首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zoledronic acid (ZOL) has proved activity in bone metastases from prostate cancer through inhibition of mevalonate pathway and of prenylation of intracellular proteins. We have reported that ZOL synergizes with R115777 farnesyltransferase inhibitor (FTI, Zarnestra) in inducing apoptosis and growth inhibition on epidermoid cancer cells. Here, we have studied the effects of the combination of these agents in prostate adenocarcinoma models and, specifically, on androgen-independent (PC3 and DU145) and -dependent (LNCaP) prostate cancer cell lines. We have found that ZOL and R115777 were synergistic in inducing both growth inhibition and apoptosis in prostate adenocarcinoma cells. These effects were paralleled by disruption of Ras-->Erk and Akt survival pathways, consequent decreased phosphorylation of both mitochondrial bcl-2 and bad proteins, and caspase activation. Finally, ZOL/R115777 combination induced cooperative effects also in vivo on tumor growth inhibition of prostate cancer xenografts in nude mice with a significant survival increase. These effects were paralleled by enhanced apoptosis and inactivation of both Erk and Akt. In conclusions, the combination between ZOL and FTI leads to enhanced anti-tumor activity in human prostate adenocarcinoma cells likely through a more efficacious inhibition of ras-dependent survival pathways and consequent bcl-related proteins-dependent apoptosis.  相似文献   

2.
2-Methoxyestradiol induces G2/M arrest and apoptosis in prostate cancer   总被引:5,自引:0,他引:5  
Few therapeutic treatment options are available for patients suffering from metastatic androgen-independent prostate cancer. We investigated the ability of the estrogen metabolite 2-methoxyestradiol to inhibit the proliferation of a variety of human prostate cancer cell lines in vitro and to inhibit the growth of androgen-independent prostate cancer in a transgenic mouse model in vivo. Our results showed that 2-methoxyestradiol is a powerful growth inhibitor of LNCaP, DU 145, PC-3, and ALVA-31 prostate cancer cells. Cell flow cytometry of 2-methoxyestradiol-treated DU 145 cells showed a marked accumulation of cells in the G2/M phase of the cell cycle and an increase in the sub-G1 fraction (apoptotic). In addition, staining for annexin V, changes in nuclear morphology, and inhibition of caspase activity support a role for apoptosis. More importantly, we showed that 2-methoxyestradiol inhibits prostate tumor progression in the Ggamma/T-15 transgenic mouse model of androgen-independent prostate cancer without toxic side effects. These results in cell culture and an animal model support investigations into the clinical use of 2-methoxyestradiol in patients with androgen-independent prostate cancer.  相似文献   

3.
Lack of sensitivity and specificity of current tumor markers has intensified research efforts to find new biomarkers. The identification of potential tumor markers in human body fluids is hampered by large variability and complexity of both control and patient samples, laborious biochemical analyses, and the fact that the identified proteins are unlikely produced by the diseased cells but are due to secondary body defense mechanisms. In a new approach presented here, we eliminate these problems by performing proteomic analysis in a prostate cancer xenograft model in which human prostate cancer cells form a tumor in an immune-incompetent nude mouse. Using this concept, proteins present in mouse serum that can be identified as human will, by definition, originate from the human prostate cancer xenograft and might have potential diagnostic and prognostic value. Using one-dimensional gel electrophoresis, liquid chromatography, and mass spectrometry, we identified tumor-derived human nm23/nucleoside-diphosphate kinase (NME) in the serum of a nude mouse bearing the androgen-independent human prostate cancer xenograft PC339. NME is known to be involved in the metastatic potential of several tumor cells, including prostate cancer cells. Furthermore we identified six human enzymes involved in glycolysis (fructose-bisphosphate aldolase A, triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, alpha enolase, and lactate dehydrogenases A and B) in the serum of the tumor-bearing mice. The presence of human NME and glyceraldehyde-3-phosphate dehydrogenase in the serum of PC339-bearing mice was confirmed by Western blotting. Although the putative usefulness of these proteins in predicting prognosis of prostate cancer remains to be determined, the present data illustrate that our approach is a promising tool for the focused discovery of new prostate cancer biomarkers.  相似文献   

4.
TGFβ can promote and/or suppress prostate tumor growth through multiple and opposing actions. Alterations of its expression, secretion, regulation or of the sensitivity of target cells can lead to a favorable environment for tumor development. To gain a better insight in TGFβ function during cancer progression, we have used different cultured human prostate cells: preneoplastic PNT2 cells, the androgen-dependent LNCaP and the androgen-independent PC3 and DU145 prostate cancer cell lines. We have studied by specific ELISA assays in conditioned media (CM), the secretion of TGFβ1 and TGFβ2 in basal conditions and after hormonal treatment (DHT or E2) and the expression of TGFβ1 mRNA by Northern blot. We have also compared the effect of fibroblast CM on TGFβ secretion by the different cell types. Compared to PNT2 cells, cancer cell lines secrete lower levels of active TGFβ which are not increased in the presence of fibroblast CM. LNCaP cells respond to androgen or estrogen treatment by a 10-fold increase of active TGFβ secretion while PC3 and DU145 are unresponsive. In conclusion, prostate cancer cell lines have lost part of their ability to secrete and activate TGFβ, and to regulate this secretion through stromal–epithelial interactions. Androgen-sensitive cancer cells may compensate this loss by hormonal regulation.  相似文献   

5.
Kruppel-like factors (KLFs) play an important role in many biological processes including cell proliferation, differentiation and development. Our study showed that the level of KLF9 is lower in PCa cell lines compared to a benign prostate cell line; the androgen-independent cell line PC3 expresses significantly lower KLF9 than the androgen-dependent cell line, LNCaP. Forced overexpression of KLF9 suppressed cell growth, colony formation, and induced cell apoptosis in LNCaP cells. We also found that KLF9 expression was induced in response to apoptosis caused by flutamide, and further addition of dihydrotestosterone antagonized the action of flutamide and significantly decreased KLF9 expression. Furthermore, activation of the androgen receptor (AR) was inhibited by the overexpression of KLF9. Our research shows that KLF9 is lower in androgen-independent cell lines than in androgen-dependent cell lines; Overexpression of KLF9 dramatically suppresses the proliferation, anchorage-independent growth, and induces apoptosis in androgen-dependent cells; KLF9 inhibition on prostate cancer cell growth may be acting through the AR pathway. Our results therefore suggest that KLF9 may play a significant role in the transition from androgen-dependent to androgen-independent prostate cancer and is a potential target of prevention and therapy.  相似文献   

6.
Loss of mir-146a function in hormone-refractory prostate cancer   总被引:1,自引:0,他引:1  
The pattern of microRNA (miRNA) expression is associated with the degree of tumor cell differentiation in human prostate cancer. MiRNAs bind complementarily to either oncogenes or tumor suppressor genes, which are consequently silenced, resulting in alterations of tumorigenecity. We have detected eight down-regulated and three up-regulated known miRNAs in androgen-independent human prostate cancer cells compared to those in androgen-dependent cells, using miRNA microarray analyses. These identified miRNAs showed the same expression patterns in hormone-refractory prostate carcinomas (HRPC) compared to androgen-sensitive noncancerous prostate epithelium as determined by fluorescent in situ hybridization assays in human prostate cancer tissue arrays. One of the eight down-regulated miRNAs, mir-146a, was selected and constitutively expressed to examine its effects on suppression of prostate cancer transformation from androgen-dependent to -independent cells as determined by in vitro tumorigenecity assays. Transfection of mir-146a, which perpetually express the miRNA, suppressed >82% of the expression of the targeted protein-coding gene, ROCK1, in androgen-independent PC3 cells, consequently markedly reducing cell proliferation, invasion, and metastasis to human bone marrow endothelial cell monolayers. Given that ROCK1 is one of the key kinases for the activation of hyaluronan (HA)-mediated HRPC transformation in vivo and in PC3 cells, mir-146a may function as a tumor-suppressor gene in modulating HA/ROCK1-mediated tumorigenecity in androgen-dependent prostate cancer.  相似文献   

7.
Quercetin and 2-Methoxyestradiol (2-ME) are promising anti-cancer substances. Our previous in vitro study showed that quercetin synergized with 2-Methoxyestradiol exhibiting increased antiproliferative and proapoptotic activity in both androgen-dependent LNCaP and androgen-independent PC-3 human prostate cancer cell lines. In the present study, we determined whether their combination could inhibit LNCaP and PC-3 xenograft tumor growth in vivo and explored the underlying mechanism. Human prostate cancer LNCaP and PC-3 cells were inoculated subcutaneously in male BALB/c nude mice. When xenograft tumors reached about 100 mm3, mice were randomly allocated to vehicle control, quercetin or 2-Methoxyestradiol singly treated and combination treatment groups. After therapeutic intervention for 4 weeks, combination treatment of quercetin and 2-ME i) significantly inhibited prostate cancer xenograft tumor growth by 46.8% for LNCaP and 51.3% for PC-3 as compared to vehicle control group, more effective than quercetin (28.4% for LNCaP, 24.8% for PC3) or 2-ME (32.1% for LNCaP, 28.9% for PC3) alone; ii) was well tolerated by BALB/c mice and no obvious toxic reactions were observed; iii) led to higher Bax/Bcl-2 ratio, cleaved caspase-3 protein expression and apoptosis rate; and iv) resulted in lower phosphorylated AKT (pAKT) protein level, vascular endothelial growth factor protein and mRNA expression, microvascular density and proliferation rate than single drug treatment. These effects were more remarkable compared to vehicle group. Therefore, combination of quercetin and 2-ME can serve as a novel clinical treatment regimen owning the potential of enhancing antitumor effect on prostate cancer in vivo and lessening the dose and side effects of either quercetin or 2-ME alone. These in vivo results will lay a further solid basis for subsequent researches on this novel therapeutic regimen in human prostate cancer.  相似文献   

8.
9.
We investigated the effects of KML001 (NaAsO2, sodium metaarsenite, Kominox), an orally bioavailable arsenic compound, on the growth and death of human prostate cancer cells and its mechanism of action. Growth inhibition was assessed by cytotoxicity assays in the presence or absence of inhibitor of apoptosis, inhibitor of autophagy or antioxidant N-Acetyl-L-cysteine to study mechanism of cell death induced by KML001 in PC3, DU145 and LNCaP prostate cancer cell lines. Electron microscopy, flow cytometry and Western blotting were used to study apoptotic and autophagic mechanisms. The DU145 xenograft model was used to determine the efficacy of KML001 in vivo. KML001 decreased the viability of cells and increased the percentage of annexin V-positive cells dose-dependently in prostate cancer cells, and LNCaP cells were more sensitive to KML001 than PC3 or DU145 cells. Electron microscopy revealed typical apoptotic characters and autophagic vacuoles in cells treated with KML001. Exposure to KML001 in prostate cancer cells induced apoptosis and autophagy in a time- and dose-dependent manner. KML001 induced dose-dependent accumulation of reactive oxygen species, and scavenging the reactive oxygen species with N-Acetyl-L-cysteine reduced LC3 and cleaved poly (ADP-ribose) polymerase. KML001 significantly inhibited tumor growth in the DU145 xenograft model. In addition, significant decrease of proliferation and significant increases of apoptosis and autophagy were observed in KML001-treated tumors than in vehicle-treated tumors. Exposure of human prostate cancer cells to KML001 induced both apoptosis and autophagic cell death via oxidative stress pathway. And KML001 had an antiproliferative effect on DU145 cells in xenograft mice.  相似文献   

10.
11.
Ni F  Gong Y  Li L  Abdolmaleky HM  Zhou JR 《PloS one》2012,7(6):e38802
The objective of this study was to evaluate the chemopreventive effect of a novel flavonoid, ampelopsin (AMP) on the growth and metastasis of prostate cancer cells. AMP showed the more potent activity in inhibiting the proliferation of androgen-sensitive LNCaP and, to less extent, androgen-independent PC-3 human prostate cancer cell lines in vitro, primarily by induction of apoptosis associated with down-regulation of bcl-2. On the other hand, AMP showed much less activity in inhibiting the proliferation of normal prostate epithelial cells than that of prostate cancer cell lines. AMP also inhibited the migration and invasion of PC-3 cells in vitro associated with down-regulation of CXCR4 expression. In the animal study using an orthotopic prostate tumor model, AMP (150 and 300 mg/kg body weight) inhibited the growth of PC-3 tumors and lymph node and lung metastases in a dose-dependent manner. Compared to the control mice, mice treated with AMP at 300 mg/kg BW had reduced final tumor weight by 49.2% (P<0.05), lymph node metastases by 54.5% (P?=?0.3) and lung metastases by 93% (P<0.05), but had no apparent alteration on food intake or body weight. The in vivo anti-growth and anti-metastasis activities of AMP were associated with induction of apoptosis and inhibition of proliferation of prostate cancer cells, reduction of prostate tumor angiogenesis, and reduction of CXCR4 expression. Our results provide supporting evidence to warrant further investigation to develop AMP as a novel efficacious and safe candidate agent against progression and metastasis of prostate cancer.  相似文献   

12.
Olsen RR  Chung I  Zetter BR 《Amino acids》2012,42(2-3):549-558
The endogenous protein antizyme inhibitor (AZI) is a potential oncogene which promotes cell growth by both inhibiting antizyme (AZ) activity and releasing ornithine decarboxylase (ODC) from AZ-mediated degradation. High levels of ODC and polyamines are associated with numerous types of neoplastic transformation, and the genomic region including AZI is frequently amplified in tumors of the ovary and prostate. To determine whether AZI functionally promotes prostate tumor growth, we made PC3M-LN4 (human) and AT6.1 (rat) cancer cell lines stably expressing shRNA to knockdown antizyme inhibitor 1 (AZI). AZI knockdown was confirmed by western blot, quantitative real-time PCR, and immunofluorescence. To examine the ability of these cells to form tumors in vivo, 1 × 10(6) cells were injected subcutaneously into nude mice either with (PC3M-LN4) or without (AT6.1) Matrigel. Tumor growth was measured two times per week by caliper. We found that cells in which AZI levels had been knocked down by shRNA formed significantly smaller tumors in vivo in both human and rat prostate cancer cell lines. These results suggest that not only does AZI promote tumor growth, but also that AZI may be a valid therapeutic target for cancer treatment.  相似文献   

13.
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, is overexpressed in prostate cancer, but the mechanism by which MIF exerts effects on tumor cells remains undetermined. MIF interacts with its identified membrane receptor, CD74, in association with CD44, resulting in ERK 1/2 activation. Therefore, we hypothesized that increased expression or surface localization of CD74 and MIF overexpression by prostate cancer cells regulated tumor cell viability. Prostate cancer cell lines (LNCaP and DU-145) had increased MIF gene expression and protein levels compared with normal human prostate or benign prostate epithelial cells (p < 0.01). Although MIF, CD74, and CD44 variant 9 expression were increased in both androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells, cell surface of CD74 was only detected in androgen-independent (DU-145) prostate cancer cells. Therefore, treatments aimed at blocking CD74 and/or MIF (e.g., inhibition of MIF or CD74 expression by RNA interference or treatment with anti-MIF- or anti-CD74- neutralizing Abs or MIF-specific inhibitor, ISO-1) were only effective in androgen-independent prostate cancer cells (DU-145), resulting in decreased cell proliferation, MIF protein secretion, and invasion. In DU-145 xenografts, ISO-1 significantly decreased tumor volume and tumor angiogenesis. Our results showed greater cell surface CD74 in DU-145 prostate cancer cells that bind to MIF and, thus, mediate MIF-activated signal transduction. DU-145 prostate cancer cell growth and invasion required MIF activated signal transduction pathways that were not necessary for growth or viability of androgen-dependent prostate cells. Thus, blocking MIF either at the ligand (MIF) or receptor (CD74) may provide new, targeted specific therapies for androgen-independent prostate cancer.  相似文献   

14.
15.
Ferruginol, a bioactive compound isolated from a Chilean tree (Podocarpaceae), attracts attention as a consequence of its pharmacological properties, which include anti-fungal, anti-bacterial, cardioprotective, anti-oxidative, anti-plasmodial and anti-ulcerogenic actions. Nevertheless, the molecular basis for these actions remains only partly understood and hence we investigated the effects of ferruginol on androgen-independent human prostate cancer cells (PC3), a known model for solid tumor cells with an exceptional resistance to therapy. The results show that ferruginol induces PC3 cell death via activation of caspases as well as apoptosis-inducing factor (AIF) as confirmed by its translocation into the nucleus. In order to clarify the biochemical mechanism responsible for the anti-tumor activity of ferruginol, we analyzed a set of molecular mediators involved in tumor cell survival, progression and aggressiveness. Ferruginol was able to trigger inhibition/downregulation of Ras/PI3K, STAT 3/5, protein tyrosine phosphatase and protein kinases related to cell cycle regulation. Importantly, the toxic effect of ferruginol was dramatically impeded in a more reducing environment, which indicates that at least in part, the anti-tumoral activity of ferruginol might be related to redox status modulation. This study supports further examination of ferruginol as a potential agent for both the prevention and treatment of prostate cancer.  相似文献   

16.
17.
18.
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK, TNFSF12) is a member of the tumor necrosis factor superfamily. TWEAK activates the Fn14 receptor, and may regulate cell death, survival and proliferation in tumor cells. However, there is little information on the function and regulation of this system in prostate cancer. Fn14 expression and TWEAK actions were studied in two human prostate cancer cell lines, the androgen-independent PC-3 cell line and androgen-sensitive LNCaP cells. Additionally, the expression of Fn14 was analyzed in human biopsies of prostate cancer. Fn14 expression is increased in histological sections of human prostate adenocarcinoma. Both prostate cancer cell lines express constitutively Fn14, but, the androgen-independent cell line PC-3 showed higher levels of Fn14 that the LNCaP cells. Fn14 expression was up-regulated in PC-3 human prostate cancer cells in presence of inflammatory cytokines (TNFα/IFNγ) as well as in presence of bovine fetal serum. TWEAK induced apoptotic cell death in PC-3 cells, but not in LNCaP cells. Moreover, in PC-3 cells, co-stimulation with TNFα/IFNγ/TWEAK induced a higher rate of apoptosis. However, TWEAK or TWEAK/TNFα/IFNγ did not induce apoptosis in presence of bovine fetal serum. TWEAK induced cell death through activation of the Fn14 receptor. Apoptosis was associated with activation of caspase-3, release of mitochondrial cytochrome C and an increased Bax/BclxL ratio. TWEAK/Fn14 pathway activation promotes apoptosis in androgen-independent PC-3 cells under certain culture conditions. Further characterization of the therapeutic target potential of TWEAK/Fn14 for human prostate cancer is warranted.  相似文献   

19.
The involvement of mitochondrial glycerophosphate dehydrogenase (mGPDH) has previously been established in the production of ROS in prostate cancer cell lines (LNCaP, DU145, PC3 and CL1). The current study demonstrates that the mRNA level of mGPDH in prostate cancer cells is 3.3–8.9-fold higher compared to the normal prostate epithelial cell line, PNT1A. This is consistent with the enzymatic activity and protein level of mGPDH. However, cytochrome c oxidase (COX) activity is 2.9–3.2-fold down-regulated in androgen-independent prostate cancer cell lines. The level of antioxidant enzymes, catalase, MnSOD and CuZnSOD are up-regulated in prostate cancer cell lines. Furthermore, it was observed that the activity of mGPDH is significantly higher in liver tissues from all mice with cancer compared to liver tissues from control mice. These data suggest that the up-regulation of mGPDH, due to a highly glycolytic environment, contributes to the overall increase in ROS generation and may result in the progression of the cancer.  相似文献   

20.
The involvement of mitochondrial glycerophosphate dehydrogenase (mGPDH) has previously been established in the production of ROS in prostate cancer cell lines (LNCaP, DU145, PC3 and CL1). The current study demonstrates that the mRNA level of mGPDH in prostate cancer cells is 3.3-8.9-fold higher compared to the normal prostate epithelial cell line, PNT1A. This is consistent with the enzymatic activity and protein level of mGPDH. However, cytochrome c oxidase (COX) activity is 2.9-3.2-fold down-regulated in androgen-independent prostate cancer cell lines. The level of antioxidant enzymes, catalase, MnSOD and CuZnSOD are up-regulated in prostate cancer cell lines. Furthermore, it was observed that the activity of mGPDH is significantly higher in liver tissues from all mice with cancer compared to liver tissues from control mice. These data suggest that the up-regulation of mGPDH, due to a highly glycolytic environment, contributes to the overall increase in ROS generation and may result in the progression of the cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号