首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor necrosis factor-alpha (TNF-alpha) is recognized as a principal mediator of a variety of inflammatory conditions. Pentoxifylline (PTX), which can inhibit cellular TNF-alpha synthesis, also attenuates the toxic effect of TNF-alpha. However, the mechanism underlying PTX-induced cytoprotection is unknown. Heme oxygenase 1 (HO-1) is an enzyme which degrades heme into biliverdin, free iron, and carbon monoxide (CO). This enzyme has recently been shown to have anti-inflammatory and cytoprotective effects. In this study, we investigated whether protection by PTX against TNF-alpha-mediated toxicity could be related to its ability to induce HO-1 expression and HO activity in L929 cells. PTX in the range of 0.1-1.0mM significantly induced HO-1 expression and the resulting HO activity. Pre-incubation of L929 cells with either PTX or the HO activator hemin resulted in the protection of the cells against TNF-alpha-mediated toxicity. Zinc protoporphyrin, a specific HO competitive inhibitor, abrogated the protective effect of PTX. Hemoglobin, a scavenger of CO, reversed the protective effect of PTX. A cytoprotection comparable to PTX was observed when the cells were treated with the CO-releasing compound tricarbonyldichlororuthenium(II) dimer. These results suggest that HO-1 expression and the ensuing formation of the HO metabolite CO may be a novel pathway by which PTX protects L929 cells from TNF-alpha-mediated toxicity.  相似文献   

2.
Several analogs based on the lead structure of 1-(4-chlorobenzyl)-2-(pyrrolidin-1-ylmethyl)-1H-benzimidazole (clemizole) were synthesized and evaluated as novel inhibitors of heme oxygenase (HO). Many of the compounds were found to be potent and highly selective for the HO-2 isozyme (constitutive), and had substantially less inhibitory activity on the HO-1 isozyme (inducible). The compounds represent the first report of highly potent and selective inhibitors of HO-2 activity, and complement our suite of selective HO-1 inhibitors. The study has revealed many candidates based on the inhibition of heme oxygenases for potentially useful pharmacological and therapeutic applications.  相似文献   

3.
4.
Heme oxygenase and the kidney   总被引:8,自引:0,他引:8  
Heme plays a significant pathogenic role in several diseases involving the kidney. The cellular content of heme, derived either from the delivery of filtered heme proteins such as hemoglobin and myoglobin, or from the breakdown of ubiquitous intracellular heme proteins, is regulated via the heme oxygenase enzyme system. Heme oxygenases catalyze the rate-limiting step in heme degradation, resulting in the formation of iron, carbon monoxide, and biliverdin, which is subsequently converted to bilirubin by biliverdin reductase. Recent attention has focused on the biological effects of product(s) of this enzymatic reaction, which have important antioxidant, anti-inflammatory, and cytoprotective functions. Three isoforms of heme oxygenase (HO) enzyme have been described: an inducible isoform, HO-1, and two constitutively expressed isoforms, HO-2 and HO-3. Induction of HO-1 occurs as an adaptive and beneficial response to several injurious stimuli, and has been implicated in many clinically relevant disease states including atherosclerosis, transplant rejection, endotoxic shock, hypertension, acute lung injury, acute renal injury, as well as others. This review will focus predominantly on the role of HO-1 in the kidney.  相似文献   

5.
Several lines of evidence suggest that antioxidant processes and (or) endogenous antioxidants inhibit proatherogenic events in the blood vessel wall. Heme oxygenase (HO), which catabolizes heme to biliverdin, carbon monoxide, and catalytic iron, has been shown to have such antioxidative properties. The HO-1 isoform of heme oxygenase is ubiquitous and can be increased several fold by stimuli that induce cellular oxidative stress. Products of the HO reaction have important effects: carbon monoxide is a potent vasodilator, which is thought to play a role in modulation of vascular tone; biliverdin and its by-product bilirubin are potent antioxidants. Although HO induction results in an increase in catalytic free iron release, the enhancement of intracellular ferritin protein through HO-1 has been reported to decrease the cytotoxic effects of iron. Oxidized LDL has been shown to increase HO-1 expression in endothelial and smooth muscle cell cultures, and during atherogenesis. Further evidence of HO-1 expression associated with atherogenesis has been demonstrated in human, murine and rabbit atherosclerotic lesions. Moreover, genetic models of HO deficiency suggest that the actions of HO-1 are important in modulating the severity of atherosclerosis. Recent experiments in gene therapy using the HO gene suggest that interventions aimed at HO in the vessel wall could provide a novel therapeutic approach for the treatment or prevention of atherosclerotic disease.  相似文献   

6.
7.
Hemopexin is a serum, CSF, and neuronal protein that is protective after experimental stroke. Its efficacy in the latter has been linked to increased expression and activity of heme oxygenase (HO)-1, suggesting that it facilitates heme degradation and subsequent release of cytoprotective biliverdin and carbon monoxide. In this study, the effect of hemopexin on the rate of hemin breakdown by CNS cells was investigated in established in vitro models. Equimolar hemopexin decreased hemin breakdown, as assessed by gas chromatography, by 60–75% in primary cultures of murine neurons and glia. Extracellular hemopexin reduced cell accumulation of 55Fe-hemin by over 90%, while increasing hemin export or extraction from membranes by fourfold. This was associated with significant reduction in HO-1 expression and neuroprotection. In a cell-free system, hemin breakdown by recombinant HO-1 was reduced over 80% by hemopexin; in contrast, albumin and two other heme-binding proteins had no effect. Although hemopexin was detected on immunoblots of cortical lysates from adult mice, hemopexin knockout per se did not alter HO activity in cortical cells treated with hemin. These results demonstrate that hemopexin decreases the accumulation and catabolism of exogenous hemin by neural cells. Its beneficial effect in stroke models is unlikely to be mediated by increased production of cytoprotective heme breakdown products.  相似文献   

8.
Several analogues based on the lead structure of azalanstat were synthesized and evaluated as novel inhibitors of heme oxygenase (HO). A number of these compounds, which are structurally distinct from metalloporphyrin HO inhibitors, were found to be selective for the HO-1 isozyme (stress induced), and had substantially less inhibitory activity on HO-2, the constitutive isozyme.  相似文献   

9.
Heme oxygenase (HO) activity in tissue adjacent to an intracerebral hematoma may modulate cellular vulnerability to heme-mediated oxidative injury. Although HO-1 is induced after experimental intracerebral hemorrhage (ICH), the time course of this induction, its effect on tissue HO activity, and its association with oxidative injury markers has not been defined. We therefore quantified HO activity, HO-1 expression, tissue heme content, and protein carbonylation for 8 days after injection of autologous blood into the mouse striatum. Increased striatal HO-1 protein was observed within 24 h, peaked on day 5 at a level that was 10-fold greater than baseline, and returned to baseline by day 8; HO-2 expression was not altered. HO activity increased by only 1.6-fold at its peak on day 5, and had also returned to baseline by day 8. A significant increase in protein carbonylation was observed at 3–5 days, which also was markedly attenuated by 8 days, concomitant with a return of tissue heme to near-normal levels. These results suggest that the increase in HO activity in tissue surrounding an experimental ICH is considerably less than would be predicted based on an analysis of HO-1 expression per se . As HO-1 expression is temporally associated with increased tissue heme and increased protein carbonylation, it may be more useful as a marker of heme-mediated oxidative stress in ICH models, rather than as an index of HO activity.  相似文献   

10.
Heme oxygenase (HO) catalyzes the regiospecific cleavage of the porphyrin ring of heme using reducing equivalents and O2 to produce biliverdin, iron, and CO. Because CO has a cytoprotective effect through the p38-MAPK pathway, HO is a potential therapeutic target in cancer. In fact, inhibition of the HO isoform HO-1 reduces Kaposi sarcoma tumor growth. Imidazole-dioxolane compounds have recently attracted attention because they have been reported to specifically inhibit HO-1, but not HO-2, unlike Cr-containing protoporphyrin IX, a classical inhibitor of HO, that inhibits not only both HO isoforms but also other hemoproteins. The inhibitory mechanism of imidazole-dioxolane compounds, however, has not yet been characterized. Here, we determine the crystal structure of the ternary complex of rat HO-1, heme, and an imidazole-dioxolane compound, 2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-1,3-dioxolane. This compound bound on the distal side of the heme iron, where the imidazole and 4-chlorophenyl groups were bound to the heme iron and the hydrophobic cavity in HO, respectively. Binding of the bulky inhibitor in the narrow distal pocket shifted the distal helix to open the distal site and moved both the heme and the proximal helix. Furthermore, the biochemical characterization revealed that the catalytic reactions of both HO-1 and HO-2 were completely stopped after the formation of verdoheme in the presence of the imidazole-dioxolane compound. This result should be mainly due to the lower reactivity of the inhibitor-bound verdoheme with O2 compared to the reactivity of the inhibitor-bound heme with O2.  相似文献   

11.
12.
Trypanosoma cruzi, the causal agent of Chagas disease, has a complex life cycle and depends on hosts for its nutritional needs. Our group has investigated heme (Fe-protoporphyrin IX) internalization and the effects on parasite growth, following the fate of this porphyrin in the parasite. Here, we show that epimastigotes cultivated with heme yielded the compounds α-meso-hydroxyheme, verdoheme and biliverdin (as determined by HPLC), suggesting an active heme degradation pathway in this parasite. Furthermore, through immunoprecipitation and immunoblotting assays of epimastigote extracts, we observed recognition by an antibody against mammalian HO-1. We also detected the localization of the HO-1-like protein in the parasite using immunocytochemistry, with antibody staining primarily in the cytoplasm. Although HO has not been described in the parasite’s genome, our results offer new insights into heme metabolism in T. cruzi, revealing potential future therapeutic targets.  相似文献   

13.
Heme oxygenase is the rate limiting enzyme in heme degradation to carbon monoxide (CO), iron and bilirubin. The inducible isoform of the protein, heme oxygenase-1 (HO-1), is susceptible to up-regulation by a diverse variety of conditions and agents in mammalian tissue, leading to the common conception that HO-1 is a stress related enzyme. However, as attempts are made to unravel the mechanisms by which HO-1 is induced and as we discover that CO, iron and bilirubin may be important effector molecules, we are learning to appreciate that heme oxygenases may be central to the regulation of many physiological and pathophysiological processes besides their established function in heme catabolism. One such process may be closely linked to nitric oxide (NO). It has been demonstrated that NO and NO donors are capable of inducing HO-1 protein expression, in a mechanism depending on the de novo synthesis of RNA and protein. Thus, it is postulated that NO may serve as a signaling molecule in the modulation of the tissue stress response. This review will highlight the current ideas on the role of CO-heme oxygenase and NO-nitric oxide synthase in cell signaling and discuss how the two systems are interrelated.  相似文献   

14.
X Guo  V Y Shin  C H Cho 《Life sciences》2001,69(25-26):3113-3119
Heme oxygenase (HO) is the rate-limiting enzyme in the catabolism of heme, followed by production of biliverdin, free iron and carbon monoxide (CO). There are three isoforms of HO: HO-1 is highly inducible, whereas HO-2 and HO-3 are constitutively expressed. In addition to heme, a variety of nonheme compounds, including heavy metals, cytokines, endotoxins and heat shock stress are strong inducers of HO-1 expression. Many studies indicated that induction of HO-1 is associated with a protective response due to the removal of free heme, which is shown to be toxic. However, recent studies demonstrated that the expression of HO-1 in response to different inflammatory mediators could contribute in part to the resolution of inflammation and have protective effects on brain, liver, kidney and lung against injuries. These beneficial effects seem to be due to the production of bile pigment biliverdin and bilirubin that is a potent antioxidant, as well as the release of iron and CO. However, there are few studies concerning the relationship between HO-1 and inflammation as well as injury in the gut. Interestingly, a preliminary study implicated that induction of HO-1 expression in a colonic damage model induced by trinitrobenzene sulfonic acid played a critical protective role, indicating that activation of HO-1 could act as a natural defensive mechanism to alleviate inflammation and tissue injury in the gastrointestinal tract.  相似文献   

15.
Phycobiliproteins, light-harvesting proteins in cyanobacteria, red algae, and cryptophytes, contain phycobilin pigments. Phycobilins are synthesized from biliverdin, which is produced by the oxidative cleavage of the heme porphyrin ring catalyzed by heme oxygenase (HO). Two paralogs of ho (ho1 and ho2) have been identified in the genome of the cyanobacterium, Synechocystis sp. PCC 6803. The recombinant proteins of both paralogs (Syn HO-1 and Syn HO-2) possess in vitro heme degradation activity. We have determined the crystal structures of Syn HO-2 in complex with heme (heme-Syn HO-2) and its reduced and NO bound forms. The heme-Syn HO-2 crystal was a nonmerohedral twin, and detwinned diffraction data were used to refine the structure. Although heme-Syn HO-2 shares common folding with other HOs, the C-terminal segment is ordered and turns back to the heme-binding side. Gel-filtration chromatography analysis and molecular packing in the crystal indicate that heme-Syn HO-2 forms a homodimer, in which the C-terminal ordered segments interact with each other. Because Syn HO-2 is a monomer in the apo state, the dimeric interaction may aid in the selection of the reducing partner but likely does not interfere with heme binding. The heme iron is coordinated by a water molecule in the ferric form, but the distal water is absent in the ferrous form. In all of the Syn HO-2 structures, several water molecules form a hydrogen-bond network at the distal hemepocket, which is involved in HO activity. Upon NO binding, the side-chain conformation of Tyr 156 changes. Tyr 156 is located at the hydrophobic cluster, which interrupts the possible H(+) pathway from the molecular surface to the hemepocket. Thus, Tyr 156 may function as a H(+) shuttle by changing conformation.  相似文献   

16.
Oxidative stress and increased oxidation of low-density lipoprotein (oxLDL) through free radical-mediated tissue injury may be important factors in the development of extracranial atherosclerotic lesions. However, the roles of oxidative stress and hypercholesterolemia in intracranial atherosclerosis is less established. The induction of heme oxygenase (HO) is a cellular response to oxidative stress, and inducible HO (HO-1) may protect against oxidized lipids such as those produced by oxidative stress. We investigated the effects of oxLDL on cell and tissue viability, HO-1 and ferritin expression in extracranial and intracranial endothelial cells, and the arteries of cholesterol-induced atherosclerosis (CIA) Japanese quail. We report that cultured microvascular endothelial cells from the brain (QBMEC) and carotid (QCEC) differ in their response to oxidative stress. The QCECs are less responsive than QBMECs to oxidative stress induced by oxLDL, as evident by lower expression of HO-1 mRNA, HO activity, and ferritin levels. Furthermore, the higher levels of catalytic iron, thiobarbituric acid reactive substances, and lactate dehydrogenase released in QCECs indicated that these cells are more susceptible to oxidative stress than QBMECs. We also investigated the relationship between extent of atherosclerotic plaque deposition and the extracranial and intracranial arterial expression of HO-1 in quail. The common carotid and vertebral (extracranial) arteries had higher tissue cholesterol levels (starting at 2 weeks of cholesterol-supplementation) and a greater atherosclerotic plaque score (starting at 4 weeks of cholesterol-supplementation) compared with middle cerebral and basilar (intracranial) arteries, and this may be relevant to the effect of aging on the process of atherogenesis. The extracranial arteries also had early and greater levels of lipid peroxidation and catalytic iron coupled with lower expression of HO-1 protein, HO activity, and ferritin compared to the intracranial vessels. These observations suggest that the extracranial and intracranial arterial walls respond differently to oxidation of lipoproteins, and support the feasibility of increased HO-1 expression as a means of protection against oxidant injury.  相似文献   

17.
Beside classical antioxidative enzymes, the response to hyperoxia might be mediated via regulation of other systems, such as heme oxygenase (HO). Ho-1 gene expression is found to be upregulated by hyperoxia in all groups of mice, while HO-1 protein isoform was increased only in 4 months old male mice. In steady-state conditions ho-1 and ho-2 gene expression remained unchanged irrespective of sex or age, which was not the case with protein level of both isoforms. This study suggests that in lungs of CBA mice the response to oxidative stress may be mediated through the interaction of other systems such as heme oxygenase, primarily via upregulation of ho-1 gene expression in both sexes. Contrary to our previous study in liver of hyperoxia treated mice, current results might imply that at conventional oxygen conditions lungs of female mice with the emphasis on aging females, are better prepared for oxidative stress conditions through the increase of HO-activity.  相似文献   

18.
19.
20.
Recently, unique regions in the rostral ventrolateral medulla (RVLM) have been found to be oxygen sensitive. However, the mechanism of sensing oxygen in these RVLM regions is unknown. Because heme oxygenase (HO) has been shown to be involved in the hypoxic responses of the carotid body and pulmonary artery, the aim of this study was to determine whether HO is present in the RVLM and whether expression of HO is altered by chronic hypoxia. Adult rats were exposed to hypoxia (10% O(2)) or normoxia (21% O(2)) for 10 days, and the mRNA for HO-1 and HO-2 was examined in the RVLM by using RT-PCR. Expression of HO-2 mRNA was seen in the RVLM of both control and hypoxic samples, whereas expression of HO-1 mRNA was only seen in the RVLM of hypoxic samples. HO-2 was immunocytochemically localized in brain sections (40 microm) to the C1 region and pre-B?tzinger complex of the RVLM. Together, these results indicate that HO-2 is present in the RVLM under control conditions and that HO-1 is induced in the RVLM during chronic hypoxia, consistent with a potential role for HO in the oxygen-sensing function of these cardiorespiratory RVLM regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号