首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cloned genomic DNA for human histone H1, H3 and H4 genes has been used to determine the effects of -radiation on histone mRNA levels and synthesis in ataxia-telangiectasia cells. Synthesis of histone mRNA was determined in cells synchronized with aphidicolin. Effects of irradiation on DNA synthesis and passage through S phase were also monitored. Irradiation was found to slow the passage of control cells through the cell cycle but had no effect on progression of ataxia-telangiectasia cells. H1 and core histone mRNA synthesis was inhibited by radiation in two control cell lines after release from aphidicolin block. No inhibition was observed in one ataxia-telangiectasia cell line and a small degree of inhibition in a second. An increased level of mRNA was observed in both irradiated control and ataxia-telangiectasia cells at 5–7 h post-irradiation compared to unirradiated cells. Similar results were obtained in log phase cells. These results demonstrate that histone mRNA synthesis is radioresistant in ataxia-telangiectasia cells and is coupled to radioresistant DNA synthesis in these cells.  相似文献   

3.
4.
5.
6.
Mutations in the Escherichia coli rne (ams) gene have a general effect on the rate of mRNA decay in vivo. Using antibodies we have shown that the product of the rne gene is a polypeptide of relative mobility 180kDa. However, proteolytic fragments as small as 70kDa, which can arise during purification, also exhibit RNase E activity, in vitro studies demonstrate that the rne gene product, RNase E, is an endoribonuclease that cleaves mRNA at specific sites. RNase E cleaves rne mRNA and autoregulates the expression of the rne gene. In addition we demonstrate RNase E-dependent endonucleolytic cleavage of ompA mRNA, at a site known to be rate-determining for degradation and reported to be cieaved by RNase K. Our data are consistent with RNase K being a proteolytic fragment of RNase E.  相似文献   

7.
8.
9.
Novobiocin, an effective inhibitor of DNA replicaion in Escherichia coli, is shown to have no effect on the ATP-dependent DNA repair carried out by toluenized cells after ultraviolet irradiation. Therefore novobiocin can be considered a selective inhibitor of replicative DNA synthesis in vitro.  相似文献   

10.
11.
Weak stringent or relaxed responses were induced in Escherichia coli (relA+), using mild amino acid starvation or treatment with chloramphenicol at low concentrations, respectively, such that the growth rate was barely reduced. In this manner, the intracellular concentration of the nucleotide guanosine tetraphosphate, ppGpp, could be varied in any desired range between 0 and 1000 pmol of ppGpp per OD460 unit of culture mass. At the same time, the rate of synthesis of stable RNA (rs; rRNA and tRNA) was measured, relative to the total instantaneous rate of RNA synthesis (rt). The correlation between the cytoplasmic concentration of ppGpp and stable RNA gene activity (rs/rt) was the same as that observed previously with relA+ and relA strains growing exponentially at different rates in different media. This suggests that the distinction between growth control and stringent control of stable RNA synthesis is arbitrary, and that both kinds of control reflect the same ppGpp-dependent phenomenon. By increasing the stable RNA gene dosage, using high copy number plasmids carrying an rrn gene, we have tested the idea that ppGpp partitions the bacterial RNA polymerase into two forms with different probabilities to initiate at stable RNA and mRNA promoters. The relaxed response was not significantly altered, but the extent of the stringent response was reduced by the presence of extra rrn genes. The results agree with quantitative predictions derived from the RNA polymerase partitioning hypothesis.  相似文献   

12.
Biodegradative arginine decarboxylase and lysine decarboxylase, encoded by adi and cadA, respectively, are induced to maximal levels when Escherichia coli is grown anaerobically in rich medium at acidic pH. Mutants formed by transposon mutagenesis, namely, GNB725, GNB729, GNB88, GNB824, and GNB837, exhibited considerably elevated expression at pH 8.0 compared with the corresponding parental strain. Southern hybridization and chromosome mapping showed that the above mutants contained a transposon within the hns gene. Several plasmids from an E. coli library able to complement these mutants by restoring normal pH induction were independently isolated and were found to contain the hns gene. These results suggest a role for the DNA-binding protein H-NS in affecting the activation of these acid-induced genes.  相似文献   

13.
An in vitro system was used to study DNA synthesis in lysates of Escherichia coli cells which had been grown in the presence of ethionine. Such lysates showed a reduced capacity to incorporate [3H]TTP into high-molecular-weight material. Activity could be restored by incubation with S-adenosyl methionine and ATP. S-adenosyl methionine-reactivated TTP incorporation required the presence of DNA polymerase I, ATP, and all four deoxyribonucleotide triphosphates. DNA polymerase III was not required.  相似文献   

14.
In order to understand further the autogenous regulation of Escherichia coli secA translation, we have set up a purified system to study the binding of SecA protein to portions of its mRNA. Specific SecA protein-RNA binding was demonstrated by UV cross-linking, filter binding, and gel shift assays. Use of the filter binding assay allowed optimization of binding, which was influenced by Mg2+ and ATP concentrations, and a measurement of the affinity of this interaction. A nested series of RNAs lacking either 5' or 3' portions of geneX-secA sequences were used to localize the SecA protein binding site to sequences around the geneX-secA intergenic region. These studies imply that SecA protein directly regulates its own translation by a specific RNA binding activity that presumably blocks translational initiation.  相似文献   

15.
16.
17.
A novel method was devised to measure the number of plasmids in individual Escherichia coli cells. With this method, involving measurement of plasmid-driven expression of the green fluorescent protein gene by flow cytometry, the copy number distribution of a number of different plasmids was measured. Whereas natural plasmids had fairly narrow distributions, minichromosomes, which are plasmids replicating only from a cloned oriC copy, have a wide distribution, suggesting that there is no copy number control for minichromosomes. When the selection pressure (kanamycin concentration) for minichromosomes was increased, the copy number of minichromosomes was also increased. At up to 30 minichromosomes per host chromosome, replication and growth of the host cell was unaffected. This is evidence that there is no negative element for initiation control in oriC and that there is no incompatibility between oriC located on the chromosome and minichromosome. However, higher copy numbers led to integration of the minichromosomes at the chromosomal oriC and to initiation asynchrony of the host chromosome. At a minichromosome copy number of approximately 30, the cell's capacity for synchronous initiation is exceeded and free minichromosomes will compete out the chromosome to yield inviable cells, unless the minichromosomes are incorporated into the chromosome.  相似文献   

18.
Resting cells of Escherichia coli are able to initiate growth and murein biosynthesis in the presence of beta-lactam antibiotics binding to penicillin-binding proteins (PBPs) 1a and 1b (E. J. de la Rosa, M. A. de Pedro, and D. Vázquez, Proc. Natl. Acad. Sci. USA 82:5632-5635, 1985). Under these conditions, cells elongate normally until they approach the first doubling in mass, the time at which cell lysis starts. Assuming that coupling between DNA replication and cell division both in cells starting growth and in growing cells is essentially similar, triggering of the lytic response in the beta-lactam-treated cells coincides with the termination of the first round of DNA replication. This coincidence suggests that both events are interrelated. We investigated this possibility by studying the initiation of growth in cultures of wild-type strains and in cell division mutants treated with beta-lactams inhibiting PBPs 1a and 1b and with the DNA replication inhibitor nalidixic acid. Addition of nalidixic acid, even late in the first cell cycle, prevented the lytic response of the cells to the blockade of PBPs 1a and 1b. The effect of nalidixic acid is more likely due to its action on DNA replication itself than to its indirect inhibitory effect on cell division or to its ability to induce the SOS system of the cell. These observations favor the idea that the cell wall biosynthetic machinery might be modulated by DNA replication at precise periods during cell growth.  相似文献   

19.
Evidence for autoregulation of the nusA-infB operon of Escherichia coli   总被引:3,自引:0,他引:3  
  相似文献   

20.
The fidelity of DNA synthesis by an exonuclease-proficient DNA polymerase results from the selectivity of the polymerization reaction and from exonucleolytic proofreading. We have examined the contribution of these two steps to the fidelity of DNA synthesis catalyzed by the large Klenow fragment of Escherichia coli DNA polymerase I, using enzymes engineered by site-directed mutagenesis to inactivate the proofreading exonuclease. Measurements with two mutant Klenow polymerases lacking exonuclease activity but retaining normal polymerase activity and protein structure demonstrate that the base substitution fidelity of polymerization averages one error for each 10,000 to 40,000 bases polymerized, and can vary more than 30-fold depending on the mispair and its position. Steady-state enzyme kinetic measurements of selectivity at the initial insertion step by the exonuclease-deficient polymerase demonstrate differences in both the Km and the Vmax for incorrect versus correct nucleotides. Exonucleolytic proofreading by the wild-type enzyme improves the average base substitution fidelity by 4- to 7-fold, reflecting efficient proofreading of some mispairs and less efficient proofreading of others. The wild-type polymerase is highly accurate for -1 base frameshift errors, with an error rate of less than or equal to 10(-6). The exonuclease-deficient polymerase is less accurate, suggesting that proofreading also enhances frameshift fidelity. Even without a proofreading exonuclease, Klenow polymerase has high frameshift fidelity relative to several other DNA polymerases, including eucaryotic DNA polymerase-alpha, an exonuclease-deficient, 4-subunit complex whose catalytic subunit is almost three times larger. The Klenow polymerase has a large (46 kDa) domain containing the polymerase active site and a smaller (22 kDa) domain containing the active site for the 3'----5' exonuclease. Upon removal of the small domain, the large polymerase domain has altered base substitution error specificity when compared to the two-domain but exonuclease-deficient enzyme. It is also less accurate for -1 base errors at reiterated template nucleotides and for a 276-nucleotide deletion error. Thus, removal of a protein domain of a DNA polymerase can affect its fidelity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号