首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The density‐dependence in parasitism by the robber fly Mallophora ruficauda (Diptera: Asilidae) on scarab beetle larvae (Coleoptera: Scarabaeidae) populations was studied in the present research. Mallophora ruficauda is a pestiferous species common in the open grasslands of the Pampas region of South America. Adults are predators of insects and larvae are solitary parasitoids of third instar larvae of several species of scarab beetle (Coleoptera: Scarabaeidae). In contrast with most studied host‐parasitoid interactions, host searching by M. ruficauda is carried out by both larvae and adults. Typically, robber fly females lay eggs on tall grasses from where larvae drop to the ground, and attack hosts which are buried in the soil. We carried out our study at two spatial scales close to 14 apiaries located in the provinces of Buenos Aires and Entre Ríos (Argentina). We found that parasitism is density‐independent at the larger spatial scale and inversely density‐dependent at the smaller one. We also found that M. ruficauda selects Cyclocephala signaticollis among several scarab beetle species. Specificity is observed both at large and small spatial scales. We discuss the implications of both host specificity and host searching behaviour on the observed parasitism patterns.  相似文献   

3.
When a fixed number of the hosts, the eggs of the almond moth were exposed experimentally to various numbers of the parasites, Trichogramma japonicum, the following changes were observed with increasing parasite density:
  1. The percentage of parasitism rises and approaches to 100 with gradually diminishing rate.
  2. The number of parasite progeny increases and reaches a maximum, then decreases gradually.
  3. The number of eggs laid per parasite female decreases gradually.
  4. The proportion of hyperparasitized hosts progressively rises. The frequency distribution of parasite eggs in a host is of an intermediate type between random and uniform.
  5. The competition among parasite larvae becomes severe. The progressive rise in mortality, the declining percentage of females in progeny and the emergence of stunted adults at the higher densities are observed.
In connection with both the nature of the parasitizing behaviour of adult and that of the competition among larvae, the nature of the density effect on the parasite population was discussed.  相似文献   

4.
The present paper studies how the female parasite of Kratochviliana sp. visits and attacks its host larvae of Ranunculus leaf mining fly, P. ranunculi at a single leaf visit. The parasite visited its hosts at random on the leaf. The frequency of host visits was independent of the host density and the proportion of hosts survived from the parasite attack, in a leaf and its distribution was expressed as a single straight line. It almost always attacked living hosts at the first host visit after isolated from them for one day but with the rate of about 0.5 at the subsequent visits. In consequence, the relationships of the number of host attacks and killed hosts to the host density drew satulated curves in each. A model of host attack by this parasite at its single leaf visit was formulated by modifyingBakker et al.'s model (1972) basing upon these observations and the attack avoidance by the parasite to already attacked hosts previously reported.  相似文献   

5.
Parasites often produce large numbers of offspring within their hosts. High parasite burdens are thought to be important for parasite transmission, but can also lower host fitness. We studied the protozoan Ophryocystis elektroscirrha, a common parasite of monarch butterflies (Danaus plexippus), to quantify the benefits of high parasite burdens for parasite transmission. This parasite is transmitted vertically when females scatter spores onto eggs and host plant leaves during oviposition; spores can also be transmitted between mating adults. Monarch larvae were experimentally infected and emerging adult females were mated and monitored in individual outdoor field cages. We provided females with fresh host plant material daily and quantified their lifespan and lifetime fecundity. Parasite transmission was measured by counting the numbers of parasite spores transferred to eggs and host plant leaves. We also quantified spores transferred from infected females to their mating partners. Infected monarchs had shorter lifespans and lower lifetime fecundity than uninfected monarchs. Among infected females, those with higher parasite loads transmitted more parasite spores to their eggs and to host plant leaves. There was also a trend for females with greater parasite loads to transmit more spores to their mating partners. These results demonstrate that high parasite loads on infected butterflies confer a strong fitness advantage to the parasite by increasing between-host transmission.  相似文献   

6.
López  Patricia  Rosales  Daniel  Flores  Salvador  Montoya  Pablo 《BioControl》2021,66(5):649-658

Diachasmimorpha longicaudata is a solitary endoparasitoid produced in Mexico for the biological control of Anastrepha fruit flies (Diptera: Tephritidae). We studied the effect of mutual interference among conspecific foraging females to better understand the parasitoid-host dynamics established in the mass-rearing system of this species. We used a constant host availability of 60 third instar larvae of Anastrepha ludens (per oviposition unit type Petri dish) that were individually exposed for 3 h to 1, 2, 4, 8, 10, 14, and 20 D. longicaudata females, seven days old without oviposition experience. The following parameters were evaluated: total number of attacked hosts (i.e., larvae with at least one oviposition scar), number of attacked hosts per female, adult emergence percentage, and female proportion. We also performed a second assay at mass-rearing level, contrasting the current proportion used in mass-rearing (~?two host larvae per female) with the alternative treatments (5 and 7.5 host larvae per female). Results showed that the density of females foraging on a patch exhibits an inverse relationship to the number of hosts attacked by one female. The highest values for adult emergence (73.4%), patch exploitation (94.6%), and female proportion (0.86) were obtained in the treatments with 7.5, 6, and 3 host larvae per female, respectively. Under mass-rearing conditions, we found that a lower density of females per cage (~?five larvae per female) reduced superparasitism levels without affecting adult emergence and the proportion of females. This suggests that the mass-rearing efficiency of D. longicaudata could be improved by reducing the density of foraging females.

  相似文献   

7.
1. In a tritrophic interaction system consisting of plants, herbivores, and their parasitoids, chemicals released from plants after herbivory are known to play important roles for many female parasitoids to find their hosts efficiently. On the plant side, chemical information associated with herbivory can act as an indirect defence by attracting the natural enemies of the host herbivores. 2. However, mated and virgin females of haplodiploid parasitoids might not necessarily respond to such chemical cues in the same way. Since virgin females can produce only sons, they might refrain from searching for hosts to invest eggs until copulation, in order to produce both sexes. 3. Here, we investigated differential host‐searching behaviours shown by mated and virgin females in the solitary parasitoid wasp, Cotesia vestalis, in response to herbivory‐associated chemical information from cruciferous plants infested by their host larvae, Plutella xylostella. 4. Mated females showed a significantly higher flight preference for host‐infested plants over intact plants, while no preference was observed with virgin females. Mated females also showed more intensive antennal searching and ovipositor probing behaviours to leaf squares with wounds caused by hosts than did virgin females. Furthermore, mated females stayed longer in host patches with higher parasitism rates than virgin females. 5. These results indicate that mating status of C. vestalis females clearly influences their host‐searching behaviour in response to herbivory‐associated chemical information and patch exploitation. Female parasitoids seem to forage for hosts depending on their own physiological condition in a tritrophic system.  相似文献   

8.
Abstract.
  • 1 The ability to use flexible decision rules can be an advantage to parasitoid females searching for patchily-distributed hosts. In a series of laboratory experiments the hypothesis that Opius dimidiatus, a solitary parasitoid of the chrysanthemum leafminer (Liriomyza trifolii), adjusts the time she allocates to searching for her larval hosts in response to both patch qualities and experiences with hosts was tested by varying such patch parameters as area, presence of host mines and density of host mines, and by allowing ovipositions and encounters with parasitized hosts.
  • 2 Though leaf area was not a factor, the presence of host mines in a leaf did increase the time a female O.dimidiatus spent searching, over time spent on unmined leaves.
  • 3 When host mine density was increased, females responded by increasing their search period in a density-dependent manner, suggesting a perception of patch quality.
  • 4 Ovipositions in hosts caused females to reset their‘giving-up time’(GUT), or increase search intensity, by adding an amount of search time that increased with each successive oviposition. Conversely, encounters with parasitized (unsuitable) hosts incremented the GUT, but by an amount that decreased with each successive encounter.
  相似文献   

9.
Synopsis The seasonal transmission ofRaphidascaris acus was studied in two small lakes on Manitoulin Island, Ontario. Dragonfly nymphs and caddisfly larvae, acting as paratenic hosts, contained second-stage larvae. Several fishes, including percids and cyprinids, were intermediate hosts with second, third, and fourth-stage larvae in the liver. Yellow perch,Perca flavescens, was the most important of these. Intensities were up to 928 and increased with length and age of the perch; prevalence was 100%. Abundance ofR. acus tended to be higher in females but was not related to condition of the perch. Second-stage larvae were acquired from invertebrates in summer and developed to the fourth stage by November. They became surrounded by fibrous capsules during the next summer but remained alive for at least another year. The longevity of larvae in the intermediate host may ensure survival of the parasite through periods of low host abundance after winterkill. Northern pike,Esox lucius, was the definitive host. Abundance ofR. acus tended to be greater in larger pike but was not related to sex or condition of the fish. The parasite was acquired in late fall. Prevalence was 100% and mean intensities were over 200 in winter and spring, declining to 64–100% and less than 15, respectively, in summer. Mature worms were present from early spring through summer. Seasonality of infection in the definitive host is not attributable to seasonal availability of larvae in perch. Instead it may be controlled by timing of predation on perch and rate of development and longevity of the parasite. Transmission to pike apparently continues in summer. Low intensity may result from low recruitment rate and rapid turnover of the parasite population.  相似文献   

10.
Induced responses of nestling great tits reduce hen flea reproduction   总被引:3,自引:0,他引:3  
The dynamics of host–parasite interactions depend to a large extent on the effect of host responses on parasite fitness. Exposure to parasites may induce behavioural or physiological responses in hosts that may reduce the subsequent survival or reproductive output of the parasite. Neonate hosts may further directly obtain immunologically active substances from their mother, for instance via milk in mammals or egg yolk in birds. However, the relative importance of maternally‐derived and self‐generated responses in inducing parasite resistance is poorly understood, especially in free‐living vertebrates. Here we investigate the complementary effect of experimentally induced maternal and neonate responses in great tit (Parus major) hosts on the reproductive success of their common ectoparasite, the hen flea (Ceratophyllus gallinae). In the laboratory we measured the number of eggs and larvae produced by individual flea females collected from host nests. In addition, the total number of larvae produced by an experimentally set number of flea females in the host's nestbox was assessed under field conditions. There was no indication of maternally‐transferred parasite resistance, since exposing the mother to fleas during the laying period did not affect the reproductive rate of fleas exploiting her offspring early or late in the nestling cycle. Independent of the maternal treatment, exposure of neonates to fleas early in the nestling period reduced the reproductive output of fleas late in the nestling cycle. The effect of the induced nestling response was seasonal, reducing flea reproduction in nests of early‐breeding hosts but not in nests of late‐breeding ones. Larvae production in the nestbox and in the laboratory was positively correlated, but under natural conditions the neonate response did not affect the size of the flea larvae population. Our results indicate induced responses as a means by which neonate avian hosts resist ectoparasites. Other factors, such as the environmental temperature and density‐dependent larval competition, may be more important in determining the size of the future parasite populations.  相似文献   

11.
  • 1 Two hyperparasites, Cheiloneurus paralia (Walker) and Marietta exitiosa Compere, of Microterys flavus (Howard), a primary parasite of the brown soft scale Coccus hesperidum L. have been studied.
  • 2 The area of discovery of the hyperparasites for secondary hosts (scale insects) is greater than that of the primary parasite, indicating higher searching efficiency of the secondary parasites.
  • 3 Cheiloneurus has a higher searching efficiency measured as its area of discovery for discovering both the secondary (scale insect) and the primary (Microterys) hosts, as compared with Marietta.
  • 4 The searching efficiency of Cheiloneurus increased in the presence of its own males.
  • 5 In each species there is a non-linear relationship between the searching efficiency and female density.
  • 6 Cheiloneurus and Marietta present two differing searching strategies. Cheiloneurus tends to exploit as many primary hosts as possible in each secondary host encountered, whereas Marietta, tends to disperse its progeny more regularly by avoiding, to a certain extent, the exploitation of more than one host in each scale insect encountered.
  相似文献   

12.
In this study we examined interactions between two solitary endoparasitoids, the braconid Chelonus insularis and the ichneumonid Campoletis sonorensis, and a multiple-enveloped nucleopolyhedrovirus infecting Spodoptera frugiperda larvae. We examined whether ovipositing females minimize interference by discriminating amongst hosts and examined the outcome of within-host competition between parasitoid species and between the parasitoids and the virus. The egg–larval parasitoid Ch. insularis did not discriminate between virus-contaminated and uncontaminated S. frugiperda eggs; all S. frugiperda larvae that emerged from surface-contaminated eggs died of viral infection prior to parasitoid emergence. The larval parasitoid C. sonorensis also failed to discriminate between healthy and virus-infected S. frugiperda larvae or between larvae unparasitized or parasitized by Ch. insularis. Host larvae parasitized in the egg stage by Ch. insularis were suitable for the development of C. sonorensis when they were multiparasitized by C. sonorensis as first, second, third, and fourth instars, whereas emergence of Ch. insularis was dramatically reduced (by 85 to 100%) in multiparasitized hosts. Nonspecific host mortality was significantly higher in multiparasitized hosts than in singly parasitized hosts. The development time and sex ratio of C. sonorensis in multiparasitized host larvae were unaffected by the presence of Ch. insularis larval stages. Both Ch. insularis parasitized and nonparasitized larvae of the same instar (second, third, or fourth instars) had a similar quantitative response to a challenge of virus inoculum. All host larvae that ingested a lethal dose of virus were unsuitable for Ch. insularis development. In contrast, C. sonorensis did not survive in hosts that ingested a lethal virus dose immediately after parasitism, but parasitoid survival was possible with a 2-day delay between parasitism and viral infection and the percentage of parasitoid emergence increased significantly as the interval between parasitism and viral infection increased. The development time of C. sonorensis was significantly reduced in virus-infected hosts compared to conspecifics that developed in healthy hosts. C. sonorensis females that oviposited in virus-infected hosts did not transmit the virus to healthy hosts that were parasitized subsequently. Field applications of virus for biocontrol of S. frugiperda may lead to substantial mortality of immature parasitoids, although field experiments have not yet demonstrated such an effect.  相似文献   

13.
Xanthopimpla stemmator (Thunberg)(Hymenoptera: Ichneumonidae), a solitary endoparasite of pupae of Old World lepidopteran stalkborers, was recently imported into Texas as a candidate for biological control of New World stalkborers. Information on host acceptability, host suitability and cues responsible for host finding were necessary to gain an insight into parasite/host interactions, because of the absence of a coevolutionary history.Xanthopimpla stemmator females were exposed to laboratory-reared one-to six-day-oldDiatraea saccharalis (F.) pupae. An average of 62% of host pupae were accepted and all ages of pupae were equally acceptable. Host suitability decreased with host age. One- to five-day-old host pupae averaged 31–37% suitability, whereas only 19% of 6-day-old pupae were suitable. Successful parasitization, defined as the product of the proportion accepted and the proportion suitable, decreased from 22–23% for 1-, 2- and 3-day-old pupae to 13% for 6-day-old pupae. Sex ratio (female:male) of the parasite progeny increased with host age. Females comprised 47% of total parasite progeny of 1-day-old and 84% of 6-day-old pupae. The increase in percent females was a result of a similar number of females in all age classes, coupled with a decrease in the number of males from older hosts.Xanthopimpla stemmator superparasitized 61% of acceptedD. saccharalis pupae in the laboratory. On dissection, 73% of host pupae with multiple probe wounds were found to contain parasite eggs or larvae; these hosts contained up to 10 eggs or 7 first-instar larvae. Increased numbers of probes by the parasites were associated with an increase in successful parasitization. Host seeking activity inX. stemmator was stimulated by the presence of larval frass, host odor and movement of host pupae. Results suggest thatX. stemmator is a good candidate for biological control ofD. saccharalis and possibly other factitious stalkborer hosts.  相似文献   

14.
In recent decades, numerous studies have examined factors affecting risk of host nest parasitism in well‐known avian host–parasite systems; however, little attention has been paid to the role of host nest availability. In accordance with other studies, we found that nest visibility, reed density and timing of breeding predicted brood parasitism of Great Reed Warblers Acrocephalus arundinaceus by the Common Cuckoo Cuculus canorus. More interestingly, hosts had a greater chance of escaping brood parasitism if nesting was synchronized. Cuckoo nest searching was governed primarily by nest visibility at high host‐nest density. However, even well‐concealed nests were likely to be parasitized during periods when just a few hosts were laying eggs, suggesting that Cuckoos adjust their nest‐searching strategy in relation to the availability of host nests. Our results demonstrate that host vulnerability to brood parasitism varies temporally and that Cuckoo females are able to optimize their nest‐searching strategy. Moreover, our study indicated that Cuckoos always manage to find at least some nests to parasitize. Thus, in this case, the co‐evolutionary arms race should take place mainly in the form of parasitic egg rejection rather than via frontline pre‐parasitism defence.  相似文献   

15.
Intraspecific host discrimination is widespread in solitary parasitoids whose adult females forage for and evaluate host suitability, whereas interspecific discrimination is less common. In some parasitoid species, mostly Diptera and Coleoptera, the larva performs the last step of host searching. It has been suggested that host discrimination will rarely occur in such host-seeking larvae because their low mobility results in a low host encounter rate. We determined the extent to which the larvae of Aleochara bilineata Gyllenhal (Coleoptera: Staphylinidae), a solitary parasitoid of aggregated Diptera pupae: (1) discriminated between unparasitized hosts and hosts parasitized by conspecifics; (2) used semiochemical cues to discriminate; (3) were influenced by life expectancy, presence of conspecifics and host availability in their host acceptance decision; and the extent to which (4) A. bilineata and A. bipustulata L., a species exploiting the same hosts and occurring sympatrically, showed interspecific host discrimination. A. bilineata larvae were able to discriminate between unparasitized hosts and hosts parasitized by conspecifics in a choice experiment. Such behavior has never previously been described for a coleopteran parasitoid or for a parasitoid species whose larvae perform host searching. Host discrimination in this species was not based on the presence of visual or tactile cues (e.g., entrance holes) but rather on chemical cues. The life expectancy of A. bilineata larvae was significantly shorter in the presence than in absence of hosts, and older larvae had lower parasitism success than young larvae in a 24-h experiment. However, the host acceptance decision of A. bilineata larvae was not influenced by larval age or the presence of conspecifics when the ratio of hosts per larva was greater than or equal to 1. When hosts were scarce, the degree of superparasitism increased significantly with the number of foraging conspecifics and the age of the larvae. Both species of Aleochara showed intra- and interspecific host discrimination in a choice experiment. In contrast to A. bipustulata, A. bilineata larvae more frequently parasitized hosts parasitized by A. bipustulata than those parasitized by conspecifics. We suggest that host discrimination will be frequent in solitary parasitoids with host-seeking larvae when hosts are aggregated. Received: 4 June 1998 / Accepted: 1 September 1998  相似文献   

16.
Nest invasion behavior was studied in six kleptoparasiticSphecodes species at four nesting sites of their respective social and solitary hosts.Sphecodes females preferred to enter unguarded nests. Nest intruding strategies observed in the differentSphecodes species did not depend on whether host species were solitary or social, as long as the nesting cycle of a social host was in the solitary stage (i.e., a single host female). Observation of intranidal behavior revealed thatSphecodes monilicornis females kill all host individuals within an usurped nest. They stay in the nest for several hours, laying eggs in adequately provisioned brood cells. Gas chromatography-mass spectrometry analyses of Dufour's gland secretions revealed species-specific compositions. Qualitative comparisons of whole patterns and quantitative comparisons considering the predominant hydrocarbons common to both host and parasite contradict the hypothesis of chemical mimetism, a mechanism supposed to permit parasite intrusion by qualitatively similar odor bouquets in host and parasite females.  相似文献   

17.
Competition between granulosis virus (GV) and the larval parasite,Sturmiopsis inferens Tns. (Tachinidae: Diptera), was studied in 3rd — and 4th — instar larvae of the sugarcane shoot borer,Chilo infuscatellus Snellen (Crambidae: Lepidoptera), under laboratory conditions. Mortality due to GV infection and parasitization was 76.8 and 47.6 per cent, respectively, when they were tested separately. But when hosts were infected simultaneously with microfeeding of GV and larval parasite, a significantly low parasitism (5.5%) was obtained compared to 74.8 per cent mortality by GV infection. When the larvae were microfed with the GV 6 days after inoculation with parasitic maggots, mortality due to the virus was reduced significantly to 20.5 per cent, but when the maggot inoculation was preceded by virus microfeeding 6 days before, parasitization was unsuccessful, while 75% of larvae died of virus. Results obtained from field — collected larvae also showed that significantly more parasite puparia were recovered from healthy larvae than from virus — infected larvae. Similar differences in parasitization were not obtained in the case of healthy or virus — infected pupae.   相似文献   

18.
The newly described tick Amblyomma vikirri has a narrow host range, being found mainly on the Australian lizard, Egernia stokesii and rarely on another lizard, Tiliqua rugosa. Both hosts are in the family Scincidae. Larvae of A. vikirri were as successful in locating E. stokesii as T. rugosa from a range of release distances between 20 and 120 mm from the host. Over this range the proportion of ticks which successfully located hosts declined and the time taken by successful ticks to locate hosts increased with increasing release distance. From 60 mm, larvae of A. vikirri located four other lizard species from the families Scincidae and Agamidae and two non-living targets as successfully as they did E. stokesii. The only evidence that there was any host specificity in the searching behaviour of larvae of A. vikirri was that A. vikirri larvae spent less time paused and questing when they were searching for E. stokesii than when they were searching for T. rugosa. Aponomma hydrosauri, a tick which commonly infests T. rugosa but not E. stokesii, spent less time paused and questing when it was searching for T. rugosa than when it was searching for E. stokesii. However, the results overall suggest that the narrow host range of A. vikirri cannot be explained by any ability of the larvae of that species to discriminate between their natural host and other reptile species.  相似文献   

19.
The control efficiency and performance ofEncarsia formosa Gahan (Hymenoptera: Aphelinidae) as influenced by the density of its host, the Poinsettia-strain ofBemisia tabaci Gennadius (Homoptera: Aleyrodidae), were investigated by laboratory experiments on Poinsettia (Euphorbia pulcherrrima Willd.).E. formosa showed a Type II functional response to fourth instar larvae ofB. tabaci, the response plateau increasing with temperature. A response model for randomly searching parasitoids incorporating temperature-dependent handling time and temperature-independent search rate was in accordance with the results, and gave an estimated search rate of 0.033 leaf·hour−1 and handling times of 1.54, 2.86 and 20.1 h at 28°C, 22°C and 16°C, respectively. From the latter, the maximum number of hosts that can be parasitized at the three temperatures are 10.4, 5.6 and 0.8 larvae per day (provided the light period is 16 h). The number of hosts with ovipositor punctures was higher than the number of parasitized hosts, especially at 22°C and 28°C, implying thatE. formosa refrains from laying eggs in some of the hosts examined with the ovipositor. About 31% of the punctured larvae did not contain any eggs. Superparasitism occured during the experiment presumably originating from young, inexperienced parasitoids. Individual larvae were occasionally punctured several times, also by non-superparasitizingE. formosa. The resulting distribution of ovipositior holes was random, indicating thatE. formosa on the basis of antennal testing is unable to determine if a larva has previously been examined with the ovipositor. Almost fifty percent of the punctures were not followed by egg-depositions. Besides parasitizationE. formosa used hosts as food source. The number of hostfed larvae was independent of density, but varied with temperature being highest at 28°C (0.12 hostfed larvae per parasitoid per day).  相似文献   

20.
《Biotropica》2017,49(2):229-238
Estimates of biodiversity and its global patterns are affected by parasite richness and specificity. Despite this, parasite communities are largely neglected in biodiversity estimates, especially in the tropics. We studied the parasites of annual killifish of the genus Nothobranchius that inhabit annually desiccating pools across the African savannah and survive the dry period as developmentally arrested embryos. Their discontinuous, non‐overlapping generations make them a unique organism in which to study natural parasite fauna. We investigated the relationship between global (climate and altitude) and local (pool size, vegetation, host density and diversity, and diversity of potential intermediate hosts) environmental factors and the community structure of killifish parasites. We examined metazoan parasites from 21 populations of four host species (Nothobranchius orthonotus, N. furzeri, N. kadleci, and N. pienaari) across a gradient of aridity in Mozambique. Seventeen parasite taxa were recorded, with trematode larval stages (metacercariae) being the most abundant taxa. The parasites recorded were both allogenic (life cycle includes non‐aquatic host; predominantly trematodes) and autogenic (cycling only in aquatic hosts; nematodes). The parasite abundance was highest in climatic regions with intermediate aridity, while parasite diversity was associated with local environmental characteristics and positively correlated with fish species diversity and the amount of aquatic vegetation. Our results suggest that parasite communities of sympatric Nothobranchius species are similar and dominated by the larval stages of generalist parasites. Therefore, Nothobranchius serve as important intermediate or paratenic hosts of parasites, with piscivorous birds and predatory fish being their most likely definitive hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号