首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of two genetically distinct groups of marine Synechococcus sp. strains shows that one, but not the other, increases its phycourobilin/phycoerythrobilin chromophore ratio when growing in blue light. This ability of at least some marine Synechococcus strains to chromatically adapt may help explain their greater abundance in particular ocean environments than cyanobacteria of the genus Prochlorococcus.  相似文献   

2.
Cyanobacteriophage Syn9 is a large, contractile-tailed bacteriophage infecting the widespread, numerically dominant marine cyanobacteria of the genera Prochlorococcus and Synechococcus . Its 177 300 bp genome sequence encodes 226 putative proteins and six tRNAs. Experimental and computational analyses identified genes likely involved in virion formation, nucleotide synthesis, and DNA replication and repair. Syn9 shows significant mosaicism when compared with related cyanophages S-PM2, P-SSM2 and P-SSM4, although shared genes show strong purifying selection and evidence for large population sizes relative to other phages. Related to coliphage T4 – which shares 19% of Syn9's genes – Syn9 shows evidence for different patterns of DNA replication and uses homologous proteins to assemble capsids with a different overall structure that shares topology with phage SPO1 and herpes virus. Noteworthy bacteria-related sequences in the Syn9 genome potentially encode subunits of the photosynthetic reaction centre, electron transport proteins, three pentose pathway enzymes and two tryptophan halogenases. These genes suggest that Syn9 is well adapted to the physiology of its photosynthetic hosts and may affect the evolution of these sequences within marine cyanobacteria.  相似文献   

3.
Unicellular cyanobacteria of the genus Synechococcus are a major component of the picophytoplankton and make a substantial contribution to primary productivity in the oceans. Here we provide evidence that supports the hypothesis that virus infection can play an important role in determining the success of different Synechococcus genotypes and hence of seasonal succession. In a study of the oligotrophic Gulf of Aqaba, Red Sea, we show a succession of Synechococcus genotypes over an annual cycle. There were large changes in the genetic diversity of Synechococcus, as determined by restriction fragment length polymorphism analysis of a 403- bp rpoC1 gene fragment, which was reduced to one dominant genotype in July. The abundance of co-occurring cyanophage capable of infecting marine Synechococcus was determined by plaque assays and their genetic diversity was determined by denaturing gradient gel electrophoresis analysis of a 118-bp g20 gene fragment. The results indicate that both abundance and genetic diversity of cyanophage covaried with that of Synechococcus. Multivariate statistical analyses show a significant relationship between cyanophage assemblage structure and that of Synechococcus. These observations are consistent with cyanophage infection being a major controlling factor in picophytoplankton succession.  相似文献   

4.
The cyanophage community in Rhode Island's coastal waters is genetically diverse and dynamic. Cyanophage abundance ranged from over 10(4) phage ml(-1) in the summer months to less then 10(2) phage ml(-1) during the winter months. Thirty-six distinct cyanomyovirus g20 genotypes were identified over a 3-year sampling period; however, only one to nine g20 genotypes were detected at any one sampling date. Phylogenetic analyses of g20 sequences revealed that the Rhode Island cyanomyoviral isolates fall into three main clades and are closely related to other known viral isolates of Synechococcus spp. Extinction dilution enrichment followed by host range tests and PCR restriction fragment length polymorphism analysis was used to detect changes in the relative abundance of cyanophage types in June, July, and August 2002. Temporal changes in both the overall composition of the cyanophage community and the relative abundance of specific cyanophage g20 genotypes were observed. In some seawater samples, the g20 gene from over 50% of isolated cyanophages could not be amplified by using the PCR primer pairs specific for cyanomyoviruses, which suggested that cyanophages in other viral families (e.g., Podoviridae or Siphoviridae) may be important components of the Rhode Island cyanophage community.  相似文献   

5.
Investigating the interactions between marine cyanobacteria and their viruses (phages) is important towards understanding the dynamic of ocean's primary productivity. Genome sequencing of marine cyanophages has greatly advanced our understanding about their ecology and evolution. Among 24 reported genomes of cyanophages that infect marine picocyanobacteria, 17 are from cyanomyoviruses and six from cyanopodoviruses, and only one from cyanosiphovirus (Prochlorococcus phage P-SS2). Here we present four complete genome sequences of siphoviruses (S-CBS1, S-CBS2, S-CBS3 and S-CBS4) that infect four different marine Synechococcus strains. Three distinct subtypes were recognized among the five known marine siphoviruses (including P-SS2) in terms of morphology, genome architecture, gene content and sequence similarity. Our study revealed that cyanosiphoviruses are genetically diverse with polyphyletic origin. No core genes were found across these five cyanosiphovirus genomes, and this is in contrast to the fact that many core genes have been found in cyanomyovirus or cyanopodovirus genomes. Interestingly, genes encoding three structural proteins and a lysozyme of S-CBS1 and S-CBS3 showed homology to a prophage-like genetic element in two freshwater Synechococcus elongatus genomes. Re-annotation of the prophage-like genomic region suggests that S.?elongatus may contain an intact prophage. Cyanosiphovirus genes involved in DNA metabolism and replication share high sequence homology with those in cyanobacteria, and further phylogenetic analysis based on these genes suggests that ancient and selective genetic exchanges occurred, possibly due to past prophage integration. Metagenomic analysis based on the Global Ocean Sampling database showed that cyanosiphoviruses are present in relatively low abundance in the ocean surface water compared to cyanomyoviruses and cyanopodoviruses.  相似文献   

6.
Grazing of heterotrophic nanoflagellates on marine picophytoplankton presents a major mortality factor for this important group of primary producers. However, little is known of the selectivity of the grazing process, often merely being thought of as a general feature of cell size and motility. In this study, we tested grazing of two heterotrophic nanoflagellates, Paraphysomonas imperforata and Pteridomonas danica , on strains of marine Synechococcus . Both nanoflagellates proved to be selective in their grazing, with Paraphysomonas being able to grow on 5, and Pteridomonas on 11, of 37 Synechococcus strains tested. Additionally, a number of strains (11 for Paraphysomonas , 9 for Pteridomonas ) were shown to be ingested, but not digested (and thus did not support growth of the grazer). Both the range of prey strains that supported growth as well as those that were ingested but not digested was very similar for the two grazers, suggesting a common property of these prey strains that lent them susceptible to grazing. Subsequent experiments on selected Synechococcus strains showed a pronounced difference in grazing susceptibility between wild-type Synechococcus sp. WH7803 and a spontaneous phage-resistant mutant derivative, WH7803PHR, suggesting that cell surface properties of the Synechococcus prey are an important attribute influencing grazing vulnerability.  相似文献   

7.
8.
Viruses are ubiquitous components of the marine ecosystem. In the current study we investigated seasonal variations in the viral community in Norwegian coastal waters by pulsed-field gel electrophoresis (PFGE). The results demonstrated that the viral community was diverse, displaying dynamic seasonal variation, and that viral populations of 29 different sizes in the range from 26 to 500 kb were present. Virus populations from 260 to 500 kb and dominating autotrophic pico- and nanoeukaryotes showed similar dynamic variations. Using flow cytometry and real-time PCR, we focused in particular on one host-virus system: Synechococcus spp. and cyanophages. The two groups covaried throughout the year and were found in the highest amounts in fall with concentrations of 7.3 x 10(4) Synechococcus cells ml(-1) and 7.2 x 10(3) cyanophage ml(-1). By using primers targeting the g20 gene in PCRs on DNA extracted from PFGE bands, we demonstrated that cyanophages were found in a genomic size range of 26 to 380 kb. The genetic richness of the cyanophage community, determined by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified g20 gene fragments, revealed seasonal shifts in the populations, with one community dominating in spring and summer and a different one dominating in fall. Phylogenetic analysis of the sequences originating from PFGE and DGGE bands grouped the sequences into three groups, all with homology to cyanomyoviruses present in cultures. Our results show that the cyanophage community in Norwegian coastal waters is dynamic and genetically diverse and has a surprisingly wide genomic size range.  相似文献   

9.
Unicellular marine cyanobacteria are abundant in both coastal and oligotrophic environments, where they contribute substantially to primary production. The physiological effect of future increases in atmospheric CO2 concentrations on the marine picocyanobacteria is still poorly known. We studied the physiological changes in marine phycocyanin (PC)-rich and phycoerythrin (PE)-rich Synechococcus strains under different CO2 partial pressures (350, 600 and 800 ppm). The PE strain showed no significant change in growth rate over the experimental CO2 range. A significant increase (25.4%) in carbohydrate was observed at 800 ppm CO2, but no significant change in protein and RNA/DNA ratio was observed in any CO2 treatment. The PC strain showed a significant increase (36.7%) in growth rate at 800 ppm CO2, but no significant change in carbohydrate or protein content was observed over the entire CO2 range. The RNA/DNA ratio increased with increasing CO2 concentration and was positively correlated with growth rate. Cellular red fluorescence and orange fluorescence of the PE strain tended to decline in all CO2 treatments. However, no such decline was observed at higher CO2 treatments in the PC strain. Our results suggest that the PC strain would probably benefit more than the PE strain from future increases in atmospheric CO2 concentrations.  相似文献   

10.
【目的】噬藻体(cyanophages)是特异性侵染蓝藻(cyanobacteria)的病毒,广泛分布于各类水体中,在调节蓝藻种群动态和密度、推动生物地球水生生态系统循环中起着重要作用。本研究的目的在于分离、鉴定噬藻体。【方法】本研究以海洋聚球藻(Synechococcus sp.) PCC 7002为指示宿主,从淡水水样中分离培养一株新型噬藻体Yong-L2-223,对其进行了宿主范围实验、全基因组测序、基因功能注释和系统进化分析。【结果】针对31株供试蓝藻的宿主范围实验,结果除指示藻PCC 7002 [属于聚球藻目(Synechococcales)]外,Yong-L2-223能够感染2株淡水蓝藻,分别是来源于滇池的绿色微囊藻(Microcystis viridis) FACHB-1342 [属于色球藻目(Chroococcales)]和水华束丝藻(Aphanizomenon flos-aquae)FACHB-1209[属于念珠藻目(Nostocales)]。既可在高盐条件下感染海洋蓝藻,又可在低盐条件下感染淡水蓝藻,Yong-L2-223具有广盐性。透射电镜观察表明,Yong-L2...  相似文献   

11.
Certain marine unicellular cyanobacteria of the genus Synechococcus exhibit a unique type of swimming motility characterized by the absence of flagella and of any other obvious organelle of motility. Although the mechanism responsible for this phenomenon remains mysterious, recent advances have included the development of testable models as well as the identification of a cell-surface polypeptide that is required for the generation of thrust. These developments, as well as the future research directions they suggest, are discussed.  相似文献   

12.
Cyanophage SM-2 which infects two unicellular cyanobacteria, Synechococcus elongatus UTEX 563 and Microcystis aeruginosa NRC-1 (Synechococcus sp. NRC-1) UTEX 1937 has a buoyant density of 1.483 g/cm3, a DNA buoyant density of 1.729 g/cm3 and a guanine + cytosine (G+C) content of 69–70%. The protein patterns of cyanophage SM-2 particles showed 11 bands, as determined by polyacrylamide gel electrophoresis, with the bulk of the protein mass concentrated at the 39,000 Mr band. There appear to be no cross-reacting anibodies to whole virus particles of cyanophages SM-1, SM-2 and AS-1. Cyanophage SM-2 requires the presence of cations for viral stability.  相似文献   

13.
Unicellular marine cyanobacteria are ubiquitous in both coastal and oligotrophic regimes. The contribution of these organisms to primary production and nutrient cycling is substantial on a global scale. Natural populations of marine Synechococcus strains include multiple genetic lineages, but the link, if any, between unique phenotypic traits and specific genetic groups is still not understood. We studied the genetic diversity (as determined by the DNA-dependent RNA polymerase rpoC1 gene sequence) of a set of marine Synechococcus isolates that are able to swim. Our results show that these isolates form a monophyletic group. This finding represents the first example of correspondence between a physiological trait and a phylogenetic group in marine Synechococcus. In contrast, the phycourobilin (PUB)/phycoerythrobilin (PEB) pigment ratios of members of the motile clade varied considerably. An isolate obtained from the California Current (strain CC9703) displayed a pigment signature identical to that of nonmotile strain WH7803, which is considered a model for low-PUB/PEB-ratio strains, whereas several motile strains had higher PUB/PEB ratios than strain WH8103, which is considered a model for high-PUB/PEB-ratio strains. These findings indicate that the PUB/PEB pigment ratio is not a useful characteristic for defining phylogenetic groups of marine Synechococcus strains.  相似文献   

14.
15.
The optical properties, i.e., absorption and scattering spectra of ten strains of cyanobacteria from the Baltic Sea and Pomeranian lakes (Aphanizomenon flos-aquae KAC 15, Microcystis aeruginosa CCNP 1101, Anabaena sp. CCNP 1406, Synechocystis salina CCNP 1104, Phormidium sp. CCNP 1317, Nodularia spumigena CCNP 1401, Synechococcus sp. CCNP 1108, Nostoc sp. CCNP 1411, Cyanobacterium sp. CCNP 1105, Pseudanabaena cf. galeata CCNP 1312) grown under low light conditions were investigated. Moreover, the chlorophylls, carotenoids, and phycobilin composition as well as the size structure of chosen cyanobacteria were measured. Studied species revealed high diversity both in optical properties with the absorption spectra similarity index ranging from 0.67 to 0.94 and the pigment composition. The chlorophyll-specific absorption coefficient at 440 nm a ph *(440) varied between 0.017 and 0.065 m2 mg?1. The influence of the package effect was only observed in the case of large filamentous cyanobacteria like N. spumigena or Nostoc sp. Interestingly, the package effect factor Q a *(675) for large-celled Anabaena sp. was 0.92. Besides chlorophyll a, only echinenone, β-carotene, and phycocyanin were present in all analyzed cyanobacteria strains. Zeaxanthin, which is widely used as a marker pigment for cyanobacteria, was absent in the toxic N. spumigena and Anabaena sp., which are the species that occur in the Baltic Sea most frequently causing summer cyanobacterial blooms. The investigation also showed that the sample preservation technique can introduce some major errors within the absorption band affected by the phycocyanin absorption.  相似文献   

16.
The vast majority of cyanophages isolated to date are cyanomyoviruses, a group related to bacteriophage T4. Comparative genome analysis of five cyanomyoviruses, including a newly sequenced cyanophage S-RSM4, revealed a 'core genome' of 64 genes, the majority of which are also found in other T4-like phages. Subsequent comparative genomic hybridization analysis using a pilot microarray showed that a number of 'host' genes are widespread in cyanomyovirus isolates. Furthermore, a hyperplastic region was identified between genes g15–g18 , within a highly conserved structural gene module, which contained a variable number of inserted genes that lacked conservation in gene order. Several of these inserted genes were host-like and included ptoX , gnd , zwf and petE encoding plastoquinol terminal oxidase, 6-phosphogluconate dehydrogenase, glucose 6-phosphate dehydrogenase and plastocyanin respectively. Phylogenetic analyses suggest that these genes were acquired independently of each other, even though they have become localized within the same genomic region. This hyperplastic region contains no detectable sequence features that might be mechanistically involved with the acquisition of host-like genes, but does appear to be a site specifically associated with the acquisition process and may represent a novel facet of the evolution of marine cyanomyoviruses.  相似文献   

17.
Two coastal Synechococcus stains PCC 7002 and CC9311 and one oceanic strain WH8102 were cultured with 4–1000 nM Fe in Aquil medium. Compared with those under iron‐replete conditions, their growth rates were significantly decreased by 59% for WH8102 at 15 nM Fe, by 37% for CC9311 at 15 nM Fe and by 57% for PCC 7002 at 4 nM Fe. Among these three strains, PCC 7002 was the most tolerant to iron limitation while WH8102 was the most sensitive to iron limitation. For each strain under the same iron concentration, the growth rates calculated from the minimal fluorescence yield and cell concentration showed no significant difference. The linear correlation was established between the minimal fluorescence yield and cell concentration although the minimal fluorescence yield per cell varied depending on the strains and iron levels. Under iron‐replete conditions, the minimal fluorescence yield per cell was 100‐fold higher for the phycoerythrin‐lacking strain PCC 7002 than two phycoerythrin‐containing strains WH8102 and CC9311. Under iron‐deplete conditions, it was increased respectively by 128% and 7% for WH8102 and CC9311 but was decreased by 30% for PCC 7002. Furthermore, the minimal fluorescence yield per cell for PCC 7002 and CC9311 showed little difference throughout the light and dark diel cycle. However, it was significantly higher for WH8102 in the daytime than in the dark.  相似文献   

18.
19.
Fifteen strains of naked amoebae were presented with 19 strains of Synechococcus on an agar surface. After 14 days of incubation, each of the 285 combinations yielded one of three responses. 42.1% of combinations showed clearing (digestion) of the Synechococcus (C), 56.5% of combinations showed no clearing of the Synechococcus (N) while 1.4% of combinations showed partial clearing of the Synechococcus (P). In general, the Synechococcus strains showed variability in their susceptibility to digestion by the amoebae and the amoebae showed variability in their ability to digest the Synechococcus strains. There was no evidence for amoebae actively selecting profitable prey and equivalent-sized Synechococcus strains were ingested at the same rate, irrespective of their fate. There was some evidence of 'size-selective' grazing in that amoebae ingested the smaller Synechococcus strains at higher rates than the larger strains. However, there was no correlation between prey size and their ultimate fate. These data suggest that amoebae are not selective with regard to the ingestion of synechococci, but that 'selection' occurs at the digestion stage, i.e. whether the synechococci are digested or not.  相似文献   

20.
In glasshouse tests, sap from plants infected with 15 different isolates of tomato spotted wilt tospovirus (TSWV) from three Australian states was inoculated to nine genotypes of tomato carrying TSWV resistance gene Sw-5 or one of its alleles. A further two resistant tomato genotypes were inoculated with four isolates each. The normal response in resistant genotypes was development of necrotic local lesions in inoculated leaves without systemic invasion, but 22/752 plants also developed systemic reactions in addition to local hypersensitive ones. Using cultures from two of these systemically infected plants and following four cycles of subculture in TSWV resistant tomato plants, two isolates were obtained that gave susceptible type systemic reactions but no necrotic spots in inoculated leaves of resistant tomatoes. When these two isolates, DaWA-1d and ToTAS-1d, were maintained by repeated subculture for 10 successive cycles in Nicotiana glutinosa or a susceptible tomato genotype, they still induced susceptible type systemic reactions when inoculated to resistant tomato plants. They were therefore stable resistance breaking isolates as regards overcoming gene Sw-5. When resistance-breaking isolate DaWA-1ld multiplied together with original isolate DaWA-l in susceptible tomato, it was fully competitive with the original isolate. However, when DaWA-ld and ToTAS-ld were inoculated to TSWV resistant Lycopersicon peruvianum lines PI 128660R and PI 128660S and to TSWV resistant Capsicum chinense lines PI 152225, PI 159236 and AVRDC CO0943, they failed to overcome the resistance, producing only necrotic local lesions without systemic infection. Thus, although the ease of selection, stability and competitive ability of resistance breaking isolates of TSWV is cause for concern, L. peruvianum and C. chinense lines are available which are effective against them. The effectiveness of the resistance to TSWV in nine tomato genotypes was examined in a field experiment. Spread was substantial in the susceptible control genotype infecting 42% of plants. Resistance was ineffective in cv. Bronze Rebel, 26% of plants developing infection. In contrast, it held up well in the other eight resistant genotypes with only 1–3 or no plants of each becoming infected. Accumulated numbers of Thrips tabaci, Frankliniella occidentalis and F. schultzei were closely correlated with TSWV spread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号