首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterotoxin production after cultivation for 7 days in a refrigerator (3–6°C) was indicated for 4 of 20 strains ofYersinia enterocolitica andY. enterocolitica-like bacteria, by use of the infant mouse assay. These four strains were isolated from wild-living small mammals and water. Three of these isolates (Y. kristensenii, serogroups 11 and 28) were enterotoxigenic at 22 and 37°C as well as at refrigeration temperature. The remaining strain (Y. enterocolitica sensu stricto, serogroup 6) produced enterotoxin only at refrigeration temperature and at 22°C. The results indicate thatY. enterocolitica andY. enterocolitica-like bacteria may be capable of causing food intoxication after food storage at refrigeration temperature. A potential clinical significance of theY. enterocolitica enterotoxin in cold-blooded animals such as fish is suggested.  相似文献   

2.

Background  

Yersinia enterocolitica is an enteric pathogen that invades the intestinal mucosa and proliferates within the lymphoid follicles (Peyer's patches). The attachment invasion locus (ail) mediates invasion by Y. enterocolitica and confers an invasive phenotype upon non-invasive E. coli; ail is the primary virulence factor of Y. enterocolitica. The ferrioxamine receptor (foxA) located on the Y. enterocolitica chromosome, together with its transport protein, transports a siderophore specific for ferric ion. Currently, ail is the primary target gene for nucleic acid detection of pathogenic Y. enterocolitica.  相似文献   

3.
Ye X  Wang Y  Lin X 《Current microbiology》2011,63(5):477-483
Salmonella causes the majority of infections in humans and homeothermic animals. This article describes a specific polymerase chain reaction (PCR) method developed for a rapid identification of Salmonella. A gyrB-targeted species-specific primer pair, S-P-for (5′-GGT GGT TTC CGT AAA AGT A-3′) and S-P-rev (5′-GAA TCG CCT GGT TCT TGC-3′), was successfully designed. PCR with all the Salmonella strains produced a 366- bp DNA fragment that was absent from all the non-Salmonella strains tested. The detection limit of the PCR was 0.01 ng with genomic DNA or 3.2 cells per assay. Good specificity was also demonstrated by fecal samples, from which only the gyrB gene of Salmonella was amplified. Using the culture-PCR method, 27 isolates on Salmonella-Shigella (SS) medium were rapidly identified as Salmonella, which was confirmed by the sequencing of the gyrB gene.  相似文献   

4.
The origins of human contamination withYersinia enterocolitica are still unknown. We have investigated the major components of a terrestrial ecosystem (soil, earthworms, field voles, shrews, crops, hares, rabbits, and birds) for the presence ofYersinia. Four hundred fifty-nine strains ofYersinia were isolated. We report the first isolations of typicalY. enterocolitica belonging to classical or new biotypes and ofY. enterocolitica-like organisms (sucrose negative; rhamnose positive; melibiose and rhamnose positive) from soil samples, earthworms, crops, and birds. Sucrose-negativeY. enterocolitica strains and biotypes 1, 2, and 3, usually associated with human nonmesenteric syndromes, are predominant in soil, which can be considered as a reservoir for these biotypes.Y. enterocolitica serogroups O∶3 and O∶9, strains of which are responsible in Europe for human mesenteric syndromes, were not found in this study. The epidemiology ofY. enterocolitica infections is discussed.  相似文献   

5.
Twelve strains ofYersinia enterocolitica were examined for their ability to bind spontaneously to murine leukocytes. Each of eight HeLa cell invasive strains exhibited nonselective binding to peritoneal leukocytes, lymph node leukocytes, and thymocytes, whereas four noninvasive strains lacked binding properties. Like the HeLa cell invasion, the binding ofY. enterocolitica to leukocytes was much less efficient for bacteria grown at 37°C than for bacteria grown at 22°C. The binding properties were not influenced by the virulence plasmid that codes for Vwa+ phenotype. This leukocyte binding test is proposed as a simple assay for invasive properties ofY. enterocolitica.  相似文献   

6.
When crude deoxyribonucleic acid (DNA) preparations by boiling were used for the polymerase chain reaction (PCR) from pathogenic and non-pathogenic Yersinia enterocolitica strains, the amplified products were degraded after their storage at 4 C. The degradation of products was prevented by the addition of ethylenediaminetetraacetate (EDTA) or treatment with proteinase K. These findings indicate that Y. enterocolitica produced heat-stable deoxyribonuclease (DNase). Proteinase K treatment would be recommended to prevent heat-stable DNase contamination in the DNA preparations for PCR from Y. enterocolitica strains.  相似文献   

7.
Yersinia enterocolitica are Gram-negative pathogens and known as important causes of foodborne infections. Rapid and reliable identification of strains of the species Y. enterocolitica within the genus Yersinia and the differentiation of the pathogenic from the non-pathogenic biotypes has become increasingly important. We evaluated here the application of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid species identification and subtyping of Y. enterocolitica. To this end, we developed a reference MS database library including 19 Y. enterocolitica (non-pathogenic biotype 1A and pathogenic biotypes 2 and 4) as well as 24 non-Y. enterocolitica strains, belonging to eleven different other Yersinia spp. The strains provided reproducible and unique mass spectra profiles covering a wide molecular mass range (2000 to 30,000 Da). Species-specific and biotype-specific biomarker protein mass patterns were determined for Y. enterocolitica. The defined biomarker mass patterns (SARAMIS SuperSpectrum™) were validated using 117 strains from various Y. enterocolitica bioserotypes in a blind-test. All strains were correctly identified and for all strains the mass spectrometry-based identification scheme yielded identical results compared to a characterization by a combination of biotyping and serotyping. Our study demonstrates that MALDI-TOF-MS is a reliable and powerful tool for the rapid identification of Y. enterocolitica strains to the species level and allows subtyping of strains to the biotype level.  相似文献   

8.

Background  

Yersinia enterocolitica, an important food- and water-borne enteric pathogen is represented by six biovars viz. 1A, 1B, 2, 3, 4 and 5. Despite the lack of recognized virulence determinants, some biovar 1A strains have been reported to produce disease symptoms resembling that produced by known pathogenic biovars (1B, 2-5). It is therefore imperative to identify determinants that might contribute to the pathogeniCity of Y. enterocolitica biovar 1A strains. Y. enterocolitica invariably produces urease and the role of this enzyme in the virulence of biovar 1B and biovar 4 strains has been reported recently. The objective of this work was to study genetic organization of the urease (ure) gene complex of Y. enterocolitica biovar 1A, biochemical characterization of the urease, and the survival of these strains under acidic conditions in vitro.  相似文献   

9.
Salmonella and Shigella bacteria are food- and waterborne pathogens that are responsible for enteric infections in humans and are still the major cause of morbidity and mortality in the emerging countries. The existence of multiple Salmonella and Shigella serotypes as well as the emergence of strains resistant to antibiotics requires the development of broadly protective therapies. Recently, the needle tip proteins of the type III secretion system of these bacteria were successfully utilized (SipD for Salmonella and IpaD for Shigella) as vaccine immunogens to provide good prophylactic cross-protection in murine models of infections. From these experiments, we have isolated a cross-protective monoclonal antibody directed against a conserved region of both proteins. Its conformational epitope determined by Deep Mutational Scanning is conserved among needle tip proteins of all pathogenic Shigella species and Salmonella serovars, and are well recognized by this antibody. Our study provides the first in vivo experimental evidence of the importance of this common region in the mechanism of virulence of Salmonella and Shigella and opens the way to the development of cross-protective therapeutic agents.  相似文献   

10.
We have developed a rapid procedure for the detection of virulent Yersinia enterocolitica in ground pork by combining a previously described PCR with fluorescent dye technologies. The detection method, known as the fluorogenic 5′ nuclease assay (TaqMan), produces results by measuring the fluorescence produced during PCR amplification, requiring no post-PCR processing. The specificity of the chromosomal yst gene-based assay was tested with 28 bacterial isolates that included 7 pathogenic and 7 nonpathogenic serotypes of Y. enterocolitica, other species of Yersinia (Y. aldovae, Y. pseudotuberculosis, Y. mollaretti, Y. intermedia, Y. bercovieri, Y. ruckeri, Y. frederiksenii, and Y. kristensenii), and other enteric bacteria (Escherichia, Salmonella, Citrobacter, and Flavobacterium). The assay was 100% specific in identifying the pathogenic strains of Y. enterocolitica. The sensitivity of the assay was found to be ≥102 CFU/ml in pure cultures and ≥103 CFU/g in spiked ground pork samples. Results of the assay with food enrichments prespiked with Y. enterocolitica serotypes O:3 and O:9 were comparable to standard culture results. Of the 100 field samples (ground pork) tested, 35 were positive for virulent Y. enterocolitica with both 5′ nuclease assay and conventional virulence tests. After overnight enrichment the entire assay, including DNA extraction, amplification, and detection, could be completed within 5 h.  相似文献   

11.
Yersinia enterocolitica of different serotypes andY. intermedia, Y. frederiksenii, andY. kristensenii, in a total of nine strains, were inoculated intragastrically and intravenously into Swiss mice. The animals were observed daily to check for clinical alterations. Groups of five were killed intermittently at 6-h, and 3-, 6-, 10-, 15-,and 21-day periods or more after the inoculation; possible macroscopic alterations of the organs and tissues were checked. Development of infection at these periods was followed by performing viable bacterial counts on homogenates of selected tissues and the kinetics of infection was established. Clinical and pathologic alterations occurred only in the animals inoculated with the human strains ofY. enterocolitica 0:3 and 0:8, independent of the route of infection. After intragastric inoculation, theY. enterocolitica strains considered to be adapted to man were isolated from all organs and tissues, with the exception of the blood, from which only serotype 0:8 was isolated; otherYersinia strains were found only in the cecal content. After intravenous challenge, all the strains infected the organs and tissues at different times and in varied intensity, with exception of Peyer's patches and mesenteric lymph nodes, which were not infected by all theYersinia strains.  相似文献   

12.
Classical pathogenic strains of Yersinia enterocolitica produce a 17 kDa outer membrane protein, Ail (attachment-invasion locus), which mediates bacterial attachment to some cultures epithelial cell lines and invasion of others. In the present study, hybridomas were developed for the production of monoclonal antibodies (MAbs) against Ail protein of Y. enterocolitica. A set of five stabilized hybridoma cell lines were generated, of which, two MAbs, YEA 302 and YEA 303, exhibited specific reaction to the native Ail protein (17 kDa) present in whole cell lysate of Y. enterocolitica strains beside having reaction with rAil. The other three MAbs, YEA 5, 17 and 32, had some cross reactions with proteins other than Ail. Two out of five MAbs were IgG1, two were IgG2b and one in IgM in nature. MAbs (YEA 302 and YEA 303) did not show any cross-reaction with whole cell lysate of Brucella abortus, Vibrio cholerae, Salmonella typhimurium and Escherichia coli and other species of Enterobacteriaceae including Y. pestis in ELISA and Western blot analysis. The presence of Ail protein among the strains recovered from pork and milk samples was evaluated by these sets of MAbs and the results were compared with the duplex PCR. Collectively, the data suggest that these MAbs may have the potential for their use in the detection of pathogenic Y. enterocolitica reliably, rapidly and at a relatively low cost.  相似文献   

13.
Aspartate transcarbamoylase (ATCase) has been isolated and characterized from 20 different strains ofYersinia enterocolitica andY. enterocolitica-like organisms. A variety of regulatory properties have emerged for the ATCases from the different strains. These regulatory properties may be used as a taxonomic tool to divideY. enterocolitica andY. enterocolitica-like organisms into separate groups. Results are in accord with the recent assignment ofY. enterocolitica andY. enterocolitica-like organisms to four DNA-relatedness groups and four correspondingYersinia species.  相似文献   

14.
Salmonella enterica induces membrane ruffling and genesis of macropinosomes during its interactions with epithelial cells. This is achieved through the type three secretion system‐1, which first mediates bacterial attachment to host cells and then injects bacterial effector proteins to alter host behaviour. Next, Salmonella enters into the targeted cell within an early membrane‐bound compartment that matures into a slow growing, replicative niche called the Salmonella Containing Vacuole (SCV). Alternatively, the pathogen disrupts the membrane of the early compartment and replicate at high rate in the cytosol. Here, we show that the in situ formed macropinosomes, which have been previously postulated to be relevant for the step of Salmonella entry, are key contributors for the formation of the mature intracellular niche of Salmonella. We first clarify the primary mode of type three secretion system‐1 induced Salmonella entry into epithelial cells by combining classical fluorescent microscopy with cutting edge large volume electron microscopy. We observed that Salmonella, similarly to Shigella, enters epithelial cells inside tight vacuoles rather than in large macropinosomes. We next apply this technology to visualise rupturing Salmonella containing compartments, and we use extended time‐lapse microscopy to establish early markers that define which Salmonella will eventually hyper replicate. We show that at later infection stages, SCVs harbouring replicating Salmonella have previously fused with the in situ formed macropinosomes. In contrast, such fusion events could not be observed for hyper‐replicating Salmonella, suggesting that fusion of the Salmonella entry compartment with macropinosomes is the first committed step of SCV formation.  相似文献   

15.
Abstract

Yersinia species are Gram-negative coccobacilli consisting of three pathogenic species, Y. pestis, Y. pseudotuberculosis, Y. enterocolitica, and five nonpathogenic species, Y. kristensenii, Y. frederiksenii, Y. intermedia, Y. rohdei, and Y. aldovae. The former three species are primary pathogens of wild and domestic animals and birds. In the human, Y. pestis causes plague, or black death, while Y. pseudotuberculosis and Y. enterocolitica produce milder forms of disease varying from diarrhea and abdominal pain to more systemic symptoms such as fever, scarlatiniform skin rash, conjunctivitis, erythema nodosum, and lymphadenopathy (1–3). Complications of reactive arthritis, acute uveitis, coronary aneurysms, and acute renal failure are not infrequently reported after the latter two Yersinia infections (4–8). The mechanisms by which these organisms mediate these complicated symptoms are poorly understood. However, the preferential avidity for lymphoid tissues seen in these species and the characteristic histopathological finding of lymphoid hyperplasia mainly seen in mesenteric lymph nodes (9–10) suggest that the stimulation of a large proportion of T lymphocytes may be involved in the pathogenesis of this infection.  相似文献   

16.
Monoclonal antibodies against Yersinia enterocolitica were produced by fusion of NS‐1 mouse myeloma cells with spleen cells of ICR mice immunized with heat‐killed and heat‐killed plus SDS‐mercaptoethanol treated forms of Y. enterocolitica ATCC 27729 alone or mixed with Y. enterocolitica MU. The twenty‐five MAbs obtained from five fusions were divided into nine groups according to their specificities to different bacterial strains and species, as determined by dot blotting. The first five groups of MAbs were specific only to Y. enterocolitica, but did not recognize all of the isolates tested. MAbs in groups 6 and 7 reacted with all isolates of Y. enterocolitica tested but showed cross‐reaction with some Yersinia spp. and Edwardsiella tarda, especially in the case of group 7. MAbs in groups 8 and 9 reacted with all isolates of Y. enterocolitica and Yersinia spp., as well as other Gram‐negative bacteria that belong to the family Enterobacteriaceae. These MAbs recognized Y. enterocolitica antigens with apparent molecular weights ranging from 10 – 43 kDa by Western blotting, and could detect Y. enterocolitica from ~103– 105 colony forming units (CFUs) by dot blotting. The hybridoma clone YE38 was selected for detection of Y. enterocolitica in pork samples which had been artificially‐contaminated by inoculation with Y. enterocolitica ATCC 27729 at concentrations of ~104– 106 CFUs/g and incubation in peptone sorbitol bile broth at 4°C. Samples were collected and applied on a nitrocellulose membrane for dot blotting with trypticase soy and cefsulodin‐Irgasan‐novobiocin agars. After 48 hr of incubation, the detection limit was ~102– 103 CFU/g by dot blotting.  相似文献   

17.
Aims: To fabricate a DNA chip containing random fragments of genomic DNA of Yersinia enterocolitica and to verify its diagnostic ability. Methods and Results: A DNA microarray chip was fabricated using randomly fragmented DNA of Y. enterocolitica. Chips were hybridized with genomic DNA extracted from other Y. enterocolitica strains, other Yersinia spp. and bacteria in different genera. Genomic DNA extracted from Y. enterocolitica showed a significantly higher hybridization rate compared with DNA of other Yersinia spp. or bacterial genera, thereby distinguishing it from other bacteria. Conclusions: A DNA chip containing randomly fragmented genomic DNA from Y. enterocolitica can detect Y. enterocolitica and clearly distinguish it from other Yersinia spp. and bacteria in different genera. Significance and Impact of the Study: A microarray chip containing randomly fragmented genomic DNA of Y. enterocolitica was fabricated without sequence information, and its diagnostic ability to identify Y. enterocolitica was verified.  相似文献   

18.
The speciesYersinia enterocolitica is definedsensu stricto on the bases of biochemical and other phenotypic characteristics. Biochemically,Y. enterocolitica contains five major biotypes: 1 through 4 of Niléhn and of Wauters, and the trehalose-negative, metabolically inactive, socalled hare strains in biotype 5 of Niléhn and of Wauters, and biochemically atypical strains, including urease-negative, Simmons' citrate-positive, and lactose-and raffinose-positive strains.Y. enterocolitica sensu stricto was distinguishable from the newly described speciesYersinia kristensenii by sucrose and Voges-Proskauer reactions (negative inY. kristensenii). These species were previously separated by DNA relatedness.Y. enterocolitica was also separable biochemically and by DNA relatedness from the two newly proposed rhamnose-positive species,Yersinia intermedia andYersinia frederiksenii. Strain 161(=CIP 80-27=ATCC 9610) is proposed as the neotype forY. enterocolitica.  相似文献   

19.
Pathogenic bacteria of the genus Yersinia release in vitro a set of antihost proteins called Yops. Upon infection of cultured epithelial cells, extracellular Yersinia pseudotuberculosis transfers YopE across the host cell plasma membrane. To facilitate the study of this translocation process, we constructed a recombinant Yersinia enterocolitica strain producing YopE fused to a reporter enzyme. As a reporter, we selected the calmodulin-dependent adenylate cyclase of Borde-tella pertussis and we monitored the accumulation of cyclic AMP (cAMP). Since bacteria do not produce calmodulin, cyclase activity marks the presence of hybrid enzyme in the cytoplasmic compartment of the eukaryotic cell. Infection of a monolayer of HeLa cells by the recombinant Y. enterocolitica strain led to a significant increase of cAMP. This phenomenon was dependent not only on the integrity of the Yop secretion pathway but also on the presence of YopB and/or YopD. It also required the presence of the adhesin YadA at the bacterial surface. In contrast, the phenomenon was not affected by cytochalasin D, indicating that internalization of the bacteria themselves was not required for the translocation process. Our results demonstrate that Y. enterocolitica is able to transfer hybrid proteins into eukaryotic cells. This system can be used not only to study the mechanism of YopE translocation but also the fate of the other Yops or even of proteins secreted by other bacterial pathogens.  相似文献   

20.
Aim: To evaluate whole cell protein profiling vis‐à‐vis genotyping to discern phylogenetic relationships among strains of Y. enterocolitica biovar 1A. Methods and Results: Whole cell protein profiling of Y. enterocolitica biovar 1A strains was performed using SDS–PAGE. Twenty‐one distinct protein profile types were obtained among a collection of 81 strains isolated from clinical and nonclinical sources. Whole cell protein profiling exhibited discriminatory index (DI) of 0·80 and clustered the strains into two distinct clonal groups. The clinical and the aquatic serotype O:6,30–6,31 strains were clustered into two discrete subgroups. Conclusions: Whole cell protein profiling displayed sufficient diversity among strains of Y. enterocolitica biovar 1A, and the phylogenetic relationships obtained were in good agreement with those established earlier by genotyping techniques. Significance and impact of the study: Whole cell protein profiling was as discriminatory as some of the genotyping methods and has the potentiality to be used as an adjunct tool to study epidemiology of Y. enterocolitica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号