首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alpe M  Oscarson S 《Carbohydrate research》2003,338(23):2605-2609
Two tetrasaccharides, alpha-D-GlcAp-(1-->3)-alpha-D-Galp-(1-->3)-beta-D-ManpNAc-(1-->4)-beta-D-Glcp and alpha-D-GlcAp-(1-->3)-alpha-D-Glcp-(1-->3)-beta-D-ManpNAc-(1-->4)-beta-D-Glcp (protected form), and a pentasaccharide, alpha-D-Glcp-(1-->4)-alpha-D-GlcAp-(1-->3)-alpha-D-Galp-(1-->3)-beta-D-ManpNAc-(1-->4)-beta-D-Glcp have been synthesised from 2-aminoethyl glycoside trisaccharide acceptors in a linear approach via consecutive alpha-glycosylations. Ethyl thioglycosides were used as glycosyl donors and DMTST in Et(2)O or NIS/TfOH in CH(2)Cl(2) were employed as promoters.  相似文献   

2.
The synthesis of thioglycosyl donors with a disaccharide beta-D-Gal-(1-->3)-D-GalNAc backbone was studied using the glycosylation of a series of suitably protected 3-monohydroxy- and 3,4-dihydroxyderivatives of phenyl 2-azido-2-deoxy-1-thio-alpha- and 1-thio-beta-D-galactopyranosides by galactosyl bromide, fluoride, and trichloroacetimidate. In the reaction with the monohydroxylated glycosyl acceptor, the process of intermolecular transfer of thiophenyl group from the glycosyl acceptor onto the cation formed from the molecule of glycosyl donor dominated. When glycosylating 3,4-diol under the same conditions, the product of the thiophenyl group transfer dominated or the undesired (1-->4), rather than (1-->3)-linked, disaccharide product formed. The aglycone transfer was excluded when 4-nitrophenylthio group was substituted for phenylthio group in the galactosyl acceptor molecule. This led to the target disaccharide, 4-nitrophenyl 2-azido-4,5-O-benzylidene-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-1-thio-beta-D-galactopyranoside, in 57% yield. This disaccharide product bears nonparticipating azide group in position 2 of galactosamine and can hence be used to form alpha-glycoside bond. 2-Azide group and the aglycone nitro group were simultaneously reduced in this product and then trichloroacetylated, which led to the beta-glycosyl donor, 4-trichloroacetamidophenyl 4,6-O-diacetyl-2-deoxy-3-O-(2,3,4,6-tetra- O-acetyl-beta-D-galactopyranosyl)-1-thio-2-trichloroacetamido-beta-D- galactopyranoside, in 62% yield. The resulting glycosyl donor was used in the synthesis of tetrasaccharide asialo-GM1.  相似文献   

3.
Oxazoline mono-, di-, tri- and hexasaccharides, corresponding to the core components of N-linked glycoprotein high mannose glycans, are synthesised as potential glycosyl donors for endohexosaminidase catalysed glycosylation of glycopeptides and glycoprotein remodelling. The crucial beta-D-Manp-(1-->4)-D-GlcpNAc linkage is synthesised via epimerisation of gluco disaccharide substrates by sequential triflation and nucleophilic substitution. Oxazolines are formed directly from the anomeric OPMP protected N-acetyl glucosamine derivatives. Efficient endohexosaminidase catalysed glycosylation of a synthetic beta-D-GlcpNAcAsn glycosyl amino acid is demonstrated with the trisaccharide oxazoline donor.  相似文献   

4.
The use of acetylated phenyl 1-seleno-beta-D-galactofuranoside as a glycosyl donor for the synthesis of protected D-Galf-beta-(1-->3)-alpha-D-Manp as its methyl or ethylthio glycoside has been demonstrated. Activation of the selenoglycoside over a thioglycoside acceptor by NIS/TfOH is extremely selective and gives the ethylthio disaccharide in 91% yield. The parent disaccharide is found as a terminal and branched unit in the lipopeptidophosphoglycan oligosaccharides of the protozoan Trypanosoma cruzi, the causative agent of Chagas' disease.  相似文献   

5.
In order to prepare 3-aminopropyl glycosides of Neu5Ac-alpha-(2-->6')-lactosamine trisaccharide 1, and its N-glycolyl containing analogue Neu5Gc-alpha-(2-->6')-lactosamine 2, a series of lactosamine acceptors with two, three, and four free OH groups in the galactose residue was studied in glycosylations with a conventional sialyl donor phenyl [methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-alpha- and beta-D-galacto-2-nonulopyranosid]onates (3) and a new donor phenyl [methyl 4,7,8,9-tetra-O-acetyl-5-(N-tert-butoxycarbonylacetamido)-3,5-dideoxy-2-thio-D-glycero-alpha- and beta-D-galacto-2-nonulopyranosid]onates (4), respectively. The lactosamine 4',6'-diol acceptor was found to be the most efficient in glycosylation with both 3 and 4, while imide-type donor 4 gave slightly higher yields with all acceptors, and isolation of the reaction products was more convenient. In the trisaccharides, obtained by glycosylation with donor 4, the 5-(N-tert-butoxycarbonylacetamido) moiety in the neuraminic acid could be efficiently transformed into the desired N-glycolyl fragment, indicating that such protected oligosaccharide derivatives are valuable precursors of sialo-oligosaccharides containing N-modified analogues of Neu5Ac.  相似文献   

6.
Alpe M  Oscarson S 《Carbohydrate research》2002,337(19):1715-1722
Two trisaccharides, alpha-D-Galp-(1-->3)-beta-D-ManpNAc-(1-->4)-beta-D-Glcp and alpha-D-Glcp-(1-->3)-beta-D-ManpNAc-(1-->4)-beta-D-Glcp, corresponding to structures from Streptococcus pneumoniae capsular polysaccharides type 9A, L, V and type 9N, respectively, have been synthesised as 2-aminoethyl glycosides and as protected TMSE glycosides. Ethyl thioglycosides were used as glycosyl donors and NIS/TfOH (in CH(2)Cl(2) for beta-linkages) and DMTST (in Et(2)O for alpha-linkages) as promoters in the glycosylations. The beta-ManNAc motif was introduced at the disaccharide level by azide displacement of a 2-O-triflate with beta-D-gluco configuration. The protecting group patterns allow continued syntheses of larger structures.  相似文献   

7.
L-Galactosylated dimeric sialyl Lewis X (SLeX) has been prepared employing a combination of chemical and enzymatic synthetic methods. GDP-L-galactose has been chemically synthesised. Enzymatic transfer of L-galactose onto the acceptor (Sia-alpha2,3-Gal-beta1,4-GlcNAc-beta1,3/6)2-Man-alpha1-OMe was achieved using the human alpha-1,3-fucosyltransferase V.  相似文献   

8.
Kong F 《Carbohydrate research》2007,342(3-4):345-373
Formation of sugar-sugar orthoesters consisting of a fully acylated mono- or disaccharide donor and a partially protected mono- or disaccharide acceptor is regioselective, and rearrangement of the orthoesters via RO-(orthoester)C bond cleavage gives a dioxolenium ion intermediate leading to 1,2-trans glycosidic linkage. The activity order of hydroxyl groups in the partially protected mannose and glucose acceptors is 6-OH>3-OH>2- or 4-OH. The coupling reactions with acylated glycosyl trichloroacetimidates as the donors usually give orthoesters as the intermediates specially when the coupling is carried out at slowed rates, and this is successfully used in regio- and stereoselective syntheses of oligosaccharides. Mannose and rhamnose orthoesters readily undergo O-2-(orthoester)C bond breaking, and this is used for synthesis of alpha-(1-->2)-linked oligosaccharides. (1-->3)-Glucosylation is special since the rearrangement of its sugar orthoester intermediates can occur with either RO-(orthoester)C bond cleavage with formation of the dioxolenium ion leading to 1,2-trans linkage, or C-1-O-1 bond cleavage leading to 1,2-cis linkage, and this is dependent upon the structures of donor and acceptor that compose the orthoester.  相似文献   

9.
This study describes the preparation and the characterization of poly[ N-(2-hydroxypropyl methacrylamide)] hydrogel with bulk-modified saccharidic portion of ganglioside GM 3 (Neu5Ac-alpha2,3-Gal-beta1,4-Glc). The 3'-sialyllactose is a bioactive epitope recognized by many cell surface receptors on viruses, bacteria, and human cells such as growth factor receptors. Acrylated 3'-sialyllactose was synthesized and incorporated into the macromolecular network of hydrogels by free radical cross-linking copolymerization. Fluorescence techniques coupled to confocal laser scanning microscopy was employed to characterize the binding and accessibility of the sialyl group in the polymer network by using a monoclonal antibody against GM 3 and the lectin wheat germ agglutinin. The morphology of the network was examined by scanning electron microscopy and confocal microscopy to image the gel morphology. The water content of sialyllactosyl-HPMA hydrogel compared to unmodified gel was characterized by swelling measurements and thermogravimetry. A preliminary implantation study in rat brain was performed to examine the biofunctionality of the sialyllactosyl hydrogel using an experimental model of Parkinson's disease.  相似文献   

10.
Armed deoxyhexose glycosyl donors are very reactive and sometimes too uncontrollably activated in glycosylation reactions; yields can be thereby reduced, especially when unreactive glycosyl acceptors are involved. In this paper, the behaviour of a range of deoxyhexose trihaloacetimidate (trichloro- and N-phenyl trifluoro-) donors is compared in some selected glycosylations towards biologically relevant targets. The selected N-phenyl trifluoroacetimidates often afforded best results in terms of both donor synthesis and glycosylation yield.  相似文献   

11.
The use of pentenyl and thiophenyl glycosides of N-acetylglucosamine (GlcNAc) as glycosyl donors for the direct preparation of O-glycosides of GlcNAc promoted by N-iodosuccinimide (NIS) and metal triflates in dichloromethane has been investigated. Both glycosyl acceptors 1-octanol and (−)-menthol resulted in good glycosylation yields for both types of donors with pentenyl glycosides being somewhat superior in terms of yield. Carbohydrate-based acceptors were reacted with a benzylated GlcNAc-pentenyl donor but only provided disaccharides in poor to moderate yields. The results show that a variety of metal triflates are capable of acting as an activator for both NIS and the intermediate oxazoline.  相似文献   

12.
tert-Butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside was readily transformed into the disaccharide glycosyl donor, 3,4,6-tri-O-acetyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-alpha/beta-D-glucopyranosyl trichloroacetimidate, and the disaccharide glycosyl acceptor, tert-butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside. A TMSOTf-catalysed coupling of the acceptor with the donor afforded the respective tetrasaccharide derivative, which can be transformed to chitotetraose. tert-Butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-4-O-phenoxyacetyl-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside was converted into donor 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-4-O-phenoxyacetyl-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl trichloroacetimidate. Its coupling with benzyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside, followed by dephenoxyacetylation, gave benzyl 3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl-(1 --> 4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside, whose glycosylation furnished, after replacement of the DMM-group by the acetyl moiety and subsequent deprotection, chitohexaose.  相似文献   

13.
Computational methods have played a key role in elucidating the various three-dimensional structures of oligosaccharides. Such structural information, together with other experimental data, leads to a better understanding of the role of oligosaccharide in various biological processes. The disialoside Neu5Ac-alpha2-->8-Neu5Ac appears as the terminal glycan in glycoproteins and glycolipids, and is known to play an important role in various events of cellular communication. Neurotoxins such as botulinum and tetanus require Neu5Ac-alpha2 --> 8-Neu5Ac for infecting the host. Glycoconjugates containing this disialoside and the enzymes catalyzing their biosynthesis are also regulated during cell growth, development, and differentiation. Unlike other biologically relevant disaccharides that have only two linkage bonds, the alpha2-->8-linked disialoside has four: C2-O, O-C8', C8'-C7', and C7'-C6'. The present report describes the results from nine 1 ns MD simulations of alpha2-->8-linked disialoside (Neu5Ac-alpha2-->8-Neu5Ac); simulations were run using GROMOS96 by explicitly considering the solvent molecules. Conformations around the O-C8' bond are restricted to the +sc/+ap regions due to stereochemical reasons. In contrast, conformations around the C2-O and C8'-C7' bonds were found to be largely unrestricted and all the three staggered regions are accessible. The conformations around the C7'-C6' bond were found to be in either the -sc or the anti region. These results are in excellent agreement with the available NMR and potential energy calculation studies. Overall, the disaccharide is flexible and adopts mainly two ensembles of conformations differing in the conformation around the C7'-C6' bond. The flexibility associated with this disaccharide allows for better optimization of intermolecular contacts while binding to proteins and this may partially compensate for the loss of conformational entropy that may be incurred due to disaccharide's flexibility.  相似文献   

14.
O-Glycosylated amino acids containing the tumor-associated T(Tf)-antigen (beta-D-Gal-(1-->3)-alpha-D-GalNAc) disaccharide unit were conveniently synthesized in seven steps starting from D-galactose via an n-pentenyl glycoside (NPG) building block. Azidonitration of 3,4,6-tri-O-acetyl-D-galactal, followed by nitrate displacement with simultaneous acetate hydrolysis with sodium 4-penten-1-oxide, afforded n-pentenyl 2-deoxy-2-azidogalactoside (3) in near quantitative yield. Subsequent high-yielding transformations resulted in the synthesis of the key glycosyl donor n-pentenyl beta-disaccharide 5 that was employed for the stereospecific preparation of glycosyl amino acids via NIS-promoted glycosylations with serine or threonine acceptors. The surprising utility of the reaction of sodium 4-penten-1-oxide with anomeric nitrates encouraged the detailed exploration of the action of a variety of nucleophiles on anomeric nitrates for the synthesis of useful 2-azido glycosyl donors directly from the 'classic' Lemieux azidonitration product of protected galactals. This expedient synthesis (28% overall yield from 1 to 7a) that makes use of heretofore rarely exploited pentenyl 2'-azidoglycosides, should be a valuable entry in the armamentarium of routes to biologically relevant glycopeptides in both mono- and multivalent forms.  相似文献   

15.
Comparative side-by-side glycosylation studies demonstrated that glycosyl thiocyanates, thioimidates, and thioglycosides provide comparative stereoselectivities in glycosylations. Very high α-stereoselectivity that was previously recorded for glycosyl thiocyanates can be achieved, but only if glycosyl acceptors are equipped with electron-withdrawing acyl substituents. Partially benzylated glycosyl acceptors provided relatively modest stereoselectivity, which was on a par with other common glycosyl donors. Accordingly, thioimidates and thioglycosides showed high stereoselectivity similarly to that of thiocyanates with different classes of acylated primary and secondary glycosyl acceptors.  相似文献   

16.
Zeng Y  Kong F 《Carbohydrate research》2003,338(9):843-849
Regioselective glycosylation with allyl 4,6-O-benzylidene-alpha,beta-D-glucopyranoside or methyl 4,6-O-benzylidene-alpha,beta-D-glucopyranoside as the acceptor was investigated. It was found that the regioselectivity depends upon donor size and anomeric configuration of the acceptor, i.e., with a monosaccharide donor and an alpha-form acceptor, the (1-->3)-linked product was obtained predominantly or exclusively, while with disaccharide or trisaccharide donors and either an alpha or beta form acceptor, the (1-->2)-linked oligosaccharides were the only products.  相似文献   

17.
The L- and E-selectins are leukocyte and endothelial cell surface molecules which mediate leukocyte-endothelial cell adhesion by interacting with carbohydrate ligands. In the present study we find that L-selectin, like E-selectin, can interact with synthetic neoglycoproteins containing Sialyl Le(x) (Neu5Ac alpha 2-3Gal beta 1-4[Fuc alpha 1-3]GlcNAc beta-R), or Sialyl Le(a) (Neu5Ac-alpha 2-3Gal beta 1-3[Fuc alpha 1-4]GlcNAc beta-R). Additionally, both the E-selectin and L-selectin can bind the peripheral lymph node addressin, a high endothelial venule ligand for L-selectin. Despite overlapping interactions, the L- and E-selectins discriminate between their native ligands. The peripheral lymph node addressin is a preferential ligand for L-selectin; and furthermore, L-selectin expressing cells do not interact detectably with the cutaneous lymphocyte antigen, a native glycoprotein ligand for E-selectin found on a subset of lymphocytes associated with the skin.  相似文献   

18.
Enzymatic glycosidation using sugar oxazolines 1-3 having a carboxylate group as glycosyl donors and compounds 4-6 as glycosyl acceptors was performed by employing a chitinase from Bacillus sp. as catalyst. All the glycosidations proceeded with full control in stereochemistry at the anomeric carbon of the donor and regio-selectivity of the acceptor. The N,N'-diacetyl-6'-O-carboxymethylchitobiose oxazoline derivative 1 was effectively glycosidated, under catalysis by the enzyme, with methyl N,N'-diacetyl-beta-chitobioside (4), pent-4-enyl N-acetyl-beta-D-glucosaminide (5), and methyl N-acetyl-beta-D-glucosaminide (6), affording in good yields the corresponding oligosaccharide derivatives having 6-O-carboxymethyl group at the nonreducing GlcNAc residue. The N,N'-diacetyl-6-O-carboxymethylchitobiose oxazoline derivative 2 was subjected to catalysis by the enzyme catalysis; however, no glycosidated products were produced through the reactions with 4, 5, and 6. Glycosidation reactions of the beta-d-glucosyluronic-(1-->4)-N-acetyl-D-glucosamine oxazoline derivative 3 proceeded with each of the glycosyl acceptors, giving rise to the corresponding oligosaccharide derivative having a GlcA residue at their nonreducing termini in good yields.  相似文献   

19.
We are investigating the synthesis of thioanalogues of nodulation factors that will be resistant to degradation by chitinases. To study the influence of our protecting group strategy, the glycosylation of 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside (7) with two trichloroacetimidate glycosyl donors carrying an azido group at C-2 and either benzyl or benzoyl protecting groups on O-3 and O-4 was first attempted under catalysis with BF(3).Et(2)O in toluene. While glycosylation with the benzoylated glycosyl donor gave only a poor yield (27%) of the disaccharide, a similar reaction with the benzylated donor gave the corresponding disaccharide in good yield (77%). Although both products were obtained as anomeric mixtures, the benzylated donor led to improved stereoselectivity in favor of the desired beta-anomer (alpha:beta 3:7). Based on these results, a novel thiotrisaccharide was synthesized via the coupling of 7 with 6-O-acetyl-4-S-(3,4,6-tri-O-acetyl-2-benzyloxycarbonylamino-2-deoxy-beta-D-glucopyranosyl)-2-azido-3-O-benzyl-2-deoxy-4-thio-alpha-D-glucopyranosyl trichloroacetimidate (25) also newly synthesized. After optimization of the reaction conditions, the desired thiotrisaccharide 4-O-[6-O-acetyl-4-S-(3,4,6-tri-O-acetyl-2-benzyloxycarbonylamino-2-deoxy-beta-D-glucopyranosyl)-2-azido-3-O-benzyl-2-deoxy-4-thio-beta-D-glucopyranosyl]-1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside (26beta) was obtained in 57% yield. These conditions led to an anomeric mixture in favor of the desired beta-anomer (alpha:beta 1:4.7) that was separated from the alpha-anomer by normal-phase HPLC on a PrepNova Pack(R) silica gel cartridge. The work described here shows that thiodisaccharide glycosyl donors behave quite differently from the analogous O-disaccharide used previously to synthesize nodulation factors.  相似文献   

20.
N-Phthaloylation of lactosamine gave various glycosyl donors (beta-chloride, beta-trichloroacetimidate) and glycosyl acceptors (3',4'-diol). Coupling of the chloride with a methyl beta-D-glycoside led to the tetrasaccharide fragment, beta-D-Galp-(1----4)-beta-D-GlcpNac-(1----3)-beta-D-Galp-(1----4)- beta-D-GlcpNAcOMe. Acetolysis of the protected tetrasaccharide, followed by treatment with hydrogen chloride, gave a tetrasaccharide chloride which was coupled with the methyl beta-glycoside of lactosamine. A hexasaccharide fragment, [beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)]2-beta-D-Galp-(1----4)-bet a- D-GlcpNAcOMe, was thus obtained by this ("n + 1") method. A more efficient ("n + n") method was applied for the synthesis of an octasaccharide fragment, [beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)]3-beta-D-Galp- (1----4)-beta-D-GlcpNAcOMe (38), where di- and tetra-saccharide intermediates having a 3,4-O-isopropylidene-beta-D-galactopyranosyl nonreducing terminal group and a benzyl beta-D-glycoside group were precursors, either as glycosyl donors (beta-trichloroacetimidates) or glycosyl acceptors (3,4-diols as nonreducing terminal groups). Thus, doubling the length of the repetitive oligosaccharide sequence could be efficiently accomplished at each glycosylation step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号