首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accidental introduction of Caulerpa taxifolia into the Mediterranean is no longer under dispute. What has eluded researchers until now, is definitive evidence for the original, biogeographical source population. Here we present two independent lines of evidence that support an Australian origin for the Mediterranean populations of C. taxifolia. First, we reanalysed algal rDNA-internal transcribed spacer (rDNA-ITS) sequences, combining previously published sequences from different studies with 22 new sequences. The ITS sequence comparison showed that the Australian sample is the sister group of the Mediterranean-aquarium clade. Second, cloned bacterial 16S rDNA gene sequences were analysed from the associated microflora of C. taxifolia collected from Australia, Tahiti, the Philippines and the Mediterranean. Five bacterial lineages were identified, of which three were dominant. Alpha Proteobacteria were the most abundant and were found in all samples. In contrast, members of the beta Proteobacterial line and Cytophaga-Flexibacter-Bacteroides line (CFB) were mainly associated with Mediterranean and Australian samples. Frequency distributions of the five bacterial lineages were significantly different among biogeographical locations. Phylogenetic analyses of the 54 bacterial sequences derived from the four C. taxifolia individuals resulted in a well-resolved tree with high bootstrap support. The topologies of the beta Proteobacteria and CFB mirror the geographical sources of their algal hosts. Bacterial-algal associations provide an identification tool that may have wide application for the detection of marine invasions.  相似文献   

2.
The population genetic structure of the Australian plant Lambertia orbifolia was investigated for chloroplast DNA (cpDNA) and rDNA based on restriction fragment length polymorphism. Variation was assessed in 14-20 individuals from six populations with probes covering the majority of the chloroplast genome and the whole rRNA gene unit. For cpDNA, eight mutations were detected which were distributed over five haplotypes. Nucleotide diversity in the species was high and the majority of this diversity was distributed between populations with diversity within populations restricted to a single population. There was significant differentiation between the two regions in the species distribution with the Narrikup region being distinguished by a single haplotype that was characterized by six unique mutations. Variation in rDNA was detected with three gene length variants present in most individuals. However, the Narrikup region was characterized by homogenization of the gene unit to a single length variant in all individuals. The divergence of the Narrikup region suggests that the disjunction in the species distribution has been present for a long time and the two regions represent separate evolutionary lineages.  相似文献   

3.
Kang M  Buckley YM  Lowe AJ 《Molecular ecology》2007,16(22):4662-4673
Knowledge of the introduction history of invasive plants informs on theories of invasiveness and assists in the invasives management. For the highly successful invasive shrub Scotch broom, Cytisus scoparius, we analysed a combination of nuclear and chloroplast microsatellites for eight native source regions and eight independent invasion events in four countries across three continents. We found that two exotic Australian populations came from different sources, one of which was derived from multiple native populations, as was an invasive sample from California. An invasive population from New Zealand appeared to be predominantly sourced from a single population, either from the native or exotic ranges. Four invasive populations from Chile were genetically differentiated from the native range samples analysed here and so their source of introduction could not be confirmed, but high levels of differentiation between the Chilean populations suggested a combination of different sources. This extensive global data set of replicated introductions also enabled tests of key theories of invasiveness in relation to genetic diversity. We conclude that invasive populations have similar levels of high genetic diversity to native ranges; levels of admixture may vary across invasive populations so admixture does not appear to have been an essential requirement for invasion; invasive and native populations exhibit similar level of genetic structure indicating similar gene flow dynamics for both types of populations. High levels of diversity and multiple source populations for invasive populations observed here discount founder effects or drift as likely explanations for previously observed seed size differences between ranges. The high levels of genetic diversity, differential and source admixture identified for most exotic populations are likely to limit the ability to source biocontrol agents from the native region of origin of invasive populations.  相似文献   

4.
Over the past century, the spread of the common reed (Phragmites australis) has had a dramatic impact on wetland communities across North America. Although native populations of Phragmites persist, introduced invasive populations have dominated many sites and it is not clear if the two types can interbreed. This study compares patterns of differentiation in 10 microsatellite loci among North American and European Phragmites individuals with results obtained from sequencing of noncoding chloroplast DNA. Three population lineages (native, introduced and Gulf Coast) were previously identified in North America from chloroplast DNA and similar structuring was found in the nuclear genome. Each lineage was distinguished by unique alleles and allele combinations and the introduced lineage was closely related to its hypothesized source population in Europe. Size homoplasy and diagnostic base substitutions distinguishing lineages were evident at several loci, further emphasizing that native, introduced and Gulf Coast North American Phragmites lineages are genetically distinct. Gene flow between lineages was low and invasive introduced populations do not represent a hybrid population type.  相似文献   

5.
Cultivated rice (Oryza sativa) is an AA genome Oryza species that was most likely domesticated from wild populations of O. rufipogon in Asia. O. rufipogon and O. meridionalis are the only AA genome species found within Australia and occur as widespread populations across northern Australia. The chloroplast genome sequence of O. rufipogon from Asia and Australia and O. meridionalis and O. australiensis (an Australian member of the genus very distant from O. sativa) was obtained by massively parallel sequencing and compared with the chloroplast genome sequence of domesticated O. sativa. Oryza australiensis differed in more than 850 sites single nucleotide polymorphism or indel from each of the other samples. The other wild rice species had only around 100 differences relative to cultivated rice. The chloroplast genomes of Australian O. rufipogon and O. meridionalis were closely related with only 32 differences. The Asian O. rufipogon chloroplast genome (with only 68 differences) was closer to O. sativa than the Australian taxa (both with more than 100 differences). The chloroplast sequences emphasize the genetic distinctness of the Australian populations and their potential as a source of novel rice germplasm. The Australian O. rufipogon may be a perennial form of O. meridionalis.  相似文献   

6.

Background and Aims

Incongruence between chloroplast and nuclear DNA phylogenies, and single additive nucleotide positions in internal transcribed spacer (ITS) sequences of polyploid Australian/New Zealand (NZ) Lepidium species have been used to suggest a bicontinental hybrid origin. This pattern was explained by two trans-oceanic dispersals of Lepidium species from California and Africa and subsequent hybridization followed by homogenization of the ribosomal DNA sequence either to the Californian (C-clade) or to the African ITS-type (A-clade) in two different ITS-lineages of Australian/NZ Lepidium polyploids.

Methods

Genomic in situ hybridization (GISH) was used to unravel the genomic origin of polyploid Australian/NZ Lepidium species. Fluorescence in situ hybridization (FISH) with ribosomal DNA (rDNA) probes was applied to test the purported ITS evolution, and to facilitate chromosome counting in high-numbered polyploids.

Key Results

In Australian/NZ A-clade Lepidium polyploids, GISH identified African and Australian/NZ C-clade species as putative ancestral genomes. Neither the African nor the Californian genome were detected in Australian/NZ C-clade species and the Californian genome was not detected in Australian/NZ A-clade species. Five of the eight polyploid species (from 7x to 11x) displayed a diploid-like set of rDNA loci. Even the undecaploid species Lepidium muelleriferdinandi (2n = 11x = 88) showed only one pair of each rDNA repeat. In A-clade allopolyploids, in situ rDNA localization combined with GISH corroborated the presence of the African ITS-type.

Conclusions

The nuclear genomes of African and Australian/NZ C-clade species were detected by GISH in allopolyploid Australian/NZ Lepidium species of the A-clade, supporting their hybrid origin. The presumed hybrid origin of Australian/NZ C-clade taxa could not be confirmed. Hence, it is assumed that Californian ancestral taxa experienced rapid radiation in Australia/NZ into extant C-clade polyploid taxa followed by hybridization with African species. As a result, A-clade allopolyploid Lepidium species share the Californian chloroplast type and the African ITS-type with the C-clade Australian/NZ polyploid and African diploid species, respectively.Key words: Lepidium, Brassicaceae, FISH, GISH, hybridization, polyploidy, long-distance dispersal, ITS, rDNA, Australia, New Zealand  相似文献   

7.
In the thousands of years of rice domestication in Asia, many useful genes have been lost from the gene pool. Wild rice is a key source of diversity for domesticated rice. Genome sequencing has suggested that the wild rice populations in northern Australia may include novel taxa, within the AA genome group of close (interfertile) wild relatives of domesticated rice that have evolved independently due to geographic separation and been isolated from the loss of diversity associated with gene flow from the large populations of domesticated rice in Asia. Australian wild rice was collected from 27 sites from Townsville to the northern tip of Cape York. Whole chloroplast genome sequences and 4,555 nuclear gene sequences (more than 8 Mbp) were used to explore genetic relationships between these populations and other wild and domesticated rices. Analysis of the chloroplast and nuclear data showed very clear evidence of distinctness from other AA genome Oryza species with significant divergence between Australian populations. Phylogenetic analysis suggested the Australian populations represent the earliest‐branching AA genome lineages and may be critical resources for global rice food security. Nuclear genome analysis demonstrated that the diverse O. meridionalis populations were sister to all other AA genome taxa while the Australian O. rufipogon‐like populations were associated with the clade that included domesticated rice. Populations of apparent hybrids between the taxa were also identified suggesting ongoing dynamic evolution of wild rice in Australia. These introgressions model events similar to those likely to have been involved in the domestication of rice.  相似文献   

8.
We examined the species groups relationships of the freshwater snail genus Austropeplea using mitochondrial, nuclear and morphological markers in addition to traditional methods of shell shape analysis. Based primarily on the results of a combined molecular and morphological analysis, samples of the nominal species A. tomentosa form distinct lineages. The New Zealand populations of A. tomentosa are a very distinct lineage from any of the Australian populations attributed to A. tomentosa. Furthermore, within the Australian group, three lineages, south Australia, Tasmania and eastern Australia, appear to have undergone recent and/or rapid speciation events. Samples assigned to A. lessoni were resolved as two distinct lineages, representing the eastern and northern Australian populations. Kutikina hispida was resolved within the Australian A. tomentosa clade. Molecular results for A. viridis suggests that it is also composed of at least two distinct lineages that could be treated as species. Incongruence observed between the single mitochondrial, nuclear and morphological topologies highlight the importance of using a number of different datasets in the delimitation of species-group taxa.  相似文献   

9.
Restriction site variation in the nuclear 18S–25S ribosomal RNA genes (rDNA) was analyzed hierarchically in a species complex in the fern genusPolystichum. Two distinct rDNA repeat types were present in all individuals ofPolystichum examined. No variation was detected among individuals within a population ofP. munitum, among populations ofP. munitum orP. imbricans, or among the six diploid species ofPolystichum from North America, including the circumborealP. lonchitis. The identity of rDNA repeats across all six North American species ofPolystichum may reflect an overall similarity of the nuclear genomes of these species, an observation supported by isozyme data as well. However, this nuclear similarity contrasts sharply with the highly divergent chloroplast genomes of these six species. The conservative nature of the rDNA inPolystichum also is in contrast to the much more variable rDNAs of most angiosperms investigated. Perhaps the tempo and mode of evolution of rDNA in ferns differ from those of angiosperms; however, the data base for fern rDNA is very small. Furthermore, the number of repeat types per individual is consistent with a diploid, rather than polyploid, condition despite the high chromosome number (n = 41) of these plants, although homogenization of multiple, divergent rRNA genes cannot be disproven.  相似文献   

10.
To date, species identification of lichen photobionts has been performed principally on the basis of microscopic examinations and molecular data from nuclear-encoded genes. In plants, the chloroplast genome has been more readily exploited than the nuclear genome for systematic investigations. At the present time, very little information is available about the chloroplast genome of lichen-forming algae. For this reason, we have sequenced a portion of the gene encoding for the chloroplast large sub-unit rRNA (LSU rDNA) as a new molecular marker. Sequencing of the chloroplast LSU rDNAs revealed the existence of an unusual diversity of group I introns (a total of 31) within 15 analyzed Trebouxia species. The number, sequence and insertion site of these introns were very different among species, contributing to their recognition. A relatively large intron-free portion of the chloroplast LSU rDNA and part of the nuclear ribosomal cistron (18S–5.8S–26S) between the nuclear internal transcribed spacers (nrITS) were subjected to phylogenetic analyses. The obtained results indicate that data combination from both nuclear and chloroplast sequences can improve phylogenetic accuracy. Herein, we propose the suitability of both intronic and exonic sequences of the chloroplast LSU rDNA for species recognition, and an exonic sequence spanning from position 879 to 1837 in the Escherichia coli 23S rDNA for phylogenetic analyses of Trebouxia phycobionts.  相似文献   

11.
Herbarium accession data offer a useful historical botanical perspective and have been used to track the spread of plant invasions through time and space. Nevertheless, few studies have utilised this resource for genetic analysis to reconstruct a more complete picture of historical invasion dynamics, including the occurrence of separate introduction events. In this study, we combined nuclear and chloroplast microsatellite analyses of contemporary and historical collections of Senecio madagascariensis, a globally invasive weed first introduced to Australia c. 1918 from its native South Africa. Analysis of nuclear microsatellites, together with temporal spread data and simulations of herbarium voucher sampling, revealed distinct introductions to south-eastern Australia and mid-eastern Australia. Genetic diversity of the south-eastern invasive population was lower than in the native range, but higher than in the mid-eastern invasion. In the invasive range, despite its low resolution, our chloroplast microsatellite data revealed the occurrence of new haplotypes over time, probably as the result of subsequent introduction(s) to Australia from the native range during the latter half of the 20th century. Our work demonstrates how molecular studies of contemporary and historical field collections can be combined to reconstruct a more complete picture of the invasion history of introduced taxa. Further, our study indicates that a survey of contemporary samples only (as undertaken for the majority of invasive species studies) would be insufficient to identify potential source populations and occurrence of multiple introductions.  相似文献   

12.
Fragmentation of natural populations can have negative effects at the genetic level, thus threatening their evolutionary potential. Many of the negative genetic impacts of population fragmentation can be ameliorated by gene flow and it has been suggested that in wind-pollinated tree species, high or even increased levels of gene flow are a feature of fragmented populations, although several studies have disputed this. We have used a combination of nuclear microsatellites and allele-specific PCR (AS-PCR) analysis of chloroplast single nucleotide polymorphisms (SNPs) to examine the levels and patterns of genetic diversity and population differentiation in fragmented populations of juniper (Juniperus communis) in Ireland and inform conservation programs for the species. Significant population differentiation was found for both chloroplast and nuclear markers, indicating restricted gene flow, particularly over larger geographic scales. For conservation purposes, the existence of genetically distinct clusters and geographically localised chloroplast haplotypes suggests that the concept of provenance should be taken into account when formulating augmentation or reintroduction strategies. Furthermore, the potential lack of seed dispersal and seedling establishment means that ex-situ approaches to seed and seedling management may have to be considered.  相似文献   

13.
A 3-primer PCR system was developed to discriminate invasive zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussel. The system is based on: 1) universal primers that amplifies a region of the nuclear 28s rDNA gene from both species and 2) a species-specific primer complementary to either zebra or quagga mussel. The species-specific primers bind to sequences between the binding sites for the universal primers resulting in the amplification of two products from the target species and one product from the nontarget species. Therefore, nontarget products are positive amplification controls. The 3-primer system accurately discriminated zebra and quagga mussels from seven geographically distinct populations.  相似文献   

14.
Pelagophycus porra (Leman) Setchell has a narrow distribution confined to deep water from the Channel Islands off the southern California coast to central Baja California, Mexico. Distinct morphotypes are consistently correlated with distinctive habitats, that is, windward exposures characterized by strong water motion and rocky substrates, and sheltered areas with soft substrates found on the lee sides of the islands. We tested the hypothesis that morphologically and ecologically distinct forms reflect genetically distinct stands. Individuals representing populations from three islands and the mainland were compared using RFLP analyses of the nuclear rDNA internal transcribed spacers (ITS1 and ITS2), chloroplast trn L (UAA) intron sequences, and random amplified polymorphic DNA (RAPDs). No variation was found in a survey of 20 restriction sites of ITS1 (ca. 320 base pair [bp]) and ITS2 (ca. 360 bp) among individuals from six populations. Likewise, comparisons of trn L intron (241 bp) sequences among nine individuals from seven populations were identical with the exception of a CATAGT insert in two adjacent stands. A RAPD analysis of 24 individuals from nine populations (4 windward and 5 leeward) using 16 primers generated 166 bands. Thirty-eight percent of the bands did not vary, 16% were unique to a given individual, and 46% were variable. Neighbor joining analysis produced a well-resolved tree with moderately high bootstrap support in which windward and leeward populations were easily distinguished. The lack of divergence in both the fast evolving nuclear rDNA-ITS and the chloroplast trn L intron does not support the morphotypes as different species. However, the compartmentalized differentiation shown in the RAPD data clearly points to isolation. This, and previous ecological studies that demonstrate habitat specificity suggest that leeward stands probably comprise a species in statu nascendi.  相似文献   

15.
Besnard G  Henry P  Wille L  Cooke D  Chapuis E 《Heredity》2007,99(6):608-619
The olive tree (Olea europaea) has successfully invaded several regions in Australia and Pacific islands. Two olive subspecies (subspp. europaea and cuspidata) were first introduced in these areas during the nineteenth century. In the present study, we determine the origin of invasive olives and investigate the importance of historical effects on the genetic diversity of populations. Four invasive populations from Australia and Hawaii were characterized using eight nuclear DNA microsatellites, plastid DNA markers as well as ITS-1 sequences. Based on these data, their genetic similarity with native populations was investigated, and it was determined that East Australian and Hawaiian populations (subsp. cuspidata) have originated from southern Africa while South Australian populations (subsp. europaea) have mostly derived from western or central Mediterranean cultivars. Invasive populations of subsp. cuspidata showed significant loss of genetic diversity in comparison to a putative source population, and a recent bottleneck was evidenced in Hawaii. Conversely, invasive populations of subsp. europaea did not display significant loss of genetic diversity in comparison to a native Mediterranean population. Different histories of invasion were inferred for these two taxa with multiple cultivars introduced restoring gene diversity for europaea and a single successful founder event and sequential introductions to East Australia and then Hawaii for cuspidata. Furthermore, one hybrid (cuspidata x europaea) was identified in East Australia. The importance of hybridizations in the future evolution of the olive invasiveness remains to be investigated.  相似文献   

16.
Nemeth  S.  Mai  T.T.  Zechman  F.W. 《Journal of phycology》2000,36(S3):51-52
Phylogenetic hypotheses for the pantropical marine green algal genus, Caulerpa , were inferred based on analyses of nuclear-encoded rDNA internal transcribed spacer (ITS) sequences. Results of these analyses were used to assess the correspondence between rDNA phylogeny and traditional sectional taxonomy, to identify synapomorphic morphological characters (including assimilator morphology and chloroplast ultrastructure), and to examine marine biogeographic hypotheses for the genus. Ribosomal DNA ITS sequences were aligned for thirty-three species and intraspecific taxa of Caulerpa. Results indicate limited correspondence between phylogeny and sectional taxonomy for the genus, (e.g., the sections Filicoideae and Sedoideae were not monophyletic). In contrast, chloroplast morphology could be mapped to the tree topology with limited homoplasy. Pantropical isolates of the filicoidean species, Caulerpa sertularioides and Caulerpa mexicana each formed monophyletic groups. Caulerpa reyesii was included as a derived taxon within the Caulerpa taxifolia clade, suggesting that these species were conspecific and affirmed the lack of correspondence between phylogeny and assimilator morphology. Isolates and various intraspecific taxa of Caulerpa racemosa did not form a monophyletic group. Instead, these taxa formed a heterogeneous assemblage with other sedoidean and filicoidean taxa. Within the C. sertularioides clade, Caribbean and Atlantic isolates formed a basal paraphyletic group, whereas eastern and western Pacific isolates formed a more derived monophyletic group. Therefore, these results are not consistent with an Indo-West Pacific origin of this species.  相似文献   

17.
External morphological differences were found between Tasmanian and mainland Australian specimens of what was previously considered a single species, the Redlined Geometrid, Crypsiphona ocultaria (Donovan). Examination of genitalia showed constant differences, suggesting that Tasmanian and mainland Australian populations represent distinct species. This hypothesis was tested using DNA sequences from the mitochondrial cytochrome oxidase subunit I (COI) gene and nuclear elongation factor 1-alpha (EF-1α) gene. Tasmanian Crypsiphona Meyrick populations were found to represent a distinct species, described here as C. tasmanica sp. nov. The results show that a phylogeny-based approach allows the delimitation of C. ocultaria (Donovan) and C. tasmanica sp. nov., but distance-based delimitation is problematic due to substantial overlap in intra- and interspecific genetic distances. Using nucleotide data in character-based species delimitations might be possible for discriminating between C. ocultaria and C. tasmanica , but our current knowledge does not allow the assignment of characters required for this purpose.  相似文献   

18.
We compared the levels and distribution of genetic diversity in Eurasian and North American populations of Brachypodium sylvaticum (Huds.) Beauv. (false brome), a newly invasive perennial bunchgrass in western North America. Our goals were to identify source regions for invasive populations, determine the number of independent invasion events, and assess the possibility that postinvasion bottlenecks and hybridization have affected patterns of genetic diversity in the invaded range. We tested the hypothesis that this Eurasian grass was accidentally introduced into two areas in Oregon and one site in California by examining nuclear microsatellites and chloroplast haplotype variation in 23 introduced and 25 native populations. In the invaded range, there was significantly lower allelic richness (R(S)), observed heterozygosity (H(O)) and within-population gene diversity (H(S)), although a formal test failed to detect a significant genetic bottleneck. Most of the genetic variation existed among populations in the native range but within populations in the invaded range. All of the allelic variation in the invaded range could be explained based on alleles found in western European populations. The distribution of identified genetic clusters in the North American populations and the unique alleles associated with them is consistent with two historical introductions in Oregon and a separate introduction to California. Further analyses of population structure indicate that intraspecific hybridization among genotypes from geographically distinct regions of western Europe occurred following colonization in Oregon. The California populations, however, are more likely to be derived from one or perhaps several genetically similar regions in the native range. The emergence and spread of novel recombinant genotypes may be facilitating the rapid spread of this invasive species in Oregon.  相似文献   

19.
Haploid hybrid gametophytes are often present at low frequencies in sympatric populations of Sphagnum capillifolium and Sphagnum quinquefarium. We used intersimple sequence repeat (ISSR) markers and polymerase chain reaction-restriction fragment length polymorphism of the trnL(UAA) intron of the chloroplast genome to reveal the nuclear and chloroplast composition of mature hybrid gametophytes from natural populations and of gametophytes derived from spores of hybrid sporophytes collected in nature. Asymmetrical nuclear inheritance was found in the progeny of the hybrid sporophytes, indicating that only spores with a low level of recombination of parental genomes were viable. A similarly skewed nuclear composition was found among the naturally occurring hybrid gametophytes. All hybrid genomes contained a larger proportion of S. capillifolium ISSR markers, combined with only two to five S. quinquefarium markers together with a chloroplast haplotype derived from S. quinquefarium. In this way, a pattern resembling introgression is created within a single generation. Some individuals possessed nuclear genomes typical for S. capillifolium in combination with the chloroplast haplotype of S. quinquefarium, possibly indicating backcrossing. Our results indicate that hybridization between S. capillifolium and S. quinquefarium is relatively common, but the resistance of large parts of the genome against heterospecific genes maintains the genetic distinctness of the species. Further evolutionary and phylogenetic consequences of restricted interspecific gene exchange are discussed.  相似文献   

20.
The disjunct allotetraploid lineage of the North American genus Microseris in New Zealand and Australia originated from one or a few diaspores after a single introduction via long‐distance dispersal. The plants have evolved into four morphologically distinct ecotypes: ‘fine‐pappus’, ‘coastal’, ‘murnong’, and ‘alpine’, from which the first two are grouped as Microseris scapigera, mainly from New Zealand and Tasmania, and the latter two as M. lanceolata, endemic to the Australian mainland. Three chloroplast (cp) DNA types were distinguished in each of the species, but their distribution, especially in M. lanceolata, showed discrepancies with ecotype differentiation. Here, we analyse the genetic structure of the nuclear (n) DNA among two plants of each of 55 New Zealand, Tasmanian, and Australian Microseris populations for amplified fragment length polymorphisms (AFLPs). The nuclear genetic structure is compared to geographical, ecotype, and cpDNA distribution, in order to resolve and illustrate the early process of adaptive radiation. The strongest signal in the AFLP pattern was related to geographical separation, especially between New Zealand and Australian accessions, and suggested an initial range expansion after establishment. The ecotypic differentiation was less‐well reflected in the AFLP pattern, and evidence was found for the occurrence of hybridization among plants at the same geographical region, or after dispersal, irrespective of the cpDNA‐ and ecotypes. This indicated that the ecotype characteristics were maintained or re‐established by selection. It also showed that genetic differentiation is not an irreversible and progressive process in the early stage of adaptive radiation. Our results illustrate the precarious balance between geographical isolation and selection as factors that favour differentiation, and hybridization as factor that reduces differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号