首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tumor natural killer (NK) cell line YTS was used to examine the cytoskeletal rearrangements required for cytolysis. A multiprotein complex weighing approximately 1.3 mD and consisting of WASp-interacting protein (WIP), Wiskott-Aldrich syndrome protein (WASp), actin, and myosin IIA that formed during NK cell activation was identified. After induction of an inhibitory signal, the recruitment of actin and myosin IIA to a constitutive WIP-WASp complex was greatly decreased. Both actin and myosin IIA were recruited to WIP in the absence of WASp. This recruitment correlated with increased WIP phosphorylation, which was mediated by PKCtheta. Furthermore, the disruption of WIP expression by WIP RNA interference prevented the formation of this protein complex and led to almost complete inhibition of cytotoxic activity. Thus, the multiprotein complex is important for NK cell function, killer cell immunoglobulin-like receptor inhibitory signaling affects proteins involved in cytoskeletal rearrangements, and WIP plays a central role in the formation of the complex and in the regulation of NK cell activity.  相似文献   

2.
Proteins of the Wiskott-Aldrich syndrome and Ena/VASP families both play essential functions in the regulation of actin dynamics at the cell leading edge. However, possibilities of functional interplay between members of these two families have not been addressed. Here we show that, in hemopoietic cells, recruitment of the C-terminal VCA (Verprolin homology, Cofilin homology, Acidic) domain of WASp at the plasma membrane by a ligand technique using rapamycin as an intermediate is not sufficient to elicit efficient Arp2/3 complex-mediated actin polymerization. Other domains of WASp, in particular the proline-rich domain, are required for the formation of actin-rich structures. An in vitro analysis demonstrates that the proline-rich domain of WASp binds VASP with an affinity of approximately 10(6) M(-1). In addition, WASp and VASP both accumulate in actin-rich phagocytic cups. Finally, in a reconstituted motility medium, VASP enhances actin-based propulsion of WASp-coated beads in a fashion reminiscent of its effect on Listeria movement. We propose that VASP and WASp cooperation is essential in stimulating actin assembly and membrane protrusion at the leading edge.  相似文献   

3.
The Wiskott-Aldrich syndrome protein (WASp) is important for actin polymerization in T cells and for their migration. WASp-interacting protein (WIP) binds to and stabilizes WASp and also interacts with actin. Cytoskeletal and functional defects are more severe in WIP−/− T cells, which lack WASp, than in WASp−/− T cells, suggesting that WIP interaction with actin may be important for T cell cytoskeletal integrity and function. We constructed mice that lack the actin-binding domain of WIP (WIPΔABD mice). WIPΔABD associated normally with WASp but not F-actin. T cells from WIPΔABD mice had normal WASp levels but decreased cellular F-actin content, a disorganized actin cytoskeleton, impaired chemotaxis, and defective homing to lymph nodes. WIPΔABD mice exhibited a T cell intrinsic defect in contact hypersensitivity and impaired responses to cutaneous challenge with protein antigen. Adoptively transferred antigen-specific CD4+ T cells from WIPΔABD mice had decreased homing to antigen-challenged skin of wild-type recipients. These findings show that WIP binding to actin, independently of its binding to WASp, is critical for the integrity of the actin cytoskeleton in T cells and for their migration into tissues. Disruption of WIP binding to actin could be of therapeutic value in T cell-driven inflammatory diseases.  相似文献   

4.
The Wiskott-Aldrich syndrome protein (WASp) is a key regulator of actin dynamics during cell motility and adhesion, and mutations in its gene are responsible for Wiskott-Aldrich syndrome (WAS). Here, we demonstrate that WASp is ubiquitylated following T-cell antigen receptor (TCR) activation. WASp phosphorylation at tyrosine 291 results in recruitment of the E3 ligase Cbl-b, which, together with c-Cbl, carries out WASp ubiquitylation. Lysine residues 76 and 81, located at the WASp WH1 domain, which contains the vast majority of WASp gene mutations, serve as the ubiquitylation sites. Disruption of WASp ubiquitylation causes WASp accumulation and alters actin dynamics and the formation of actin-dependent structures. Our data suggest that regulated degradation of activated WASp might be an efficient strategy by which the duration and localization of actin rearrangement and the intensity of T-cell activation are controlled.  相似文献   

5.
Cleland SY  Siegel RM 《FEBS letters》2011,585(23):3710-3714
Wiskott-Aldrich Syndrome (WAS) is a X-linked primary immunodeficiency disorder also marked by a very high (up to 70%) incidence of autoimmunity. Wiskott-Aldrich Syndrome arises from mutations in the Wiskott-Aldrich Syndrome protein (WASp), a cytoplasmic protein that links signaling by cell surface receptors such as the T-cell receptor and integrins to actin polymerization. WASp promotes the functions of multiple cell types that support immune responses, but also is important for the function of regulatory T cells and in TCR-induced apoptosis, two negative mechanisms of immune regulation that maintain peripheral immune tolerance. Here we review the nature of immune defects and autoimmunity in WAS and WASp deficient mice and discuss how this single gene defect can simultaneously impair immune responses to pathogens and promote autoimmunity. The myriad cellular immune defects found in WAS make this Mendelian syndrome an interesting model for the study of more complex immune diseases that arise from the interplay of environmental and multiple genetic risk factors.  相似文献   

6.
Reorganization of actin cytoskeletal dynamics plays a critical role in controlling T-lymphocyte activation and effector functions. Interaction of T-cell receptors (TCR) with appropriate major histocompatibility complex-peptide complexes on antigen-presenting cells results in the activation of signaling cascades, leading to the accumulation of F-actin at the cell-cell contact site. This event is required for the formation and stabilization of the immune synapse (IS), a cellular structure essential for the modulation of T-cell responses. Analysis of actin cytoskeletal dynamics following engagement of the TCR has largely focused on the Arp2/3 regulator, WASp, because of its early identification and its association with human disease. However, recent studies have shown equally important roles for several additional actin regulatory proteins. In this review, we turn the spotlight on the expanding cast of actin regulatory proteins, which co-ordinate actin dynamics at the IS.  相似文献   

7.
Src homology domains [i.e., Src homology domain 2 (SH2) and Src homology domain 3 (SH3)] play a critical role in linking receptor tyrosine kinases to downstream signaling networks. A well-defined function of the SH3-SH2-SH3 adapter Grb2 is to link receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR), to the p21ras-signaling pathway. Grb2 has also been implicated to play a role in growth factor-regulated actin assembly and receptor endocytosis, although the underlying mechanisms remain unclear. In this study, we show that Grb2 interacts through its SH3 domains with the human Wiskott-Aldrich syndrome protein (WASp), which plays a role in regulation of the actin cytoskeleton. We find that WASp is expressed in a variety of cell types and is exclusively cytoplasmic. Although the N-terminal SH3 domain of Grb2 binds significantly stronger than the C-terminal SH3 domain to WASp, full-length Grb2 shows the strongest binding. Both phosphorylation of WASp and its interaction with Grb2, as well as with another adapter protein Nck, remain constitutive in serum-starved or epidermal growth factor-stimulated cells. WASp coimmunoprecipitates with the activated EGFR after epidermal growth factor stimulation. Purified glutathione S-transferase-full-length-Grb2 fusion protein, but not the individual domains of Grb2, enhances the association of WASp with the EGFR, suggesting that Grb2 mediates the association of WASp with EGFR. This study suggests that Grb2 translocates WASp from the cytoplasm to the plasma membrane and the Grb2-WASp complex may play a role in linking receptor tyrosine kinases to the actin cytoskeleton.  相似文献   

8.
The Wiskott-Aldrich syndrome protein (WASp) is a key regulator of actin polimerization in hematopoietic cells. Mutations in WASp cause a severe immunodeficiency characterized by defective initiation of primary immune response and autoimmunity. The contribution of altered dendritic cells (DCs) functions to the disease pathogenesis has not been fully elucidated. In this study, we show that conventional DCs develop normally in WASp-deficient mice. However, Ag targeting to lymphoid organ-resident DCs via anti-DEC205 results in impaired naive CD8(+) T cell activation, especially at low Ag doses. Altered trafficking of Ag-bearing DCs to lymph nodes (LNs) accounts only partially for defective priming because correction of DCs migration does not rescue T cell activation. In vitro and in vivo imaging of DC-T cell interactions in LNs showed that cytoskeletal alterations in WASp null DCs causes a reduction in the ability to form and stabilize conjugates with naive CD8(+) T lymphocytes both in vitro and in vivo. These data indicate that WASp expression in DCs regulates both the ability to traffic to secondary lymphoid organs and to activate naive T cells in LNs.  相似文献   

9.
We studied the cytoskeletal changes in natural killer (NK) cells during conjugate formation, i.e., when NK cells make contact with sensitive vs resistant target cells. F-actin and vinculin were seen to polarize at the contact sites upon conjugation with sensitive K562 cells, whereas in conjugates with resistant Raji target cells such an orientation was an infrequent finding. Myosin and two other cytoskeletal proteins, spectrin and vimentin, on the other hand, showed a random distribution in conjugating NK cells regardless of the target cell type. Hence the cytoskeletal redistribution associated with conjugation seems to be different from the receptor capping phenomenon, which is accompanied by clustering of actin, myosin, vimentin, and spectrin. On the basis of these results it seems probable that the lytic conjugate formation in NK-mediated cytotoxicity is associated with the formation of a specific type of junction that involves actin and vinculin. This cytoskeletal reorganization precedes and could be a prerequisite for the polarization of the cellular secretory apparatus and may be functionally responsible for the required cytokinetic movements.  相似文献   

10.
The immunodeficiency disorder Wiskott-Aldrich syndrome and its milder form X-linked thrombo-cytopenia are caused by mutations in the WASp gene. Wiskott-Aldrich syndrome is characterized by a plethora of clinical symptoms which are due to functional defects of haematopoietic cells, including the inability of macrophages to form actin-rich adhesion structures called podosomes. In contrast, X-linked thrombocytopenia patients show reduced platelet size and counts but no cytoskeletal white blood cell defects have been detected so far. Here we use immunofluorescence technique to evaluate podosome formation in macrophages from X-linked thrombocyto-penia and Wiskott-Aldrich syndrome patients and from healthy donors. We find that X-linked thrombocytopenia macrophages, cells previously thought to be unaffected in this disorder, are compromised in the formation of podosomes. Western blot analysis shows that this phenotype is not due to lower levels of WASp expression. Interestingly, the bacterial chemoattractant formyl-methionyl-leucyl-phenylalanine can rescue podosome formation in X-linked thrombocytopenia cells. Our findings indicate that: 1. The spectrum of WASp-dependent disorders contains defects more subtle than originally recognized and 2. in X-linked thrombocytopenia, some of these defects may not be evident under conditions of bacterial stimulation. Further evaluation of this and other, as yet unrecognized, cellular defects may provide a more complete picture of the continuum of Wiskott-Aldrich syndrome and X-linked thrombocytopenia defects.  相似文献   

11.
The regulation of many immunological events depends on systems that mediate dynamic actin reorganization in response to signals from the cell membrane. The Wiskott-Aldrich syndrome protein (WASp) is the founding member of a family of proteins that have emerged as crucial effectors of Rho GTPases and activators of the cytoskeletal-organizing complex Arp2/3. Now, WASp has been shown to be intimately involved in many pathways that influence the function of the immune system. Disturbances in these systems result in the complex immunodysregulation of Wiskott-Aldrich syndrome.  相似文献   

12.
Wiskott-Aldrich Syndrome protein (WASp) is a key regulator of the Arp2/3 complex and the actin cytoskeleton in hematopoietic cells. WASp is capable of forming an auto-inhibited conformation, which can be disrupted by binding of Cdc42 and phosphatidylinositol 4,5-bisphosphate, leading to its activation. Stimulation of the collagen receptor on platelets and crosslinking the B-cell receptor induce tyrosine phosphorylation of WASp. Here we show that the Src family kinase Hck induces phosphorylation of WASp-Tyr(291) independently of Cdc42 and that this causes a shift in the mobility of WASp upon SDS-PAGE. A phospho-mimicking mutant, WASp-Y291E, exhibited an enhanced ability to stimulate actin polymerization in a cell-free system and when microinjected into primary macrophages induced extensive filopodium formation with greater efficiency than wild-type WASp or a Y291F mutant. We propose that phosphorylation of Tyr(291) directly regulates WASp function.  相似文献   

13.
The killer's kiss: the many functions of NK cell immunological synapses   总被引:3,自引:0,他引:3  
Natural killer (NK) cells comprise a subset of lymphocytes involved in protection against microbial pathogens and tumors. NK cells recognize host cells that are missing MHC class I molecules and eliminate them through localized delivery of lytic granules. The majority of NK cell effector functions require direct cell-to-cell contact. Binding to a target cell is accompanied by creation of complex structures at the cell-cell interface known as immunological synapses. Recent studies have contributed immensely to the characterization of several types of NK cell immunological synapses and understanding of the variety of processes originating at this intriguing place. The emerging picture illustrates NK cell immune synapses as the sites of highly complex regulation of NK cell activity.  相似文献   

14.
15.
16.
The temporal dependence of cytoskeletal remodelling on cell-cell contact in HepG2 cells has been established here. Cell-cell contact occurred in an ultrasound standing wave trap designed to form and levitate a 2-D cell aggregate, allowing intercellular adhesive interactions to proceed, free from the influences of solid substrata. Membrane spreading at the point of contact and change in cell circularity reached 50% of their final values within 2.2 min of contact. Junctional F-actin increased at the interface but lagged behind membrane spreading, reaching 50% of its final value in 4.4 min. Aggregates had good mechanical stability after 15 min in the trap. The implication of this temporal dependence on the sequential progress of adhesion processes is discussed. These results provide insight into how biomimetic cell aggregates with some liver cell functions might be assembled in a systematic, controlled manner in a 3-D ultrasound trap.  相似文献   

17.
T cell antigen receptor (TCR) activation triggers profound changes in the actin cytoskeleton. In addition to controlling cellular shape and polarity, this process regulates vital T cell responses, such as T cell adhesion, motility, and proliferation. These depend on the recruitment of the signaling proteins Nck and Wiskott-Aldrich syndrome protein (WASp) to the site of TCR activation and on the functional properties of the adapter proteins linker for activation of T cells (LAT) and SH2-domain-containing leukocyte protein of 76 kDa (SLP76). We now demonstrate that Nck is necessary but insufficient for the recruitment of WASp. We show that two pathways lead to SLP76-dependent actin rearrangement. One requires the SLP76 acidic domain, crucial to association with the Nck SH2 domain, and another requires the SLP76 SH2 domain, essential for interaction with the adhesion- and degranulation-promoting adapter protein ADAP. Functional cooperation between Nck and ADAP mediates SLP76-WASp interactions and actin rearrangement. We also reveal the molecular mechanism linking ADAP to actin reorganization.  相似文献   

18.
NK cells are important innate immune cells with potent cytotoxicity that can be activated by type I IFN from the host once infected. How NK cell cytotoxicity is activated by type I IFN and then tightly regulated remain to be fully elucidated. MicroRNAs (miRNAs, or miRs) are important regulators of innate immune response, but the full scale of miRNome in human NK cells remains to be determined. In this study, we reported an in-depth analysis of miRNomes in resting and IFN-α-activated human NK cells, found two abundant miRNAs, miR-378 and miR-30e, markedly decreased in activated NK cells by IFN-α, and further proved that miR-378 and miR-30e directly targeted granzyme B and perforin, respectively. Thus, IFN-α activation suppresses miR-378 and miR-30e expression to release cytolytic molecule mRNAs for their protein translation and then augments NK cell cytotoxicity. Importantly, the phenomena are also confirmed in human NK cells activated by other cytokines and even in the sorted CD16(+)CD56(dim)CD69(+) human NK cell subset. Finally, miR-378 and miR-30e were proved to be suppressors of human NK cell cytotoxicity. Taken together, our results reveal that downregulated miR-378 and miR-30e during NK cell activation are negative regulators of human NK cell cytotoxicity, providing a mechanistic explanation for regulation of NK cell function by miRNAs.  相似文献   

19.
Dendritic cells (DCs) are professional APCs that reside in peripheral tissues and survey the body for pathogens. Upon activation by inflammatory signals, DCs undergo a maturation process and migrate to lymphoid organs, where they present pathogen-derived Ags to T cells. DC migration depends on tight regulation of the actin cytoskeleton to permit rapid adaptation to environmental cues. We investigated the role of hematopoietic lineage cell-specific protein 1 (HS1), the hematopoietic homolog of cortactin, in regulating the actin cytoskeleton of murine DCs. HS1 localized to lamellipodial protrusions and podosomes, actin-rich structures associated with adhesion and migration. DCs from HS1(-/-) mice showed aberrant lamellipodial dynamics. Moreover, although these cells formed recognizable podosomes, their podosome arrays were loosely packed and improperly localized within the cell. HS1 interacts with Wiskott-Aldrich syndrome protein (WASp), another key actin-regulatory protein, through mutual binding to WASp-interacting protein. Comparative analysis of DCs deficient for HS1, WASp or both proteins revealed unique roles for these proteins in regulating podosomes with WASp being essential for podosome formation and with HS1 ensuring efficient array organization. WASp recruitment to podosome cores was independent of HS1, whereas HS1 recruitment required Src homology 3 domain-dependent interactions with the WASp/WASp-interacting protein heterodimer. In migration assays, the phenotypes of HS1- and WASp-deficient DCs were related, but distinct. WASp(-/y) DCs migrating in a chemokine gradient showed a large decrease in velocity and diminished directional persistence. In contrast, HS1(-/-) DCs migrated faster than wild-type cells, but directional persistence was significantly reduced. These studies show that HS1 functions in concert with WASp to fine-tune DC cytoarchitecture and direct cell migration.  相似文献   

20.
Higgs HN  Blanchoin L  Pollard TD 《Biochemistry》1999,38(46):15212-15222
The 70 C-terminal amino acids of Wiskott-Aldrich syndrome protein (WASp WA) activate the actin nucleation activity of the Arp2/3 complex. WASp WA binds both the Arp2/3 complex and actin monomers, but the mechanism by which it activates the Arp2/3 complex is not known. We characterized the effect of WASp WA on actin polymerization in the absence and presence of the human Arp2/3 complex. WASp WA binds actin monomers with an apparent K(d) of 0.4 microM, inhibiting spontaneous nucleation and subunit addition to pointed ends, but not addition to barbed ends. A peptide containing only the WASp homology 2 motif behaves similarly but with a 10-fold lower affinity. In contrast to previously published results, neither WASp WA nor a similar region of the protein Scar1 significantly depolymerizes actin filaments under a variety of conditions. WASp WA and the Arp2/3 complex nucleate actin filaments, and the rate of this nucleation is a function of the concentrations of both WASp WA and the Arp2/3 complex. With excess WASp WA and <10 nM Arp2/3 complex, there is a 1:1 correspondence between the Arp2/3 complex and the concentration of filaments produced, but the filament concentration plateaus at an Arp2/3 complex concentration far below the cellular concentration determined to be 9.7 microM in human neutrophils. Preformed filaments increase the rate of nucleation by WASp WA and the Arp2/3 complex but not the number of filaments that are generated. We propose that filament side binding by the Arp2/3 complex enhances its activation by WASp WA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号