristaltic reflex elicited by mechanical stimulation of the mucosa.  相似文献   

15.
Arecoline is an effective component of areca (betel nuts, a Chinese medicine named pinang or binglang). The purpose of this study was to investigate the effect of arecoline on the motility of distal colon in rabbits and its mechanisms involved. Strips of colonic smooth muscle were suspended in organ baths containing Krebs solution, and their isometric contractions were examined. The response of smooth muscle to arecoline in colonic strips was recorded. The effects of atropine, gallamine and 1,1-dimethyl-4-diphenylacetoxypiperidiniumiodide (4-DAMP) on arecoline-induced contraction were also observed. Arecoline (1 nM - 1 microM) produced a concentration-dependent contraction in both the longitudinal and the circular smooth muscle of rabbit colon. Atropine (10 microM) abolished the arecoline (80 nM)--induced contraction. M3 receptor antagonist, 4 - DAMP (0.4 microM), abolished the arecoline (80 nM)--related response, whereas M2 receptor antagonist, gallamine (0.4 microM), did not affect the effect of arecoline. These results suggest that arecoline excites the colonic motility via M3 receptor in rabbits.  相似文献   

16.
The intestinal peristaltic reflex induced by mucosal stimulation is mediated by mucosal release of serotonin (5-HT), which acts on 5-HT(4) receptors located on CGRP-containing afferent nerve terminals. Exposure of the colonic mucosa to the 5-HT(4) receptor agonist tegaserod in the range of 1 nM to 10 muM elicits a peristaltic reflex and stimulates colonic propulsion. The present study was designed to identify the 5-HT(4) receptor subtype mediating the reflex and determine whether functionally effective concentrations of tegaserod desensitize the reflex induced by mucosal stimulation. Exposure of rat colonic mucosa to tegaserod in the range of 5 nM to 5 muM for 5 or 10 min caused rapid time- and concentration-dependent desensitization of the peristaltic reflex induced by mucosal stroking, consistent with the operation of a rapidly desensitizing 5-HT(4b) receptor subtype. Desensitization was accompanied by a decrease in CGRP release. The rate of recovery of peristaltic response depended on the desensitizing concentration of tegaserod: ascending contraction and descending relaxation recovered within 15 min after 5-50 nM tegaserod, 30 min after 0.5 muM, and 60 min after 5 muM. Neither CGRP release nor the peristaltic reflex induced by muscle stretch was affected by 5-HT(4) receptor desensitization, providing further evidence that 5-HT does not mediate the reflex induced by muscle stretch. These results suggest in cases of increased 5-HT availability or prolonged exposure, such as colitis, that it is likely the peristaltic reflex will be blunted.  相似文献   

17.
Colonic motility is modulated by the 5-hydroxytryptamine (5-HT)(3)-dependent gastrocolonic response and 5-HT(3)-independent peristaltic reflex. We compared descending colon tone responses to antral distension, duodenal lipid perfusion, and colonic distension after double-blind placebo or granisetron in 13 healthy volunteers and nine slow-transit constipated patients. Antral distension (100-300 ml) and duodenal lipids (3 kcal/min) evoked increases in colon tone in volunteers, which were blunted in constipated patients (P < 0.05). Granisetron (10 microg/kg) reduced responses to antral distension and lipids in volunteers and to lipids in constipated patients (P < 0.05). The ascending contraction of the peristaltic reflex was blunted in constipated patients (P < 0.05), whereas descending responses were similar. Granisetron did not modify the peristaltic reflex. Colonic responses to bethanechol were similar in patients and volunteers. In conclusion, antral distension- and duodenal lipid-activated gastrocolonic responses and ascending contractions of the peristaltic reflex are impaired with slow-transit constipation with loss of both 5-HT(3)-dependent and -independent function. Thus abnormalities of neural reflex modulation of colonic motor function may play pathophysiological roles in slow-transit constipation.  相似文献   

18.
Localization of 5-hydroxytryptamine3 (5-HT3) receptor in the human colon was examined by in vitro receptor autoradiography using [125I](S)iodozacopride, and compared with that in the guinea pig colon. [125I](S)iodozacopride binding sites were found with high densities around the myenteric plexus, but with low ones in the muscle layer and mucosa of the human colon, and the binding was abolished by granisetron, a specific 5-HT3 receptor antagonist. While in the guinea pig colon, specific [125I](S) iodozacopride binding was not detected in either the myenteric plexus or the muscle layers. Thus, the 5-HT3 receptors are present in the human colon, especially densely located in the myenteric plexus, but not in the guinea pig colon, and those may participate in the colonic motility. The results of functional studies of 5-HT3 receptor obtained from experiments using guinea pig are not always applying to the human.  相似文献   

19.
Recent studies have shown that mucosal serotonin (5-HT) transporter (SERT) expression is decreased in animal models of colitis, as well as in the colonic mucosa of humans with ulcerative colitis and irritable bowel syndrome. Altered SERT function or expression may underlie the altered motility, secretion, and sensation seen in these inflammatory gut disorders. In an effort to elucidate possible mediators of SERT downregulation, we treated cultured colonic epithelial cells (Caco2) with conditioned medium from activated human lymphocytes. Application of the conditioned medium caused a decrease in fluoxetine-sensitive [(3)H]5-HT uptake. Individual proinflammatory agents were then tested for their ability to affect uptake. Cells were treated for 48 or 72 h with PGE(2) (10 microM), IFN-gamma (500 ng/ml), TNF-alpha (50 ng/ml), IL-12 (50 ng/ml), or the nitric oxide-releasing agent S-nitrosoglutathione (GSNO; 100 microM). [(3)H]5-HT uptake was then measured. Neither PGE nor IL-12 had any effect on [(3)H]5-HT uptake, and GSNO increased uptake. However, after 3-day incubation, both TNF-alpha and IFN-gamma elicited significant decreases in SERT function. Neither TNF-alpha nor IFN-gamma were cytotoxic when used for this period of time and at these concentrations. These two cytokines also induced decreases in SERT mRNA and protein levels. By altering SERT expression, TNF-alpha and IFN-gamma could contribute to the altered motility and expression seen in vivo in ulcerative colitis or irritable bowel syndrome.  相似文献   

20.
The indolealkylamine 5-hydroxytryptamine (5-HT, 0.1 nM-1 μM) caused dose-dependent increases in the number of contractions observed in guts isolated from the caterpillar Spodoptera frugiperda. Of the 5-HT analogues tested for agonist action, 2-methyl-5-HT (0.1-10 μM) was a full agonist with reduced potency while α-methyl-5-HT (0.1-100 μM), 5-carboxamidotryptamine (0.1-100 μM), 5-methoxytryptamine (5-MeOT) (10 nM-10 μM), and tryptamine (1-100 μM) were partial agonists. Incubation of isolated guts with proven mammalian 5-HT receptor antagonists showed that cyproheptadine (10 nM-1 μM), MDL 72222 (1-10 μM), tropisetron (1-10 μM) and 5-benzoyloxygramine (1-10 μM) were potent non-competitive antagonists of 5-HT-induced tissue contraction. In comparison, ketanserin (0.1-1 μM) was a competitive antagonist. The mammalian selective serotonin reuptake inhibitors, clomipramine (10 nM-10 μM) and fluoxetine (10 nM-10 μM) also caused non-competitive inhibition of 5-HT-induced contraction while fluvoxamine (10 nM-10 μM) was a weak competitive antagonist. Low doses of clomipramine (0.1 μM) caused potentiation of 5-HT-induced gut contraction thereby suggesting the presence of 5-HT reuptake systems in this tissue. The contractile effects of 5-HT were inhibited by verapamil, Li+ and H7 and potentiated by theophylline thereby indicating that L-type Ca2+ channels, phosphatidylinositol second messengers and cAMP, respectively, are involved in 5-HT-induced tissue contraction. The 5-HT receptors mediating contractility in the gut of S. frugiperda have properties in common with mammalian 5-HT2 and Drosophila 5-HTdro2A/2B receptors. In addition, these data suggest that the tissue also contains receptors that are similar to mammalian 5-ht6 and 5-HT7 as well as Drosophiladro1 receptors. However, the primary amino acid sequence of these lepidopteran 5-HT receptors will have to be elucidated before full comparisons can be made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号