首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. After a single injection of 40 mg kg-1 of isoprenaline to the carp, lysophospholipids appear in the tissue of the heart ventricle, ethanolamine plasmalogens increase and choline plasmalogens decrease; phosphatidylinositol is lowered in the spongious layer only. 2. Daily administration of 5 mg kg-1 of the drug leads, after 5 doses, to a dramatic decrease of the diphosphatidylglycerol content; during the subsequent 5 and 10 doses a return to normal values occurs. Shifts in plasmalogens are similar to those found after a single high dose. Some other phospholipids change significantly. 3. All changes reveal that the spongious musculature is more sensitive to the drug than the compact one.  相似文献   

2.
Hepatic glutathione (GSH) plays an important role in the detoxification of reactive molecular intermediates. Because of evidence that the intrahepatic turnover of glutathione in the rat may be largely accounted for by efflux from hepatocytes into the general circulation, the quantitation of plasma GSH turnover in vivo could provide a noninvasive index of hepatic glutathione metabolism. We developed a method to estimate plasma glutathione turnover and clearance in the intact, anesthetized rat using a 30-min unprimed, continuous infusion of 35S-labelled GSH. A steady state of free plasma glutathione specific radioactivity was achieved within 10 min, as determined by high-pressure liquid chromatography with fluorometric detection after precolumn derivatization of the plasma samples with monobromobimane. The method was tested after two treatments known to alter hepatic GSH metabolism: 90 min after intraperitoneal injection of 4 mmol/kg buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, and after a 48-h fast. Liver glutathione concentration (mean +/- SEM) was 5.00 +/- 0.53 mumol/g wet weight in control rats. It decreased to 3.10 +/- 0.35 mumol/g wet weight after BSO injection and to 3.36 +/- 0.14 mumol/g wet weight after fasting (both p less than 0.05). Plasma glutathione turnover was 63.0 +/- 7.46 nmol.min-1.100 g-1 body weight in control rats, 35.0 +/- 2.92 nmol.min-1.g-1 body weight in BSO-treated rats, and 41.7 +/- 2.28 nmol.min-1.g-1 body weight after fasting (both p less than 0.05), thus reflecting the hepatic alterations. This approach might prove useful in the noninvasive assessment of liver glutathione status.  相似文献   

3.
E Gout  R Bligny  P Genix  M Tissut  R Douce 《Biochimie》1992,74(9-10):875-882
The effect of glyphosate (N-phosphonomethyl glycine; the active ingredient of Roundup herbicide) on plant cells metabolism was analysed by 31P and 13C NMR using suspension-cultured sycamore (Acer pseudoplatanus L) cells. Cells were compressed in the NMR tube and perfused with an original arrangement enabling a tight control of the circulating nutrient medium. Addition of 1 mM glyphosate to the nutrient medium triggered the accumulation of shikimate (20-30 mumol g-1 cell wet weight within 50 h) and shikimate 3-phosphate (1-1.5 mumol g-1 cell wet weight within 50 h). From in vivo spectra it was demonstrated that these two compounds were accumulated in the cytoplasm where their concentrations reached potentially lethal levels. On the other hand, glyphosate present in the cytoplasmic compartment was extensively metabolized to yield aminomethylphosphonic acid which also accumulated in the cytoplasm. Finally, the results presented in this paper indicate that although the cell growth was stopped by glyphosate the cell respiration rates and the level of energy metabolism intermediates remained unchanged.  相似文献   

4.
Estimates of Na+ pumping capacity were made using Na+-loaded canine iliac arteries. Ouabain-sensitive uptake of 204Tl or 86Rb was used to measure near-maximal pump rates and [3H]ouabain binding to measure the number of pump sites. Compared with Rb+, Tl+ had the higher affinity for the pump and showed better signal-to-noise characteristics. Maximal uptakes were 0.545 mumol . g-1 . min-1 for Rb+ and 0.40 mumol . g-1 . min-1 for Tl+. Specific ouabain binding (Kd: 28.62 +/- 0.58 nM) was inhibited by external K+, Tl+, and Rb+ and a maximal binding of 51.6 pmol/g wet weight translated into 3.2 X 10(13) sites per gram wet weight. Using these values, the maximal values of K+ transported per pump site per minute lie between 7752 and 10562. If each activation of the pump moves 2K+, the turnover rates could lie between 3876 and 5281 per minute.  相似文献   

5.
Two substrains of the epithelial liver cell line C1I, one storing large amounts of glycogen, the other one being very poor in glycogen were used as a model for studying glycogen synthesis. The glycogen content of glycogen-rich cells doubled during the proliferative phase and remained high in plateau phase although glycogen synthase I activity was not significantly altered during growth cycle and was too low to account for the increase in glycogen. However, the activity of the glucose 6-phosphate (Glc6-P)-dependent synthase rose continuously during growth cycle, and intracellular Glc6-P-concentration increased about 10-fold in log phase cells to 0.72 mumol g-1 wet weight. A0.5 of synthase for Glc6-P was 0.79 mM. It was also found that in contrast to the enzyme from normal liver, glycogen phosphorylase a from C1I cells was inhibited by Glc6-P, the apparent Ki being 0.45 mM. It was concluded that glycogen accumulation in C1I cells was due to stimulation of synthase and inhibition of phosphorylase by Glc6-P. Findings from the glycogen-poor cell line which revealed similar specific activities of synthase and phosphorylase but only low Glc6-P (0.056 mumol g-1 wet weight) supported this conclusion. Addition of glucose to starved cells resulted in a transient activation of synthase in both cell lines. Net glycogen synthesis, was, however, only observed in the cells with a high Glc6-P-content. Thus, modulation of synthase and phosphorylase by Glc6-P and not activation/inactivation of the enzymes seems to play a predominant role in glycogen accumulation in this cell line.  相似文献   

6.
ADP is an important regulator of hepatic metabolism. Despite its importance the level of free ADP in the liver remains controversial. Recently, we engineered transgenic mice which express high levels of creatine kinase in liver. The reaction catalyzed by creatine kinase was assumed to be at equilibrium and used to calculate a free ADP level of 0.059 mumol/g wet weight. In this report we test the equilibrium assumption by studying the free ADP level as a function of enzyme activity or substrate content. Over a 5-fold range of creatine kinase activity, from 150-800 mumol/min/g wet weight, there was no change in the free ADP level. The average value of ADP for these mice was 0.061 +/- 0.016 mumol/g wet weight. Similarly, altering hepatic creatine content from 1.6 to 30 mumol/g wet weight had no effect on the calculated total free ADP level. The average value of ADP for the creatine levels was 0.048 +/- 0.015 mumol/g wet weight. Finally, the free ADP level was calculated using the equilibrium with cyclocreatine rather than creatine as substrate. The equilibrium of the reaction with cyclocreatine lies 30 times more toward phosphorylation than does the equilibrium with creatine. A free ADP level of 0.063 +/- 0.031 mumol/g wet weight was calculated using cyclocreatine. This value is not different from that found with creatine. These results show that the equilibrium assumption used to calculate free ADP levels in transgenic mouse liver is valid, and the presence of creatine kinase does not affect ADP levels.  相似文献   

7.
The process of prolonged Mn2+ uptake by the yeast Saccharomyces carlsbergensis in the presence of 100 mM glucose and in the absence of phosphate can be divided into two steps. The first step (0-20 min) of Mn2+ uptake (4.3 mumol/g of wet cells) is characterized by an intense K+ efflux (23.8 mumol/g), synthesis of high molecular weight polyphosphate (HPP) (8.1 mumol/g) and decrease of ATP content (0.06 mumol/g). Simultaneously about 0.6 mumol of glucose is taken up and the level of low molecular weight polyphosphate (LPP) remains practically unchanged. The second step (20-120 min) of Mn2+ uptake (15.6 mumol/g) is characterized by a drop in HPP (16.6 mumol/g) and the synthesis of LPP (19.0 mumol/g). The ATP content decreases by 0.87 mumol/g as compared to the control, while that of K+ increases (5.7 mumol/g). During the first step of Mn2+ uptake the energy of the K+ concentration gradient may be used both for Mn2+ influx (2K+: 1Mn2+) and synthesis of HPP (1P:1.9K+). During the second step the Mn2+ accumulation is apparently driven by HPP conversion into LPP (1:1) and by ATPases serving the Mn2+/H+ exchange.  相似文献   

8.
The purpose of this study was to assess the influence of regular voluntary exercise in pregnant normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats on 1) uteroplacental perfusion and mean arterial pressure in the resting conscious condition and 2) fetal number, fetal weight, and number of fetal resorptions. WKYs and SHRs were randomly assigned to standard cages [CWKY (n = 10); CSHR (n = 6)] or cages with activity wheels [EWKY (n = 7); ESHR (n = 8)]. EWKYs and ESHRs exercised for 12 wk, and then all rats were bred and experiments were conducted on gestational day 17. Resting blood flow (microspheres), heart rate (HR), and mean arterial pressure (Pa) were measured. No significant difference was found in Pa, HR, uterine blood flow (ESHRs 52 +/- 8 ml.min-1.100 g-1; CSHRs 28 +/- 6 ml.min-1.100 g-1), or maternal placental blood flow (ESHRs, 122 +/- 31 ml.min-1.100 g-1; CSHRs 78 +/- 21 ml.min-1.100 g-1) among the groups. Exercise altered the relationship between maternal placental and uterine blood flow and Pa in the SHR; SHRs with lower Pa maintained higher placental and uterine blood flow after training. Before gestation ESHRs ran on average more kilometers per week than EWKYs (43 +/- 3 vs. 34 +/- 4), but during gestation ESHRs averaged fewer kilometers per week than EWKYs (16 +/- 4 vs. 22 +/- 4). Succinate dehydrogenase activity was higher in the white vastus lateralis (1.02 +/- 0.2 mumol cytochrome c reduced.min-1.g wet wt-1) and vastus intermedius (3.1 +/- 0.5 mumol cytochrome c reduced.min-1.g wet wt-1) muscles of ESHRs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Quantitative aspects of de novo pyrimidine biosynthesis in rat hepatocytes were monitored. A reduction of intracellular UTP contents by different concentrations of D-galactosamine led to a dose-dependent increase of 14CO2 incorporation into the sum of all acid-soluble uracil nucleotides. In controls the rate of de novo synthesis which was calculated from the incorporation rate of 14CO2 into the sum of all acid-soluble uracil nucleotides was 0.014 mumol X h-1 X g-1 compared to 0.056 mumol X h-1 X g-1 wet weight of liver in situations of a maximally stimulated de novo synthesis. Incubation of hepatocytes with uridine led to a dose-dependent reduction of 14CO2 incorporation to less than 25% of the amount incorporated in the controls. Alterations of the CTP content had no influence on the 14CO2 incorporation. In the presence of high D-galactosamine concentrations the increase of the total amount of acid-soluble uracil nucleotides exceeded the rate of the de novo synthesis derived from the incorporation of 14CO2 into the sum of the acid-soluble uracil nucleotide pool. It was also greater than the increase of the total amount of intra- and extracellular orotate after acidic hydrolysis--even in the presence of 6-azauridine, which stimulated de novo pyrimidine biosynthesis by itself.  相似文献   

10.
Cerebral vasodilation in hypoxia may involve endothelium-derived relaxing factor-nitric oxide (NO). An inhibitor of NO formation, N omega-nitro-L-arginine (LNA, 100 micrograms/kg i.v.), was given to conscious sheep (n = 6) during normoxia and again in hypocapnic hypoxia (arterial PO2 approximately 38 Torr). Blood samples were obtained from the aorta and sagittal sinus, and cerebral blood flow (CBF) was measured with 15-microns radiolabeled microspheres. During normoxia, LNA elevated (P < 0.05) mean arterial pressure from 82 +/- 3 to 88 +/- 2 (SE) mmHg and cerebral perfusion pressure (CPP) from 72 +/- 3 to 79 +/- 3 mmHg, CBF was unchanged, and cerebral lactate release (CLR) rose temporarily from 0.0 +/- 1.9 to 13.3 +/- 8.7 mumol.min-1 x 100 g-1 (P < 0.05). The glucose-O2 index declined (P < 0.05) from 1.67 +/- 0.16 to 1.03 +/- 0.4 mumol.min-1 x 100 g-1. Hypoxia increased CBF from 59.9 +/- 5.4 to 122.5 +/- 17.5 ml.min-1 x 100 g-1 and the glucose-O2 index from 1.75 +/- 0.43 to 2.49 +/- 0.52 mumol.min-1 x 100 g-1 and decreased brain CO2 output, brain respiratory quotient, and CPP (all P < 0.05), while cerebral O2 uptake, CLR, and CPP were unchanged. LNA given during hypoxia decreased CBF to 77.7 +/- 11.8 ml.min-1 x 100 g-1 and cerebral O2 uptake from 154 +/- 22 to 105.2 +/- 12.4 mumol.min-1 x 100 g-1 and further elevated mean arterial pressure to 98 +/- 2 mmHg (all P < 0.05), CLR was unchanged, and, surprisingly, brain CO2 output and respiratory quotient were reduced dramatically to negative values (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A radioactive assay for the determination of pyruvate dehydrogenase complex activity in muscle tissue has been developed. The assay measures the rate of acetyl-CoA formation from pyruvate in a reaction mixture containing NAD+ and CoASH. The acetyl-CoA is determined as [14C]citrate after condensation with [14C]-oxaloacetate by citrate synthase. The method is specific and sensitive to the picomole range of acetyl-CoA formed. In eleven normal subjects, the active form of pyruvate dehydrogenase (PDCa) in resting human skeletal muscle samples obtained using the needle biopsy technique was 0.44 +/- 0.16 (SD) mumol acetyl-CoA.min-1.g-1 wet wt. Total pyruvate dehydrogenase complex (PDCt) activity was determined after activation by pretreating the muscle homogenate with Ca2+, Mg2+, dichloroacetate, glucose, and hexokinase. The mean value for PDCt was 1.69 +/- 0.32 mumol acetyl-CoA.min-1.g-1 wet wt, n = 11. The precision of the method was determined by analyzing 4-5 samples of the same muscle piece. The coefficient of variation for PDCa was 8% and for PDCt 5%.  相似文献   

12.
Excessive release or administration of beta-mimetic catecholamines may induce cardiomegaly, necrotic lesions and accumulation of connective tissue in the heart of adult homoiotherms. It was examined here whether similar changes can also be observed at different stages of evolution of the cardiovascular system, i.e. in poikilotherms and in homoiotherms during embryonic life.Sensitivity of the poikilothermic hearts (carp, frog, turtle) to isoproterenol (IPRO) was significantly lower than in the homoiotherms. Necrotic lesions, if present, were localized in the inner spongious musculature which has no vascular supply but which exhibits higher activities of enzymes connected with aerobic oxidation. Moreover, the IPRO-induced decrease of the phospholipid content was also significantly more expressed in the spongious layer. IPRO treatment did not influence the total weight of the fish heart but the proportion of the outer compact layer was significantly higher. These changes were accompanied by an increase of collagen, higher water content and an increase of isomyosin with a lower ATPase activity. The response of the poikilothermic heart to IPRO-induced overload thus differs significantly from that in the homoiotherms.The administration of IPRO during embryonic life of homoiotherms (chick) induces serious cardiovascular disturbances, including cardiomegaly and cellular oedema. Necroses of myofibrils, characteristic of IPRO-induced lesions of adults, were, however, rather exceptional. IPRO did not elevate the concentration of85Sr (as a calcium homologue) in the immature myocardium; it seems, therefore, that IPRO-induced changes of the embryonic heart are not necessarily due to an intracellular calcium overload.It may be concluded that the character of catecholamine-induced cardiomyopathy is not uniform and depends strictly on the stage of cardiac development.  相似文献   

13.
环境因子对细基江蓠繁枝变种氮、磷吸收速率的影响   总被引:17,自引:0,他引:17  
实验室条件下,研究了光强、酸碱度、温度、盐度对细基江蓠繁枝变种N、P吸收速率的影响.细基江蓠繁枝变种对N的吸收速率在光强为800~2400μmolphoton  相似文献   

14.
High resolution 31P NMR spectra (103.2 MHz) of oxygenated Catharanthus roseus and Daucus carota cells grown in suspension cultures were obtained using a solenoidal perfusion probe. The spectra showed resonances for various phosphorylated metabolites such as ATP, ADP, NAD(P)(H), nucleoside diphosphoglucose, and sugar phosphates. The relative levels of the phosphorylated metabolites remained constant throughout the growth curve. No resonances for storage compounds such as polyphosphates, pyrophosphate, or phytates were observed. Two resolved resonances for Pi indicated an intracellular pH of 7.3 and 5.7 (or below) for the cytoplasm and vacuoles, respectively. The time course of Pi uptake and storage during growth in fresh culture medium was followed by studying the level of vacuolar Pi with 31P NMR (145.7 MHz). Simultaneously, the level of Pi in the culture medium was followed with radioactive 32P. C. roseus quickly takes up all the Pi from the culture medium (maximum rate 1.7 mumol min-1 g-1 (dry weight of cells]. The Pi is first stored in the vacuoles; subsequently, one part of this pool is used to keep a constant cytoplasmic Pi level while another part is apparently accumulated as an NMR invisible Pi store, probably in another cell organelle. In contrast, D. carota does not accumulate Pi in the vacuoles and consequently it takes up Pi from the medium at a much slower rate (0.05 mumol min-1 g-1 (dry weight of cells].  相似文献   

15.
Rates of urea synthesis were determined in periportal and pericentral regions of the liver lobule in perfused liver from fed, phenobarbital-treated rats by measuring the extra O2 consumed upon infusion of NH4Cl with miniature O2 electrodes and from decreases in NADPH fluorescence detected with micro-light-guides. Urea synthesis by the perfused rat liver supplemented with lactate (5 mM), ornithine (2 mM) and methionine sulfoximine (0.15 mM), an inhibitor of glutamine synthetase, was stimulated by stepwise infusion of NH4Cl at doses ranging from 0.24 mM to 3.0 mM. A good correlation (r = 0.92) between decreases in NADPH fluorescence and urea production was observed when the NH4Cl concentration was increased. Sublobular rates of O2 uptake were determined by placing miniature oxygen electrodes on periportal or pericentral regions of the lobule on the liver surface, stopping the flow and measuring decreases in oxygen tension. From such measurements local rates of O2 uptake were calculated in the presence and absence of NH4Cl and local rates of urea synthesis were calculated from the extra O2 consumed in the presence of NH4Cl and the stoichiometry between O2 uptake and urea formation. Rates of urea synthesis were also estimated from the fractional decrease in NADPH fluorescence, caused by NH4Cl infusion in each region, measured with micro-light-guides and the rate of urea synthesis by the whole organ. When perfusion was in the anterograde direction, maximal rates of urea synthesis, calculated from changes in fluorescence, were 177 +/- 31 mumol g-1 h-1 and 61 +/- 24 mumol g-1 h-1 in periportal and pericentral regions, respectively. When perfusion was in the retrograde direction, however, rates were 76 +/- 23 mumol g-1 h-1 in periportal areas and 152 +/- 19 mumol g-1 h-1 in pericentral regions. During perfusion in the anterograde direction, urea synthesis, calculated by changes in O2 uptake, was 307 +/- 76 mumol g-1 h-1 and 72 +/- 34 mumol g-1 h-1 in periportal and pericentral regions, respectively. When perfusion was in the retrograde direction, urea was synthesized at rates of 54 +/- 17 mumol g-1 h-1 and 387 +/- 99 mumol g-1 h-1 in periportal and pericentral regions, respectively. Thus, maximal rates of urea synthesis were dependent upon the direction of perfusion. In addition, rates of urea synthesis were elevated dramatically in periportal regions when the flow rate per gram liver was increased (e.g. 307 versus 177 mumol g-1 h-1).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Phosphorus-31 nuclear magnetic resonance (NMR) has been used to determine non-invasively absolute concentrations of phosphorylated metabolites in the perfused rat liver. It has been shown that the NMR method does detect cytoplasmic ATP and ADP (ATP:ADP ratio of 15 +/- 3) with no contribution from mitochondrial adenine nucleotides. The concentration of ATP was 7.2 +/- 0.3 mM in the cytosol of well-oxygenated liver, after two hours of perfusion with a Krebs-Ringer buffer. Other phosphorylated metabolites were detected, mainly inorganic phosphate (1.1 mumol/g liver wet weight), phosphorylcholine (1.0 mumol/g wet weight), glycerophosphorylethanolamine (0.34 mumol/g wet weight) and glycerophosphorylcholine (0.30 mumol/g wet weight). The intracellular pH measured from the position of the Pi resonance has a value of 7.2 +/- 0.1. It is likely that the detectable Pi originates from the cytosolic compartment since a pH value of 7.4-7.6 would be expected for the mitochondrial matrix. Natural abundance carbon-13 NMR has also been used to follow the glycogen breakdown in situ by measuring the intensity of the glycogen C-1 resonance in the perfused liver spectrum as a function of the perfusion time. The glycogenolytic process has been studied as a function of the glucose content of the perfusate. Rate of glycogenolysis from 2.7 to 0.16 muEq glycosyl units g wet weight-1 min-1 were found when glucose concentration in the perfusate was varied from 0 to 50 mM. The fate of 90% enriched [2-13C] acetate has been studied in the perfused rat liver by 13C-NMR in order to investigate the mitochondrial metabolism and the interrelations between cytosolic and mitochondrial pools of metabolites. Some compounds of the intermediary metabolism where found to be extensively labelled, e.g. glutamate, glutamine, acetoacetate and beta-hydroxybutyrate. Under our experimental conditions, labelling of glutamate reached a steady-state within 30 min after the onset of perfusion of 20 mM acetate. In addition, the observed incorporation of carbon-13 isotope into glutamine can be linked to the operation of the glutamate-glutamine antiporter and to the high activity of the cytosolic glutamate synthetase. The finding of both active glutaminase and glutamine synthetase activity in the same liver cells is an evidence of the existence of an active glutamine-glutamate futile cycle.  相似文献   

17.
A study has been made of the oxygen uptake, glucose utilization, lactate release and cellular content of adenine nucleotides of isolated sheep ovarian follicles (4-6 min in diameter) maintained in organ culture, and of the effects on these parameters of the addition of human chorionic gonadotrophin (hCG). The mean oxygen consumption of the entire follicles when freshly isolated and of the theca and membrana components was 0-56, 1-08 and 0-05 mumol per milligram wet weight of tissue per hour respectively. About 8 mumol of glucose was taken up and 16 mumol of lactate released per milligram wet weight of follicular tissue per hour during the first 24-h period of culture. This rate reduced by about 30% for each subsequent day of culture, but was significantly increased by the addition of hCG. The mean ATP content of theca and granulosa tissues was 4-6 and 2-8 nmol/mg wet weight of tissue respectively. There was no discernable change in tissue adenine nucleotide content or energy charge ratio during the 3-day culture period, and prolonged exposure to hCG was without effect. Untreated follicles produced both oestrogen and androgens throughout the culture period. The addition of hCG resulted in a transitory stimulation in oestrogen secretion, inhibition of androgen secretion, and a marked and sustained rise in progestin secretion. It is proposed that the increase in glycolytic activity following exposure to hCG may relate to the activation of the granulosa cells coincident with a transference of steroid synthetic capacity from theca interna to membrana granulosa.  相似文献   

18.
The bioenergetic basis by which the Krebs cycle substrate pyruvate increased cardiac contractile function over that observed with the Embden-Meyerhof substrate glucose was investigated in the isovolumic guinea pig heart. Alterations in the content of the high energy phosphate metabolites and the rate of high energy phosphate turnover were measured by 31P NMR. These were correlated to the changes in contractile function and rates of myocardial oxygen consumption. Maximum left ventricular developed pressure (LVDP) and high energy phosphates were observed with 16 mM glucose or 10 mM pyruvate. In hearts perfused with 16 mM glucose, the intracellular phosphocreatine (PCr) concentration was 15.2 +/- 0.6 mM with a PCr/Pi ratio of 10.3 +/- 0.9. The O2 consumption was 5.35 mumol/g wet weight/min, and these hearts exhibited a LVDP of 97 +/- 3.7 mm Hg at a constant paced rate of 200 beats/min. In contrast, when hearts were switched to 10 mM pyruvate, the PCr concentration was 18.3 +/- 0.4 mM, the PCr/Pi ratio was 30.4 +/- 2.2, the O2 consumption was 6.67 mumol/g wet weight/min, and the LDVP increased to 125 +/- 3.3 mm Hg. From NMR saturation transfer experiments, the steady-state flux of ATP synthesis from PCr was 4.9 mumol/s/g of cell water during glucose perfusion and 6.67 mumol/s/g of cell water during pyruvate perfusion. The flux of ATP synthesis from ADP was measured to be 0.99 mumol/s/g of cell water with glucose and calculated to be 1.33 mumol/s/g of cell water with pyruvate. These results suggest that pyruvate quite favorably alters myocardial metabolism in concert with the increased contractile performance. Thus, as a mechanism to augment myocardial performance, pyruvate appears to be unique.  相似文献   

19.
Gluconeogenesis predominates in periportal regions of the liver lobule   总被引:2,自引:0,他引:2  
Rates of gluconeogenesis from lactate were calculated in periportal and pericentral regions of the liver lobule in perfused rat livers from increases in O2 uptake due to lactate. When lactate (0.1-2.0 mM) was infused into livers from fasted rats perfused in either anterograde or the retrograde direction, a good correlation (r = 0.97) between rates of glucose production and extra O2 uptake by the liver was observed as expected. Rates of oxygen uptake were determined subsequently in periportal and pericentral regions of the liver lobule by placing miniature oxygen electrodes on the liver surface and measuring the local change in oxygen concentration when the flow was stopped. Basal rates of oxygen uptake of 142 +/- 11 and 60 +/- 4 mumol X g-1 X h-1 were calculated for periportal and pericentral regions, respectively. Infusion of 2 mM lactate increased oxygen uptake by 71 mumol X g-1 X h-1 in periportal regions and by 29 mumol X g-1 X h-1 in pericentral areas of the liver lobule. Since the stoichiometry between glucose production and extra oxygen uptake is well-established, rates of glucose production in periportal and pericentral regions of the liver lobule were calculated from local changes in rates of oxygen uptake for the first time. Maximal rates of glucose production from lactate (2 mM) were 60 +/- 7 and 25 +/- 4 mumol X g-1 X h-1 in periportal and pericentral zones of the liver lobule, respectively. The lactate concentrations required for half-maximal glucose synthesis were similar (0.4-0.5 mM) in both regions of the liver lobule in the presence or absence of epinephrine (0.1 microM). In the presence of epinephrine, maximal rates of glucose production from lactate were 79 +/- 5 and 59 +/- 3 mumol X g-1 X h-1 in periportal and pericentral regions, respectively. Thus, gluconeogenesis from lactate predominates in periportal areas of the liver lobule during perfusion in the anterograde direction; however, the stimulation by added epinephrine was greatest in pericentral areas. Differences in local rates of glucose synthesis may be due to ATP availability, as a good correlation between basal rates of O2 uptake and rates of gluconeogenesis were observed in both regions of the liver lobule in the presence and absence of epinephrine. In marked contrast, when livers were perfused in the retrograde direction, glucose production was 28 +/- 5 mumol X g-1 X h-1 in periportal areas and 74 +/- 6 mumol X g-1 X h-1 in pericentral regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The dose-dependent effect of ethanol on the hepatic metabolism of the perfused rat liver has been investigated by (a) 31P-NMR spectroscopy for the follow-up of intracellular phosphorylated metabolites and (b) HPLC for compounds released in the effluents. Perfusion of livers from fed rats with ethanol induced an increase in the level of sn-glycerol 3-phosphate and net accumulations of 3.30 +/- 0.33 and 0.69 +/- 0.15 mumol x g-1 wet liver were reached after 20 min, for 70 mM and 0.5 mM ethanol, respectively. sn-Glycerol-3-phosphate accumulation was fully detected by 31P NMR as indicated by comparing quantitations based on NMR and biochemical assays. Ethanol administration up to a concentration of 10 mM induced a dose-dependent decrease in the release of lactate + pyruvate by the liver. Lactate release decreased from 1129 +/- 39 to 674 +/- 84 nmol x min-1 x g-1, while pyruvate decreased from 230 +/- 9 to 6.2 +/- 0.4 nmol x min-1 x g-1, after 20 min of perfusion with 10 mM ethanol. Nevertheless, the flux through 6-phosphofructo-1-kinase, as measured by both the accumulation of sn-glycerol 3-phosphate and release of lactate + pyruvate, was not affected in the early phase of ethanol oxidation. Finally, data obtained from oxygen consumption, the release of acetate and the accumulation of sn-glycerol 3-phosphate do not support the involvement of the microsomal ethanol-oxidizing system in the catalysis of ethanol oxidation, even at high doses of alcohol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号