首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Choi Y  Jung S 《Carbohydrate research》2005,340(16):2550-2557
Molecular dynamics simulations were performed to explain the conformational effect of an alpha-(1-->6)-glycosidic linkage upon the cyclic osmoregulated periplasmic glucan (OPG) produced by Xanthomonas campestris pv. citri. We suggest that a single alpha-(1-->6)-glycosidic linkage in cyclic OPG functions as a novel entropic regulator, which reduces the conformational entropy of cyclic OPG and increases the motional entropy of solvent water molecules.  相似文献   

2.
We report molecular dynamics simulations of cyclohenicosakis-[(1-->2)-beta-D-gluco-henicosapyranosyl], termed 'cyclosophohenicosamer', a member of a class of cyclic (1-->2)-beta-D-glucans ('cyclosophoraoses'). Our goals were to provide insights into the conformational preferences of these cyclosophoraoses. Simulated annealing and constant-temperature molecular dynamics calculations were performed on the DP 21 cyclosophohenicosamer. The radius of gyration (R(G)) of the molecule and the conformation of glycosidic dihedral angles were used to analyze the result of computational studies. Most glycosidic linkages were concentrated in the lowest-energy region of the phi-psi energy map, and the values of radius of gyration from our simulations were consistent with the reported experimental value. The simulations produced various types of compact and asymmetric conformations within reasonable ranges of the glycosidic linkage conformation and radius of gyration. The results indicate the presence of a high degree of molecular flexibility of cyclosophohenicosamer and suggest the uniqueness of inclusion complexation with other molecules through this molecular flexibility.  相似文献   

3.
The cell-associated glucans produced by Burkholderia solanacearum and Xanthomonas campestris pv. citri were isolated by trichloroacetic acid treatment and gel permeation chromatography. The compounds obtained were characterized by compositional analysis, matrix-assisted laser desorption ionization mass spectrometry, and high-performance anion-exchange chromatography. B. solanacearum synthesizes only a neutral cyclic glucan containing 13 glucose residues, and X. campestris pv. citri synthesizes a neutral cyclic glucan containing 16 glucose residues. The two glucans were further purified by high-performance anion-exchange chromatography. Methylation analysis revealed that these glucans are linked by 1,2-glycosidic bonds and one 1,6-glycosidic bond. Our 600-MHz homonuclear and 1H-13C heteronuclear nuclear magnetic resonance experiments revealed the presence of a single alpha-1,6-glycosidic linkage, whereas all other glucose residues are beta-1,2 linked. The presence of this single alpha-1,6 linkage, however, induces such structural constraints in these cyclic glucans that all individual glucose residues could be distinguished. The different anomeric proton signals allowed complete sequence-specific assignment of both glucans. The structural characteristics of these glucans contrast with those of the previously described osmoregulated periplasmic glucans.  相似文献   

4.
Glucans were isolated from the cell wall of the yeast (Y) and mycelial (M) forms of Paracoccidioides brasiliensis. The alkali-soluble glucan of the Y form had properties of alpha-1,3-glucan. The alkali-insoluble glucan of the M form was identified as a beta-glucan which contains a beta-(1 --> 3)-glycosidic linkage by infrared absorption spectrum, by effect of beta-1,3-glucanase, and by partial acid hydrolysis. The alkali-soluble glucans of the M form were a mixture of alpha- and beta-glucans and the ratio of alpha- to beta-glucan was variable, depending on the preparations.  相似文献   

5.
The aqueous extract of the edible green microalgae Chlorella pyrenoidosa is of interest because of its immunostimulatory activity. Some components in the extract have been identified previously, namely a unique type of arabinogalactan and a galactofuran. Further fractionation of this extract was accomplished by treating the aqueous solution of the fraction precipitated by addition of 1.5vol of 95% ethanol with cetyltrimethylammonium bromide. The residue obtained by concentration of the supernatant was fractionated further by anion-exchange chromatography and size-exclusion chromatography on Sephadex G-100. Two fractions from the latter column were retained, of which one was a starch-like alpha-(1-->4)-linked d-glucan with some alpha-(1-->6) branches, and the other contained a starch plus a mixture of beta-(1-->2)-d-glucans. ESI mass spectrometry was used to show that the mixture contained both cyclic and linear beta-(1-->2)-d-glucans in a cyclic:linear ratio of 64:36, based on intensities of mass spectral peaks. For the cyclic beta-(1-->2)-d-glucans, ring sizes ranged from 18 to 35 monosaccharides with the ring containing 21 glucose units (54% of the cyclic glucans) being greater than three times more abundant than the next most abundant component, the ring containing 22 glucose units (15%). No rings containing 20 glucose units were present. This is the first observation of cyclic beta-(1-->2)-d-glucans in algae, as far as we are aware. For the linear beta-(1-->2)-d-glucans, the component containing 20 glucoses was most abundant (35% of the linear glucans), while the component containing 21 glucose units was the next most abundant (17%). These relatively low-molecular-weight glucans had low immunostimulatory activity.  相似文献   

6.
The cyclic beta-(1-->3),beta-(1-->6)-D-glucan synthesis locus of Bradyrhizobium japonicum is composed of at least two genes, ndvB and ndvC. Mutation in either gene affects glucan synthesis, as well as the ability of the bacterium to establish a successful symbiotic interaction with the legume host soybean (Glycine max). B. japonicum strain AB-14 (ndvB::Tn5) does not synthesize beta-glucans, and strain AB-1 (ndvC::Tn5) synthesizes a cyclic beta-glucan lacking beta-(1-->6)-glycosidic bonds. We determined that the structure of the glucan synthesized by strain AB-1 is cyclodecakis-(1-->3)-beta-D-glucosyl, a cyclic beta-(1-->3)-linked decasaccharide in which one of the residues is substituted in the 6 position with beta-laminaribiose. Cyclodecakis-(1-->3)-beta-D-glucosyl did not suppress the fungal beta-glucan-induced plant defense response in soybean cotyledons and had much lower affinity for the putative membrane receptor protein than cyclic beta-(1-->3),beta-(1-->6)-glucans produced by wild-type B. japonicum. This is consistent with the hypothesis presented previously that the wild-type cyclic beta-glucans may function as suppressors of a host defense response.  相似文献   

7.
Characterisation of Mesorhizobium huakuii cyclic beta-glucan   总被引:1,自引:0,他引:1  
Periplasmic and extracellular glucans of Mesorhizobium huakuii were isolated and characterized by compositional and MALDI-TOF analyses, as well as 1H and 13C NMR spectroscopy. It was shown that M. huakuii produces a cyclic beta-glucan composed entirely of nonbranched glucose chains and unmodified by nonsugar substituents. The degree of polymerisation of the cyclic oligosaccharides was estimated to be in the range from 17 to 28. The most abundant glucan molecules contained 22 glucose residues. Glucose residues within the glucan were connected by beta-(1,2) glycosidic linkages. The cyclic glucan produced by M. huakuii is quite similar to the periplasmic beta-(1,2) glucans synthesized by Agrobacterium and Sinorhizobium genera. The synthesis of beta-glucan in M. huakuii is osmoregulated and this glucan could function as an osmoprotectant in free living cells.  相似文献   

8.
A bacterial strain M6, isolated from soil and identified as Arthrobacter globiformis, produced a novel nonreducing oligosaccharide. The nonreducing oligosaccharide was produced from starch using a culture supernatant of the strain as enzyme preparation. The oligosaccharide was purified as a crystal preparation after alkaline treatment and deionization of the reaction mixture. The structure of the oligosaccharide was determined by methylation analysis, mass spectrometry, and (1)H and (13)C NMR spectroscopy, and it was demonstrated that the oligosaccharide had a cyclic structure consisting of four glucose residues joined by alternate alpha-(1-->4)- and alpha-(1-->6)-linkages. The cyclic tetrasaccharide, cyclo-{-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->}, was found to be a novel oligosaccharide, and was tentatively called cyclic maltosyl-maltose (CMM). CMM was not hydrolyzed by various amylases, such as alpha-amylase, beta-amylase, glucoamylase, isoamylase, pullulanase, maltogenic alpha-amylase, and alpha-glucosidase, but hydrolyzed by isomalto-dextranase to give rise to isomaltose. This is the first report of the cyclic tetrasaccharide, which has alternate alpha-(1-->4)- and alpha-(1-->6)-glucosidic linkages.  相似文献   

9.
The osmoregulated periplasmic glucans (OPGs) produced by Rhodobacter sphaeroides, a free-living organism, were isolated by trichloracetic acid treatment and gel permeation chromatography. Compounds obtained were characterized by compositional analysis, matrix-assisted laser desorption ionization mass spectrometry and nuclear magnetic resonance. R. sphaeroides predominantly synthesizes a cyclic glucan containing 18 glucose residues that can be substituted by one to seven succinyl esters residues at the C6 position of some of the glucose residues, and by one or two acetyl residues. The glucans were subjected to a mild alkaline treatment in order to remove the succinyl and acetyl substituents, analyzed by MALDI mass spectrometry and purified by high-performance anion-exchange chromatography. Methylation analysis revealed that this glucan is linked by 17 1,2 glycosidic bonds and one 1,6 glycosidic bond. Homonuclear and (1)H/(13)C heteronuclear NMR experiments revealed the presence of a single alpha-1,6 glycosidic linkage, whereas all other glucose residues are beta-1,2 linked. The different anomeric proton signals allowed a complete sequence-specific assignment of the glucan. The structural characteristics of this glucan are very similar to the previously described OPGs of Ralstonia solanacearum and Xanthomonas campestris, except for its different size and the presence of substituents. Therefore, similar OPGs are synthesized by phytopathogenic as well as free-living bacteria, suggesting these compounds are intrinsic components of the Gram-negative bacterial envelope.  相似文献   

10.
Nondestructive structural analysis of a series of beta-D-(1 --> 3, 1 --> 6)-linked glucans (laminaran, curdlan, yeast glucan, scleroglucan, etc.) was performed using two-dimensional NMR spectroscopy. The relative ratios of H-1 at different AGUs provided the information about DPn and DB. The alpha-, and beta-anomeric protons on reducing terminals were assigned at 5.02 to approximately 5.03 ppm (J 3.6 to approximately 3.7 Hz), and 4.42 to approximately 4.43 ppm (J 7.6 to approximately 7.9 Hz), respectively, whereas the H-1 protons of internal AGUs and beta-(1 --> 6)-branched AGUs appeared at 4.56 to approximately 4.59 ppm (J 7.6 to approximately 7.8 Hz), and 4.26 to approximately 4.28 ppm (J 7.6 to approximately 10.6 Hz), respectively, in a mixed solvent of 6:1 Me2SO-d6-D2O at 80 degrees C. In the solvent, the OH peaks were eliminated from the spectra allowing the H-1 protons to appear clearly. In addition, the nonreducing terminal H-1 and H-1 at the AGU next to reducing terminal could be assigned at 4.45 to approximately 4.46 ppm (J 7.8 to approximately 7.9 Hz), and 4.51 to approximately 4.53 ppm (J 7.8 Hz), respectively. The DPn of the laminaran was 33 (polydispersity 1.12) and the DB was 0.07. The number of glucosyl units in the side chain of laminaran is more than one. The DPn and DB of the water-insoluble yeast glucan were 228 and 0.003, respectively. However the DPn of water soluble yeast glucan phosphate and curdlan was changed upon the number of freeze-drying processes and the content of water in the mixed solvent, respectively. And the DB of those were calculated as 0.02 and 0, respectively. The DB of scleroglucan was precisely calculated as 0.33, compared with the previously reported data. The H-1s at different AGUs of the various beta-D-(1 --> 3, 1 --> 6)-linked glucans having different DB can be exactly assigned by their chemical shifts in the mixed solvent system. This NMR analysis can be effectively used to determine the DP and DB of polysaccharides in a simple and non-destructive manner.  相似文献   

11.
Four exopolysaccharides (EPS) obtained from Botryosphaeria rhodina strains isolated from rotting tropical fruit (graviola, mango, pinha, and orange) grown on sucrose were purified on Sepharose CL-4B. Total acid hydrolysis of each EPS yielded only glucose. Data from methylation analysis and (13)C NMR spectroscopy indicated that the EPS from the graviola isolate consisted of a main chain of glucopyranosyl (1-->3) linkages substituted at O-6 as shown in the putative structure below: [carbohydrate structure: see text]. The EPS of the other fungal isolates consisted of a linear chain of (1-->6)-linked glucopyranosyl residues of the following structure: [carbohydrate structure: see text]. FTIR spectra showed one band at 891 cm(-1), and (13)C NMR spectroscopy showed that all glucosidic linkages were of the beta-configuration. Dye-inclusion studies with Congo Red indicated that each EPS existed in a triple-helix conformational state. beta-(1-->6)-d-Glucans produced as exocellular polysaccharides by fungi are uncommon.  相似文献   

12.
Kuttel MM 《Carbohydrate research》2008,343(6):1091-1098
Four Ramachandran maps of the conformational potential of mean force (PMF) for the galactose disaccharide globobiose (alpha-D-Galp-(1-->4)-beta-D-Galp) were calculated in vacuum, explicit water, with a simple high dielectric constant and a distance-dependent dielectric coefficient, respectively. This simple model of the galactan alpha-(1-->4)-linkage is shown to be conformationally restricted, with only a small range of syn-phi/syn-psi conformations predominating at standard temperature and pressure. This has implications for the preferred conformation and chain dynamics of alpha-galactosides. In addition, comparison of the relevant PMF surfaces reveals the substitution of a high dielectric constant for explicit water solution to be a valid approximation for reproducing the minimum energy conformation of this glycosidic linkage.  相似文献   

13.
Zeng Y  Ning J  Kong F 《Carbohydrate research》2003,338(4):307-311
In (1-->3)-glucosylation the glycosyl bond originally present in either donor or acceptor is shown to control the stereoselectivity of the forthcoming bond, i.e., the newly formed glycosidic linkage has the opposite anomeric configuration of that of either the donor or acceptor. Therefore, with alpha-(1-->3)-linked disaccharides with nonreducing ends that have the 3-OH free as the acceptor and an acetylated glucosyl trichloroacetimidate as the donor, or with an alpha-(1-->3)-linked acetylated disaccharide trichloroacetimidate as the donor and a glucoside with 3-OH free as the acceptor, beta-linked trisaccharides were obtained. Meanwhile, with beta-(1-->3)-linked disaccharides that have nonreducing ends with the 3-OH free as the acceptor and an acetylated glucosyl trichloroacetimidate as the donor, or with a beta-(1-->3)-linked acetylated disaccharide trichloroacetimidate as the donor and a glucoside with the 3-OH free as the acceptor, alpha-linked trisaccharides were obtained in spite of the C-2 neighboring group participation.  相似文献   

14.
The morphology of yeast cells as it is affected by the glycosidic linkages of constituent glucan was studied. Four different strains of Saccharomyces cerevisiae were studied. A cell wall matrix particle representing the intact original morphology and composed entirely of beta-glucan was prepared. Using prepared cell wall glucan particles, the morphology and cell wall matrix structure were examined. Genetic modification of the cell wall structure during growth results in the alteration of the shape and hydrodnamic volume of the intact cell wall particles. The shape and hydrodynamic volume of the cell wall particles can also be modified by in vitro chemical and enzymatic treatment. The shape factor and hydrodynamic volume of the whole glucan cell wall matrix particles were evaluated quantitatively using a rheological analysis. An increased degree of beta(1 --> 6) cross-linking in the cell wall matrix induces a nearly 2-fold increase in the shape factor and a 10-fold increase in the compression modulus of the glucan particles. The disruption of beta(1 --> 6) glycosidic cross-linking causes the particles to swell by up to 18% of their original volume. This was used as a strategy to isolate a yeast mutant with a high beta(1 --> 6) glycosidic content in the cell wall glucan.  相似文献   

15.
A bacterial strain AM7, isolated from soil and identified as Bacillus circulans, produced two kinds of novel cyclic oligosaccharides. The cyclic oligosaccharides were produced from amylose using a culture supernatant of the strain as the enzyme preparation. The major product was a cyclomaltopentaose cyclized by an alpha-(1-->6)-linkage, cyclo-{-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->}. The other minor product was cyclomaltohexaose cyclized by an alpha-(1-->6)-linkage, cyclo-{-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->}. We propose the names isocyclomaltopentaose (ICG5) and isocyclomaltohexaose (ICG6) for these novel cyclic maltooligosaccharides having one alpha-(1-->6)-linkage. ICG5 was digested by alpha-amylase derived from Aspergillus oryzae, cyclomaltodextrin glucanotransferase (CGTase) from Bacillus stearothermophilus, and maltogenic alpha-amylase. On the other hand, ICG6 was digested by CGTase from B. stearothermophilus and B. circulans, and maltogenic alpha-amylase. This is the first report of enzymatically produced cyclomaltopentaose and cyclomaltohexaose, which have an alpha-(1-->6)-linkage in their molecules.  相似文献   

16.
A beta-(1-->6)-branched beta-(1-->3)-glucohexaose, present in many biologically active polysaccharides from traditionally herbal medicines such as Ganoderma lucidum, Schizophyllum commune and Lentinus edodes, was synthesized as its lauryl glycoside 32, and its analogues 18, 20 and 33 containing an alpha-(1-->3) linked bond were synthesized. It is interesting to find that coupling of a 3,6-branched acylated trisaccharide trichloroacetimidate donor 9 with 3,6-branched acceptors 13 and 16 with 3'-OH gave the alpha-(1--> 3)-linked hexasaccharides 17 and 19, respectively, in spite of the presence of C-2 ester capable of neighboring group participation. However, coupling of 9 with 4-methoxyphenyl 4,6-O-benzylidene-beta-D-glucopyranoside (27) selectively gave beta-(1-->3)-linked tetrasaccharide 28. Simple chemical transformation of the tetrasaccharide 28 gave acylated tetrasaccharide trichloroacetimidate 29. Coupling of 29 with lauryl (1-->6)-linked disaccharide 26 with 3-OH gave beta-(1-->3)-linked hexasaccharide 30 as the major product. Bioassay showed that in combination with the chemotherapeutic agent cyclophospamide (CPA), the hexaose 18 at a dose of 0.5-1mg/kg substantially increased the inhibition of S(180) for CPA, but decreased the toxicity caused by CPA. Some of these oligosaccharides also inhibited U(14) noumenal tumor in mice effectively.  相似文献   

17.
The structure of immunogenic and immunomodulatory cell wall glucans of Candida albicans is commonly interpreted in terms of a basic polysaccharide consisting of a beta-D-(1-->3)-linked glucopyranosyl backbone possessing beta-D-(1-->6)-linked side chains of varying distribution and length. This proposed molecular architecture has been re-evaluated by the present study on the products of selective enzymolysis of insoluble C. albicans glucan particles (GG). High resolution 1H (400 and 700 MHz) and 13C (100 and 175 MHz) NMR analyses were performed on a soluble beta-glucan preparation (GG-Zym) obtained by GG digestion with endo-beta-D-(1-->3)-glucanase and on its high- (Pool 1) and low-molecular weight (Pool 2) sub-fractions. The resonances typical of uniformly beta-D-(1-->6)- and beta-D-(1-->3)-linked linear glucans, together with additional multiplets assigned to short-chain oligoglucosides, were detected in GG-Zym. Pool 1 (46.3+/-6.4% of GG-Zym content) consisted of beta-D-(1-->6)-linked glucopyranosyl polymers, with short beta-D-(1-->3)-branched side chains of 2.20+/-0.02 units (branching degree (DB)=0.14+/-0.03). Pool 2 was a mixture of glucose and linear short-chain beta-D-(1-->3)-oligoglucosides. Further digestion of Pool 1 by beta-D-(1-->6)-glucanase yielded a mixture of glucose and short beta-D-(1-->6)-linked, either linear or beta-D-(1-->3,6) branched, oligomers. These endoglucanase digestion patterns were consistent with the presence in C. albicans cell wall glucans of beta-D-(1-->6)-linked glucopyranosyl backbones possessing beta-D-(1-->3)-linked side chains, a structure very close to that of beta-D-(1-->6)-glucan from Saccharomyces cerevisiae yeast. This finding may provide the grounds for further elucidation of the cell wall structure and a better understanding of the biological properties of C. albicans beta-glucans.  相似文献   

18.
Four fractions of a water-insoluble alpha-(1-->3)-D-glucan GL extracted from fruiting bodies of Ganoderma lucidum were dissolved in 0.25 M LiCl/DMSO, and then reacted with sulfur trioxide-pyridine complex at 80 degrees C to synthesize a series of water-soluble sulfated derivatives S-GL. The degree of substitution of DS was measured by using IR infrared spectra, elemental analysis, and 13C NMR to be 1.2-1.6 in the non-selective sulfation. Weight-average molecular weight Mw and intrinsic viscosity [eta] of the sulfated derivatives S-GL were measured by multi-angle laser light scattering and viscometry. The Mw value (2.4 x 10(4)) of sulfated glucan S-GL-1 was much lower than that (44.5 x 10(4)) of original alpha-(1-->3)-D-glucan GL-1. The Mark-Houwink equation and average value of characteristic ratio C(infinity) for the S-GL in 0.2 M NaCl aqueous solution at 25 degrees C were found to be: [eta] = 1.32 x 10(-3) Mw(1.06) (cm3 g(-1)) and 16, respectively, in the Mw range from 1.1 x 10(4) to 2.4 x 10(4). It indicated that the sulfated derivatives of the alpha-(1-->3)-D-glucan in the aqueous solution behave as an expanded chain, owing to intramolecular hydrogen bonding or interaction between charge groups. Interestingly, two sulfated derivatives synthesized from the alpha-(1-->3)-D-glucan and curdlan, a beta-(1-->3)-D-glucan, all had significant higher antitumor activity against Ehrlich ascites carcinoma (EAC) than the originals. The effect of expanded chains of the sulfated glucan in the aqueous solution on the improvement of the antitumor activity could not be negligible.  相似文献   

19.
Lactic acid bacteria (LAB) employ sucrase-type enzymes to convert sucrose into homopolysaccharides consisting of either glucosyl units (glucans) or fructosyl units (fructans). The enzymes involved are labeled glucansucrases (GS) and fructansucrases (FS), respectively. The available molecular, biochemical, and structural information on sucrase genes and enzymes from various LAB and their fructan and alpha-glucan products is reviewed. The GS and FS enzymes are both glycoside hydrolase enzymes that act on the same substrate (sucrose) and catalyze (retaining) transglycosylation reactions that result in polysaccharide formation, but they possess completely different protein structures. GS enzymes (family GH70) are large multidomain proteins that occur exclusively in LAB. Their catalytic domain displays clear secondary-structure similarity with alpha-amylase enzymes (family GH13), with a predicted permuted (beta/alpha)(8) barrel structure for which detailed structural and mechanistic information is available. Emphasis now is on identification of residues and regions important for GS enzyme activity and product specificity (synthesis of alpha-glucans differing in glycosidic linkage type, degree and type of branching, glucan molecular mass, and solubility). FS enzymes (family GH68) occur in both gram-negative and gram-positive bacteria and synthesize beta-fructan polymers with either beta-(2-->6) (inulin) or beta-(2-->1) (levan) glycosidic bonds. Recently, the first high-resolution three-dimensional structures have become available for FS (levansucrase) proteins, revealing a rare five-bladed beta-propeller structure with a deep, negatively charged central pocket. Although these structures have provided detailed mechanistic insights, the structural features in FS enzymes dictating the synthesis of either beta-(2-->6) or beta-(2-->1) linkages, degree and type of branching, and fructan molecular mass remain to be identified.  相似文献   

20.
Lactobacillus reuteri strain 121 produces a unique, highly branched, soluble glucan in which the majority of the linkages are of the alpha-(1-->4) glucosidic type. The glucan also contains alpha-(1-->6)-linked glucosyl units and 4,6-disubstituted alpha-glucosyl units at the branching points. Using degenerate primers, based on the amino acid sequences of conserved regions from known glucosyltransferase (gtf) genes from lactic acid bacteria, the L. reuteri strain 121 glucosyltransferase gene (gtfA) was isolated. The gtfA open reading frame (ORF) was 5,343 bp, and it encodes a protein of 1,781 amino acids with a deduced M(r) of 198,637. The deduced amino acid sequence of GTFA revealed clear similarities with other glucosyltransferases. GTFA has a relatively large variable N-terminal domain (702 amino acids) with five unique repeats and a relatively short C-terminal domain (267 amino acids). The gtfA gene was expressed in Escherichia coli, yielding an active GTFA enzyme. With respect to binding type and size distribution, the recombinant GTFA enzyme and the L. reuteri strain 121 culture supernatants synthesized identical glucan polymers. Furthermore, the deduced amino acid sequence of the gtfA ORF and the N-terminal amino acid sequence of the glucosyltransferase isolated from culture supernatants of L. reuteri strain 121 were the same. GTFA is thus responsible for the synthesis of the unique glucan polymer in L. reuteri strain 121. This is the first report on the molecular characterization of a glucosyltransferase from a Lactobacillus strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号