首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensitivity of bacteriophage T4 lysozyme function to amino acid substitutions at defined positions in and around the longitudinal, hydrophobic strips of 9 alpha-helices was assessed after systematic replacement of each residue in the protein with a series of 13 amino acids. The hydrophobic strips were defined by identifying the longitudinal sectors in the helices with the highest mean residue hydrophobicities. Sensitivity to mutation (the percentage of replacements leading to loss of function) was calculated for each residue in the following positions: whole protein, helices, hydrophobic strips, other positions within the helices, and various positions within the hydrophobic strips as well as their extensions beyond the helices. Substitutions at positions in the hydrophobic strips led more frequently to loss of function than substitutions in the protein as a whole. One subset, the COOH-terminal hydrophobic strip residues, is apparently critical; substitutions of these residues (but not of their NH2-terminal counterparts) led at least as frequently to loss of function as substitutions of solvent-inaccessible residues, and nearly as frequently as substitutions of the most highly conserved residues.  相似文献   

2.
Data on alpha-chymotrypsin interactions with hydrophobic low-molecular compounds have been generalized. Existence of two sites of noncovalent interaction with hydrophobic nuclei of a ligand molecule is shown. When the substance to be bound contains only one hydrophobic nucleus, the interaction is mediated by a "hydrophobic pocket" of the enzyme--a binding site of amino acid residues which are, in the P1-position relative to the cleaved bond. Under these conditions substances with an asymmetric hydrophobic nucleus (of the tryptophan type) are better ligands for binding. In case of compounds containing several hydrophobic groups scattered in the space, interaction with the enzyme proceeds in two binding sites. New data are presented on the ligand specificity for binding sites of chymotrypsin in lower vertebrates. Relative position of hydrophobic groups of the ligand is shown as that of great importance for interaction with the enzyme. It is concluded that the binding sites of trypsin- and chymotrypsin-like proteinases of the lower vertebrates differ but less from each other as compared to binding sites of trypsin and chymotrypsin in mammals.  相似文献   

3.
A novel mechanism for membrane modulation of transmembrane protein structure, and consequently function, is suggested in which mismatch between the hydrophobic surface of the protein and the hydrophobic interior of the lipid bilayer induces a flexing or bending of a transmembrane segment of the protein. Studies on model hydrophobic transmembrane peptides predict that helices tilt to submerge the hydrophobic surface within the lipid bilayer to satisfy the hydrophobic effect if the helix length exceeds the bilayer width. The hydrophobic surface of transmembrane helix 1 (TM1) of lactose permease, LacY, is accessible to the bilayer, and too long to be accommodated in the hydrophobic portion of a typical lipid bilayer if oriented perpendicular to the membrane surface. Hence, nuclear magnetic resonance (NMR) data and molecular dynamics simulations show that TM1 from LacY may flex as well as tilt to satisfy the hydrophobic mismatch with the bilayer. In an analogous study of the hydrophobic mismatch of TM7 of bovine rhodopsin, similar flexing of the transmembrane segment near the conserved NPxxY sequence is observed. As a control, NMR data on TM5 of lacY, which is much shorter than TM1, show that TM5 is likely to tilt, but not flex, consistent with the close match between the extent of hydrophobic surface of the peptide and the hydrophobic thickness of the bilayer. These data suggest mechanisms by which the lipid bilayer in which the protein is embedded modulates conformation, and thus function, of integral membrane proteins through interactions with the hydrophobic transmembrane helices.  相似文献   

4.
A novel mechanism for membrane modulation of transmembrane protein structure, and consequently function, is suggested in which mismatch between the hydrophobic surface of the protein and the hydrophobic interior of the lipid bilayer induces a flexing or bending of a transmembrane segment of the protein. Studies on model hydrophobic transmembrane peptides predict that helices tilt to submerge the hydrophobic surface within the lipid bilayer to satisfy the hydrophobic effect if the helix length exceeds the bilayer width. The hydrophobic surface of transmembrane helix 1 (TM1) of lactose permease, LacY, is accessible to the bilayer, and too long to be accommodated in the hydrophobic portion of a typical lipid bilayer if oriented perpendicular to the membrane surface. Hence, nuclear magnetic resonance (NMR) data and molecular dynamics simulations show that TM1 from LacY may flex as well as tilt to satisfy the hydrophobic mismatch with the bilayer. In an analogous study of the hydrophobic mismatch of TM7 of bovine rhodopsin, similar flexing of the transmembrane segment near the conserved NPxxY sequence is observed. As a control, NMR data on TM5 of lacY, which is much shorter than TM1, show that TM5 is likely to tilt, but not flex, consistent with the close match between the extent of hydrophobic surface of the peptide and the hydrophobic thickness of the bilayer. These data suggest mechanisms by which the lipid bilayer in which the protein is embedded modulates conformation, and thus function, of integral membrane proteins through interactions with the hydrophobic transmembrane helices.  相似文献   

5.
LL-37 is a cationic, amphipathic alpha-helical antimicrobial peptide found in humans that kills cells by disrupting the cell membrane. To disrupt membranes, antimicrobial peptides such as LL-37 must alter the hydrophobic core of the bilayer. Differential scanning calorimetry and deuterium ((2)H) NMR experiments on acyl chain perdeuterated lipids demonstrate that LL-37 inserts into the hydrophobic region of the bilayer and alters the chain packing and cooperativity. The results show that hydrophobic interactions between LL-37 and the hydrophobic acyl chains are as important for the ability of this peptide to disrupt lipid bilayers as its electrostatic interactions with the polar headgroups. The (2)H NMR data are consistent with the previously determined surface orientation of LL-37 (Henzler Wildman, K. A., et al. (2003) Biochemistry 42, 6545) with an estimated 5-6 A depth of penetration of the hydrophobic face of the amphipathic helix into the hydrophobic interior of the bilayer. LL-37 also alters the material properties of lipid bilayers, including the area per lipid, hydrophobic thickness, and coefficient of thermal expansion in a manner that varies with lipid type and temperature. Comparison of the effect of LL-37 on 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC-d(31)) and 1,2-dimyristoyl-phosphatidylcholine (DMPC-d(54)) at different temperatures demonstrates the importance of bilayer order in determining the type and extent of disordering and disruption of the hydrophobic core by LL-37. One possible explanation, which accounts for both the (2)H NMR data presented here and the known surface orientation of LL-37 under identical conditions, is that bilayer order influences the depth of insertion of LL-37 into the hydrophobic/hydrophilic interface of the bilayer, altering the balance of electrostatic and hydrophobic interactions between the peptide and the lipids.  相似文献   

6.
Cytochrome b5 is inserted posttranslationally into membranes in vivo and spontaneously into liposomes in vitro by a short carboxyl-terminal hydrophobic membrane-anchoring sequence. DNA corresponding to this hydrophobic sequence has been synthesized, and two gene fusions with the Escherichia coli enzyme beta-galactosidase have been constructed by locating the hydrophobic domain in one case at the EcoRI site near the C terminus and in the other at the normal C terminus of the enzyme. The latter fusion protein was enzymatically active, having approximately 50% of the specific activity of beta-galactosidase, and cells expressing this protein grew normally with lactose as the sole carbon source. Both fusion proteins were localized to the E. coli inner membrane, converting beta-galactosidase from a cytoplasmic enzyme to a membrane-associated enzyme. The hydrophobic domain of cytochrome b5 therefore contains the information required to target polypeptides containing this domain to the membrane. Use of the cytochrome b5 hydrophobic peptide, either alone or in conjunction with other localizing sequences such as signal sequences, provides a general procedure for associating proteins with membranes. Polypeptides bearing this hydrophobic peptide may have considerable use as pharmaceuticals when associated with liposomes or cellular membranes.  相似文献   

7.
Acetylcholinesterase has been isolated from bovine erythrocyte membranes by affinity chromatography using a m-trimethylammonium ligand. The purified enzyme had hydrophobic properties by the criterion of phase partitioning into Triton X-114. The activity of the hydrophobic enzyme was seen as a slow-moving band in nondenaturing polyacrylamide gels. After treatment with phosphatidylinositol-specific phospholipase C, another form of active enzyme was produced that migrated more rapidly toward the anode in these gels. This form of the enzyme partitioned into the aqueous phase in Triton X-114 phase separation experiments and was therefore hydrophilic. The hydrophobic form bound to concanavalin A in the absence of Triton X-100. As this binding was partially prevented by detergent, but not by alpha-methyl mannoside, D-glucose, or myo-inositol, it is in part hydrophobic. Erythrocyte cell membranes showed acetylcholinesterase activity present as a major form, which was hydrophobic by Triton X-114 phase separation and in nondenaturing gel electrophoresis moved at the same rate as the purified enzyme. In the membrane the enzyme was more thermostable than when purified in detergent. The hydrophobic enzyme isolated, therefore, represents a native form of the acetylcholinesterase present in the bovine erythrocyte cell membrane, but in isolation its stability becomes dependent on amphiphile concentration. Its hydrophobic properties and lectin binding are attributable to the association with the protein of a lipid with the characteristics of a phosphatidylinositol.  相似文献   

8.
Determination of the cell-surface hydrophobicity of group B streptococci by hydrophobic interaction chromatography on phenyl-Sepharose revealed that human and bovine group B streptococcal isolates with protein surface antigens, either alone or in combination with polysaccharide antigens, were mainly hydrophobic, whereas those with polysaccharide antigens alone were mainly hydrophilic. Removal of capsular neuraminic acid enhanced, and pronase treatment reduced, surface hydrophobicity. The hydrophobic surface proteins, solubilized by mutanolysin treatment of the bacteria and isolated by hydrophobic interaction chromatography, appeared in SDS-PAGE as numerous protein bands. Staphylococcal carrier cells loaded with antibodies produced against hydrophobic surface proteins agglutinated specifically with hydrophobic group B streptococci. No agglutination reaction was observed with hydrophilic cultures. Hydrophobic group B streptococci adhered to buccal epithelial cells in significantly higher numbers than did hydrophilic cultures. The adherence of group B streptococci to epithelial cells was inhibited in the presence of isolated hydrophobic proteins and in the presence of specific antibodies produced against hydrophobic proteins. The results of this study demonstrate a close relation between the occurrence of type-specific antigens, surface hydrophobicity and the adherence of group B streptococci to epithelial cells.  相似文献   

9.
A new method for finding hydrophobic nuclei and microclusters in protein structure is proposed. The method uses simple and clear-cut criteria based on an analysis of distances between the hydrocarbon groups of all residues. A detailed analysis of the composition and properties of hydrophobic nucleic and microclusters for proteins of different types has been carried out. This approach reveals that a hydrophobic nucleus can be composed not merely of classical hydrophobic amino acids, but also of dicarboxylic acids, their amides, arginine, lysine, histidine and tyrosine. The hydrophobic nucleus defined by this method should be considered as an individual structural unit along with such elements of the secondary structure as alpha-helices, beta-turns and beta-sheets.  相似文献   

10.
We measured the rates of utilization of hydrophobic and hydrophilic phosphate compounds in gram-negative bacteria with different surface hydrophobicities, isolated from wetland habitats. Three hydrophobic and two hydrophilic bacterial species were selected for study by measuring cell adherence to hydrocarbons. The bacteria were grown under phosphorus-limited conditions with P(infi), hydrophilic (beta)-glycerophosphate, or hydrophobic phosphatidic acid as the phosphate source. Hydrophilic bacteria grew most rapidly on P(infi), followed by (beta)-glycerophosphate. Phosphatidic acid did not support growth or did so at a much later time (40 h) than did the other phosphate treatments. Although all hydrophobic species grew well on these substrates, the rate of growth of two Acinetobacter baumannii isolates on phosphatidic acid exceeded the rate of growth on phosphate or (beta)-glycerophosphate. A membrane phospholipid and lipopolysaccharide were used as a source of phosphorus by hydrophobic species, whereas hydrophilic species could not use the membrane phospholipids and used lipopolysaccharide to a lesser extent. Besides hydrophobic interaction between cells and substrate, phosphatase activity, which was cell bound in hydrophilic species but 30 to 50% unbound in hydrophobic species, affected cell growth. Dialyzed culture supernatant containing phosphatase from hydrophobic species increased the phosphate availability to hydrophilic species. Additionally, cellular extracts from a hydrophilic species, when added to hydrophilic cells, permitted growth on hydrophobic phosphate sources. Naturally occurring amphiphilic humic acids affected the utilization of P(infi) and (beta)-glycerophosphate in bacteria with hydrophilic surfaces but did not affect hydrophobic bacteria. Our results indicate that hydrophobic phosphate sources can be used by bacteria isolated from aquatic environments as the sole phosphorus source for growth. This utilization, in part, appears to be related to cell surface hydrophobicity and extracellular enzyme production.  相似文献   

11.
Glucose interfered with the inhibitory action of hydrophobic compounds, such as n-octanol, diphenylamine and 2-tert-butylphenol, during L-alanine-initiated germination of Bacillus subtilis spores. The action of glucose on the action of the hydrophobic compounds was not competitive, and the binding affinity of glucose was not essentially affected by the hydrophobic compounds, indicating the presence of separate binding sites for glucose and the hydrophobic compounds. The binding affinity of D-alanine, a competitive inhibitor of L-alanine, was not affected by the hydrophobic compounds, indicating separate binding sites for D-alanine and the hydrophobic compounds. A possible arrangement of the binding sites for glucose and for the hydrophobic compounds in relation to those for L- and D-alanine on the spores is discussed.  相似文献   

12.
Pyruvic acid undergo decarboxylation catalyzed by a hydrophobic thiazolium salt and reacts with a hydrophobic analog of lipoic acid to form a hydrophobic acylthioester that reacts with aniline to form acetanilide in water, but only in the presence of a hydrophobically modified polyaziridine that acts to gather the reactants just as the enzyme complex does.  相似文献   

13.
The hydrophobic domain of the signal peptide of OmpF-Lpp, a model secretory protein, was systematically engineered so as to be composed of different lengths of polyleucine residues or polymers with alternate leucine and alanine residues, and the effects of the length and nature of the hydrophobic stretch on the rate of in vitro translocation were studied using everted membrane vesicles of Escherichia coli. The translocation reaction exhibited high substrate specificity as to the number of hydrophobic residues. The results suggest that the hydrophobic domain is recognized specifically by a component(s) of the secretory machinery rather than nonspecifically by the hydrophobic region of the membrane. The in vitro translocation thus demonstrated required SecA and ATP and was markedly enhanced upon imposition of the proton motive force, as in the case of secretory proteins possessing a natural signal peptide. The highest translocation rate was obtained with the octamer in the case of polyleucine-containing signal peptides, whereas it was the decamer in the case of ones containing both leucine and alanine. These results suggest that the total hydrophobicity of the hydrophobic region of the signal peptides is an important determinant of the substrate specificity.  相似文献   

14.
Osmolytes are small organic solutes accumulated at high concentrations by cells/tissues in response to osmotic stress. Osmolytes increase thermodynamic stability of folded proteins and provide protection against denaturing stresses. The mechanism of osmolyte compatibility and osmolyte-induced stability has, therefore, attracted considerable attention in recent years. However, to our knowledge, no quantitative study of osmolyte effects on the strength of hydrophobic interactions has been reported. Here, we present a detailed molecular dynamics simulation study of the effect of the osmolyte trimethylamine-N-oxide (TMAO) on hydrophobic phenomena at molecular and nanoscopic length scales. Specifically, we investigate the effects of TMAO on the thermodynamics of hydrophobic hydration and interactions of small solutes as well as on the folding-unfolding conformational equilibrium of a hydrophobic polymer in water. The major conclusion of our study is that TMAO has almost no effect either on the thermodynamics of hydration of small nonpolar solutes or on the hydrophobic interactions at the pair and many-body level. We propose that this neutrality of TMAO toward hydrophobic interactions-one of the primary driving forces in protein folding-is at least partially responsible for making TMAO a "compatible" osmolyte. That is, TMAO can be tolerated at high concentrations in organisms without affecting nonspecific hydrophobic effects. Our study implies that protein stabilization by TMAO occurs through other mechanisms, such as unfavorable water-mediated interaction of TMAO with the protein backbone, as suggested by recent experimental studies. We complement the above calculations with analysis of TMAO hydration and changes in water structure in the presence of TMAO molecules. TMAO is an amphiphilic molecule containing both hydrophobic and hydrophilic parts. The precise balance of the effects of hydrophobic and hydrophilic segments of the molecule appears to explain the virtual noneffect of TMAO on the strength of hydrophobic interactions.  相似文献   

15.
Several types of lipid-associating helices exist: transmembrane helices such as in receptor proteins, pore-forming helices in ion channel proteins, fusion-inducing peptides in viral proteins, and amphipathic helices such as in plasma apolipoproteins. In order to propose a classification of these helices according to their molecular properties, we introduce the concept of molecular hydrophobicity potential for such helical segments. The calculation of this parameter for alpha-helices enables the visualization of the hydrophobic and hydrophilic envelopes around the peptide and their three-dimensional representation by molecular graphics. We have used this parameter to differentiate between pore-forming helices with a hydrophobic envelope larger than the hydrophilic component, membrane-spanning helices surrounded almost entirely by an hydrophobic envelope, fusiogenic peptides with an hydrophobicity gradient both around the helix and along the axis, and finally, amphipathic helices with a predominantly hydrophilic envelope. The structure of the lipid-protein complexes is determined by a number of different interactions: the hydrophobic interaction of the apolar faces of the helices with lipids, the polar interaction of the hydrophilic sides of different helices with each other, and the interaction of hydrophilic residues with the aqueous solvent. The relative magnitude of the hydrophobic and hydrophilic envelopes accounts for the differences in the structure of the lipid-protein complexes. Purely hydrophobic interactions stabilize transmembrane helical segments, while hydrophobic interactions with the lipid phase and with each other are involved in the stabilization of the pore-forming helices. In contrast, both hydrophobic interactions with the lipids and hydrophilic interactions with the aqueous phase contribute to the arrangement of amphipathic helices around the edges of the discoidal lipid-apoprotein complexes.  相似文献   

16.
Data sets of 362 structurally nonredundant protein-protein interfaces and of 57 symmetry-related oligomeric interfaces have been used to explore whether the hydrophobic effect that guides protein folding is also the main driving force for protein-protein associations. The buried nonpolar surface area has been used to measure the hydrophobic effect. Our analysis indicates that, although the hydrophobic effect plays a dominant role in protein-protein binding, it is not as strong as that observed in the interior of protein monomers. Comparison of interiors of the monomers with those of the interfaces reveals that, in general, the hydrophobic amino acids are more frequent in the interior of the monomers than in the interior of the protein-protein interfaces. On the other hand, a higher proportion of charged and polar residues are buried at the interfaces, suggesting that hydrogen bonds and ion pairs contribute more to the stability of protein binding than to that of protein folding. Moreover, comparison of the interior of the interfaces to protein surfaces indicates that the interfaces are poorer in polar/charged than the surfaces and are richer in hydrophobic residues. The interior of the interfaces appears to constitute a compromise between the stabilization contributed by the hydrophobic effect on the one hand and avoiding patches on the protein surfaces that are too hydrophobic on the other. Such patches would be unfavorable for the unassociated monomers in solution. We conclude that, although the types of interactions are similar between protein-protein interfaces and single-chain proteins overall, the contribution of the hydrophobic effect to protein-protein associations is not as strong as to protein folding. This implies that packing patterns and interatom, or interresidue, pairwise potential functions, derived from monomers, are not ideally suited to predicting and assessing ligand associations or design. These would perform adequately only in cases where the hydrophobic effect at the binding site is substantial.  相似文献   

17.
A K Lala  V Koppaka 《Biochemistry》1992,31(24):5586-5593
The main objective of depth-dependent fluorescent probes is to provide information at a distinct position in the membrane hydrophobic core. We report here a series of fluorenyl fatty acids which can probe both artificial and natural membranes at different depths. Long-chain acids (C4, C6, and C8) are attached to fluorene chromophore on one side, and a hydrophobic tail (C4) is attached on the other side, so that on incorporation in membranes the carboxyl end of the molecule is oriented toward the membrane-water interface and the hydrophobic tail points toward the membrane interior. These acids can be readily partitioned into membranes. The disposition of these fluorenyl fatty acids in membranes was studied by fluorescence quenching using iodide as a water-soluble and 9,10-dibromostearic acid as a lipid-soluble quencher. The results obtained indicate that attachment of a hydrophobic tail is essential for effective alignment of depth-dependent fluorescent probes. The length of the hydrophobic tail was varied and an n-butyl chain was found to be most effective. In all cases, the compounds with a hydrophobic tail were found to be probing the membrane deeper than their counterparts with no hydrophobic tail. Further, the compounds with hydrophobic tails were more strongly immobilized in the membrane as indicated by fluorescence polarization studies. However, the effect of such a tail varied with membrane type. Thus in artificial membranes an n-butyl chain was found to be extremely important for effective monitoring by shallow probes like 4-(2'-fluorenyl)butyric acid, whereas in erythrocyte ghost membranes the same n-butyl tail was found to be more desirable for deeper probes like 8-(2'-fluorenyl)octanoic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The de novo design and biophysical characterization of two 60-residue peptides that dimerize to fold as parallel coiled-coils with different hydrophobic core clustering is described. Our goal was to investigate whether designing coiled-coils with identical hydrophobicity but with different hydrophobic clustering of non-polar core residues (each contained 6 Leu, 3 Ile, and 7 Ala residues in the hydrophobic core) would affect helical content and protein stability. The disulfide-bridged P3 and P2 differed dramatically in alpha-helical structure in benign conditions. P3 with three hydrophobic clusters was 98% alpha-helical, whereas P2 was only 65% alpha-helical. The stability profiles of these two analogs were compared, and the enthalpy and heat capacity changes upon denaturation were determined by measuring the temperature dependence by circular dichroism spectroscopy and confirmed by differential scanning calorimetry. The results showed that P3 assembled into a stable alpha-helical two-stranded coiled-coil and exhibited a native protein-like cooperative two-state transition in thermal melting, chemical denaturation, and calorimetry experiments. Although both peptides have identical inherent hydrophobicity (the hydrophobic burial of identical non-polar residues in equivalent heptad coiled-coil positions), we found that the context dependence of an additional hydrophobic cluster dramatically increased stability of P3 (Delta Tm approximately equal to 18 degrees C and Delta[urea](1/2) approximately equal to 1.5 M) as compared with P2. These results suggested that hydrophobic clustering significantly stabilized the coiled-coil structure and may explain how long fibrous proteins like tropomyosin maintain chain integrity while accommodating polar or charged residues in regions of the protein hydrophobic core.  相似文献   

19.
Correctly folded proteins make twice as many hydrophobic contacts   总被引:4,自引:0,他引:4  
A novel statistical analysis of non-bonded contacts in a set of known protein structures shows that the natural residue types fall into five or six groups distinguishable by nearest neighbor preference. The observed pattern of contact specificities clearly reflects residue hydrophobicity and charge. Its most striking feature is that residues in the hydrophobic group make about twice as many contacts with one another as would be expected on a random basis. A similar increase in hydrophobic contact frequency can be observed at the level of individual proteins. Native proteins make, on average, about twice as many hydrophobic contacts as corresponding misfolded proteins, generated by computer. On the basis of these observations increased hydrophobic contact frequency is proposed as a simple model of the hydrophobic effect.  相似文献   

20.
The hydrophobic effect has been known for decades. Numerous researchers have invoked the hydrophobic effect to explain how pathogens adhere to tissues. In some cases, inhibition of adhesion can be brought about by low concentrations of aromatic compounds, such as p-nitrophenol or tryptophan. Because the hydrophobic effect has been considered to be nonspecific, the molecular biology of adhesive hydrophobins has not been studied in as much detail as lectin adhesins. The literature provides compelling evidence that a large number of bacterial and fungal pathogens depend on hydrophobic interactions for successful colonization of a host. Several laboratories are now developing effective antiadhesins, based on inhibition of hydrophobic interactions between the host and the pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号