首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The cGMP kinase signaling complex identified previously in tracheal smooth muscle membranes contains a number of cGMP kinase substrates termed G0 through G4. G0, G1, and G2 were identified as IP(3) receptor I (IP(3)RI), IRAG, and cGMP kinase I. Sequencing of purified G3 and G4 showed that these proteins were proteolytic cleavage products of IRAG. However, the purified cGMP kinase signaling complex contained following additional proteins: alpha-actin, calponin H1, and phospholamban (PLB) as verified by MALDI-TOF as well as MS/MS sequencing and immune detection. The complex of these six proteins was immune precipitated by antibodies to each protein. The proteins were phosphorylated by the endogenous cGMP kinase I with the exception of alpha-actin and calponin H1. The complex did not contain the Ca(2+)-ATPase SERCA II. PLB, IP(3)RI, and cGMP kinase Ibeta were co-immune precipitated after expression in COS-7 cells. These results suggest that PLB may have additional functions to regulate the activity of SERCA II.  相似文献   

4.
5.
To date, relative cellular levels of cGMP and cGMP-binding proteins have not been considered important in the regulation of smooth muscle or any other tissue. In rabbit penile corpus cavernosum, intracellular cGMP was determined to be 18 +/- 4 nM, whereas the cGMP-binding sites of types Ialpha and Ibeta cGMP-dependent protein kinase (PKG) and cGMP-binding cGMP-specific phosphodiesterase (PDE5) were 58 +/- 14 nM and 188 +/- 6 nM, respectively, as estimated by two different methods for each protein. Thus, total cGMP-binding sites (246 nM) greatly exceed total cGMP. Given this excess of cGMP-binding sites and the high affinities of PKG and PDE5 for cGMP, it is likely that a large portion of intracellular cGMP is associated with these proteins, which could provide a dynamic reservoir for cGMP. Phosphorylation of PDE5 by PKG is known to increase the affinity of PDE5 allosteric sites for cGMP, suggesting the potential for regulation of a reservoir of cGMP bound to this protein. Enhanced binding of cGMP by phosphorylated PDE5 could reduce the amount of cGMP available for activation of PKG, contributing to feedback inhibition of smooth muscle relaxation or other processes. This introduces a new concept for cyclic nucleotide signaling.  相似文献   

6.
Wang XH  Tong M  Dou D  Usha JR  Gao YS 《生理科学进展》2005,36(4):299-303
环鸟苷酸(cGMP)依赖的蛋白激酶(PKG)是一氧化氮-cGMP的主要细胞内受体,在哺乳动物细胞中分为PKG-I和PKG-II两型。在PKG介导的血管平滑肌舒张作用中,其主要通过活化细胞膜上的钙活化的钾通道(BK通道),磷酸化肌质网上的受磷蛋白(phospholamban,PLB)和三磷酸肌醇受体相关的PKG-I底物(IP3receptor-associated PKG-I substrate,IRAG),降低细胞内Ca2 浓度。PKG还可通过活化肌球蛋白轻链磷酸酶及抑制Rho激酶降低肌球蛋白对Ca2 敏感性。PKG调节血管平滑肌细胞的基因表达和表型调变,调节细胞增生。PKG活化以后还具有抑制血小板聚集,抑制心肌细胞肥大等功能。最近的研究证明,PKG的表达水平和活性改变与动脉粥样硬化和再狭窄、高血压、糖尿病心血管病变以及硝酸盐耐受等的发病机制有密切关系。  相似文献   

7.
Signaling by nitric oxide (NO) determines several cardiovascular functions including blood pressure regulation, cardiac and smooth muscle hypertrophy, and platelet function. NO stimulates the synthesis of cGMP by soluble guanylyl cyclases and thereby activates cGMP-dependent protein kinases (PKGs), mediating most of the cGMP functions. Hence, an elucidation of the PKG signaling cascade is essential for the understanding of the (patho)physiological aspects of NO. Several PKG signaling pathways were identified, meanwhile regulating the intracellular calcium concentration, mediating calcium desensitization or cytoskeletal rearrangement. During the last decade it emerged that the inositol trisphosphate receptor-associated cGMP-kinase substrate (IRAG), an endoplasmic reticulum-anchored 125-kDa membrane protein, is a main signal transducer of PKG activity in the cardiovascular system. IRAG interacts specifically in a trimeric complex with the PKG1β isoform and the inositol 1,4,5-trisphosphate receptor I and, upon phosphorylation, reduces the intracellular calcium release from the intracellular stores. IRAG motifs for phosphorylation and for targeting to PKG1β and 1,4,5-trisphosphate receptor I were identified by several approaches. The (patho)physiological functions for the regulation of smooth muscle contractility and the inhibition of platelet activation were perceived. In this review, the IRAG recognition, targeting, and function are summarized compared with PKG and several PKG substrates in the cardiovascular system.  相似文献   

8.
9.
cGMP-dependent protein kinase (cGK) is a major intracellular receptor of cGMP and is implicated in several signal transduction pathways. To identify proteins that participate in the cGMP/cGK signaling pathway, we employed the yeast two-hybrid system with cGK Ialpha as bait. cDNAs encoding slow skeletal troponin T (skTnT) were isolated from both mouse embryo and human skeletal muscle cDNA libraries. The skTnT protein interacted with cGK Ibeta but not with cGK II nor cAMP-dependent protein kinase. The yeast two-hybrid and in vitro binding assays revealed that the N-terminal region of cGK Ialpha, containing the leucine zipper motif, is sufficient for the association with skTnT. In vivo analysis, mutations in cGK Ialpha, which disrupted the leucine zipper motif, were shown to completely abolish the binding to skTnT. Furthermore, cGK I also interacted with cardiac TnT (cTnT) but not with cardiac troponin I (cTnI). Together with the observations that cTnI is a good substrate for cGK I and is effectively phosphorylated in the presence of cTnT in vitro, these findings suggest that TnT functions as an anchoring protein for cGK I and that cGK I may participate in the regulation of muscle contraction through phosphorylation of TnI.  相似文献   

10.
Th2 lymphocytes differ from other CD4+ T lymphocytes not only by their effector tasks but also by their T cell receptor (TCR)-dependent signaling pathways. We previously showed that dihydropyridine receptors (DHPR) involved in TCR-induced calcium inflow were selectively expressed in Th2 cells. In this report, we studied whether cGMP-dependent protein kinase G (PKG) activation was implicated in the regulation of DHPR-dependent calcium response and cytokine production in Th2 lymphocytes. The contribution of cGMP in Th2 signaling was supported by the following results: 1) TCR activation elicited cGMP production, which triggered calcium increase responsible for nuclear factor of activated T cell translocation and Il4 gene expression; 2) guanylate cyclase activation by nitric oxide donors increased intracellular cGMP concentration and induced calcium inflow and IL-4 production; 3) reciprocally, guanylate cyclase inhibition reduced calcium response and Th2 cytokine production associated with TCR activation. In addition, DHPR blockade abolished cGMP-induced [Ca2+]i increase, indicating that TCR-induced DHP-sensitive calcium inflow is dependent on cGMP in Th2 cells. Th2 lymphocytes from PKG1-deficient mice displayed impaired calcium signaling and IL-4 production, as did wild-type Th2 cells treated with PKG inhibitors. Altogether, our data indicate that, in Th2 cells, cGMP is produced upon TCR engagement and activates PKG, which controls DHP-sensitive calcium inflow and Th2 cytokine production.  相似文献   

11.
Yuasa K  Michibata H  Omori K  Yanaka N 《FEBS letters》2000,466(1):175-178
We isolated a constitutively active form of cGMP-dependent protein kinase Ialpha (cGK Ialpha) by PCR-driven random mutagenesis. The replacement of Ile-63 by Thr in the autoinhibitory domain results in the enhancement of autophosphorylation and the basal kinase activity in the absence of cGMP. The hydrophobicity at position 63 is essential for the inactive state of cGK Ialpha, and Ile-78 of cGK Ibeta is also required for the autoinhibitory property. Furthermore, cGK Ialpha (Ile-63-Thr) is constitutively active in vivo. These findings suggest that a conserved residue in the autoinhibitory domain was involved in the autoinhibition of both cGK Is.  相似文献   

12.
Signalling by cGMP-dependent protein kinase type I (cGKI) relaxes various smooth muscles modulating thereby vascular tone and gastrointestinal motility. cGKI-dependent relaxation is possibly mediated by phosphorylation of the inositol 1,4,5-trisphosphate receptor I (IP(3)RI)-associated protein (IRAG), which decreases hormone-induced IP(3)-dependent Ca(2+) release. We show now that the targeted deletion of exon 12 of IRAG coding for the N-terminus of the coiled-coil domain disrupted in vivo the IRAG-IP(3)RI interaction and resulted in hypomorphic IRAG(Delta12/Delta12) mice. These mice had a dilated gastrointestinal tract and a disturbed gastrointestinal motility. Carbachol- and phenylephrine-contracted smooth muscle strips from colon and aorta, respectively, of IRAG(Delta12/Delta12) mice were not relaxed by cGMP, while cAMP-mediated relaxation was unperturbed. Norepinephrine-induced increases in [Ca(2+)](i) were not decreased by cGMP in aortic smooth muscle cells from IRAG(Delta12/Delta12) mice. In contrast, cGMP-induced relaxation of potassium-induced smooth muscle contraction was not abolished in IRAG(Delta12/Delta12) mice. We conclude that cGMP-dependent relaxation of hormone receptor-triggered smooth muscle contraction essentially depends on the interaction of cGKI-IRAG with IP(3)RI.  相似文献   

13.
14.
Cyclic GMP-dependent protein kinase I (cGKI) affects the inositol 1,4,5-trisphosphate (InsP(3))-dependent release of intracellular calcium by phosphorylation of IRAG (inositol 1,4,5-trisphophate receptor-associated cGMP kinase substrate). IRAG is present in a macromolecular complex with the InsP(3) receptor type I (InsP(3)RI) and cGKIbeta. The specificity of the interaction between these three proteins was investigated by using the yeast two-hybrid system and by co-precipitation of expressed proteins. The amino-terminal region containing the leucine zipper (amino acids 1-53) of cGKIbeta but not that of cGKIalpha or cGKII interacted with the sequence between amino acids 152 and 184 of IRAG in vitro and in vivo most likely through electrostatic interaction. cGKIbeta did not interact with the InsP(3)RI, but co-precipitated the InsP(3)RI in the presence of IRAG indicating that IRAG bound to the InsP(3)RI and to cGKIbeta. cGKIbeta phosphorylated up to four serines in IRAG. Mutation of these four serines to alanine showed that cGKIbeta-dependent phosphorylation of Ser(696) is necessary to decrease calcium release from InsP(3)-sensitive stores. These results show that cGMP induced reduction of cytosolic calcium concentrations requires cGKIbeta and phosphorylation of Ser(696) of IRAG.  相似文献   

15.
Ca2+ release through inositol 1,4,5-trisphosphate receptors (InsP3R) can be modulated by numerous factors, including input from other signal transduction cascades. These events shape the spatio-temporal characteristics of the Ca2+ signal and provide fidelity essential for the appropriate activation of effectors. In this study, we investigate the regulation of Ca2+ release via InsP3R following activation of cyclic nucleotide-dependent kinases in the presence and absence of expression of a binding partner InsP3R-associated cGMP kinase substrate (IRAG). cGMP-dependent kinase (PKG) phosphorylation of only the S2+ InsP3R-1 subtype resulted in enhanced Ca2+ release in the absence of IRAG expression. In contrast, IRAG bound to each InsP3R subtype, and phosphorylation of IRAG by PKG attenuated Ca2+ release through all InsP3R subtypes. Surprisingly, simply the expression of IRAG attenuated phosphorylation and inhibited the enhanced Ca2+ release through InsP3R-1 following cAMP-dependent protein kinase (PKA) activation. In contrast, IRAG expression did not influence the PKA-enhanced activity of the InsP3R-2. Phosphorylation of IRAG resulted in reduced Ca2+ release through all InsP3R subtypes during concurrent activation of PKA and PKG, indicating that IRAG modulation is dominant under these conditions. These studies yield mechanistic insight into how cells with various complements of proteins integrate and prioritize signals from ubiquitous signaling pathways.  相似文献   

16.
The phosphorylation of the enzyme tyrosine hydroxylase by the cGMP pathway was investigated in chromaffin cells from the bovine adrenal medulla. The nitric oxide donor, sodium nitroprusside, and the natriuretic peptide, C-type natriuretic peptide, which are able to increase cGMP levels and cGMP-dependent protein kinase activity, produced significant increases in the phosphorylation level of tyrosine hydroxylase in a time- and concentration-dependent manner. The pretreatment of the cells with the soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one blocked the effect of sodium nitroprusside. This result indicates that cGMP production by this enzyme mediated this effect. Experiments performed with a cGMP-dependent protein kinase inhibitor, the Rp-isomer of 8-(4-chlorophenylthio)-cyclic guanosine monophosphorothioate, which blocked the effects of both sodium nitroprusside and C-type natriuretic peptide, demonstrated that the phosphorylation increases evoked by both compounds were mediated by the activation of cGMP-dependent protein kinase. In cells incubated with the adenylyl cyclase activator, forskolin, an increase in the phosphorylation level of the tyrosine hydroxylase was also found. When cells were treated simultaneously with forskolin and sodium nitroprusside or C-type natriuretic peptide, an additive effect on tyrosine hydroxylase phosphorylation was not observed. This suggests that cAMP- and cGMP-dependent protein kinases may phosphorylate the same amino acid residues in the enzyme. Western blot analysis of soluble extracts from chromaffin cells detected specific immunoreactivity for two different commercial antibodies raised against cGMP-dependent protein kinase (both Ialpha and Ibeta isoforms). Electrophoretic mobility correlates with that of purified PKG Ialpha. Because the phosphorylation of the tyrosine hydroxylase correlates with increases in its enzymatic activity and thus with augmentation in the cell capacity to synthesize catecholamines, our results indicate that a cGMP-based second messenger pathway participates in catecholamine biosynthesis regulation in chromaffin cells, a mechanism which may be widespread in other catecholamine-synthesizing cells.  相似文献   

17.
The molecular mechanism of cGMP-dependent protein kinase activation by its allosteric regulator cyclic-3',5'-guanosine monophosphate (cGMP) has been intensely studied. However, the structural as well as thermodynamic changes upon binding of cGMP to type I cGMP-dependent protein kinase are not fully understood. Here we report a cGMP-induced shift of Gibbs free enthalpy (DeltaDeltaGD) of 2.5 kJ.mol-1 as determined from changes in tryptophan fluorescence using urea-induced unfolding for bovine PKG Ialpha. However, this apparent increase in overall stability specifically excluded the N-terminal region of the kinase. Analyses of tryptic cleavage patterns using liquid chromatography-coupled ESI-TOF mass spectrometry and SDS/PAGE revealed that cGMP binding destabilizes the N-terminus at the hinge region, centered around residue 77, while the C-terminus was protected from degradation. Furthermore, two recombinantly expressed mutants: the deletion fragment Delta1-77 and the trypsin resistant mutant Arg77Leu (R77L) revealed that the labile nature of the N-terminus is primarily associated with the hinge region. The R77L mutation not only stabilized the N-terminus but extended a stabilizing effect on the remaining domains of the enzyme as well. These findings support the concept that the hinge region of PKG acts as a stability switch.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号