首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Black-capped vireos ( Vireo atricapilla ), an endangered, migratory species dependent upon early successional habitat, have experienced significant recovery since its protection. In light of its vagility and known increase in population size and range, limited genetic differentiation would be expected in the species. Using 15 microsatellite loci and an extensive sampling regime, we detected significant overall genetic differentiation ( F ST = 0.021) and high interpopulation differentiation compared to other migratory birds. Although proximate sites (separated by < 20 km) tended to be genetically similar, there was no apparent association of either geographical distance or landscape attributes with differentiation between sites. Evidence of a population bottleneck was also detected in a site located near other large concentrations of birds. Although black-capped vireos are capable of large-scale movements and the population has experienced a recent expansion, dispersal appears too insufficient to eliminate the genetic differentiation resulting from restricted colonization of ephemeral habitats.  相似文献   

2.
We examined the genetic structure of natural populations of the European wood mouse Apodemus sylvaticus at the microgeographic (<3 km) and macrogeographic (>30 km) scales. Ecological and behavioural studies indicate that this species exhibits considerable dispersal relative to its home-range size. Thus, there is potential for high gene flow over larger geographic areas. As levels of population genetic structure are related to gene flow, we hypothesized that population genetic structuring at the microgeographic level should be negligible, increasing only with geographic distance. To test this, four sites were sampled within a microgeographic scale with two additional samples at the macrogeographic level. Individuals ( n =415) were screened and analysed for seven polymorphic microsatellite loci. Contrary to our hypothesis, significant levels of population structuring were detected at both scales. Comparing genetic differentiation with geographic distance suggests increasing genetic isolation with distance. However, this distance effect was non-significant being confounded by surprisingly high levels of differentiation among microgeographic samples. We attribute this pattern of genetic differentiation to the effect of habitat fragmentation, splitting large populations into components with small effective population sizes resulting in enhanced genetic drift. Our results indicate that it is incorrect to assume genetic homogeneity among populations even where there is no evidence of physical barriers and dispersal can occur freely. In the case of A. sylvaticus , it is not clear whether dispersal does not occur across habitat barriers or behavioural dispersal occurs without consequent gene flow.  相似文献   

3.
Fire promotes an abundance of nest sites for the stem nesting bee Exoneura nigrescens, which remain viable for approximately 10 years. The finite duration of nesting substrate and localized fire events suggest that migration should minimize genetic structure among suitable habitat patches. Exoneura nigrescens was sampled from 7 localities with a known fire history in southwestern Victoria, Australia. Individual bees were genotyped at 8 microsatellite loci and genic and genotypic analyses applied to examine genetic structure among burn patch localities, within burn patches, and within colonies. Despite relatively short-term availability of nesting substrates, remarkably fine-scale genetic structure was observed both among burn patches and within burn patches. The spatial distribution of relatedness shows a strong pattern of isolation-by-distance at geographic distances to 35 km, suggesting that genetic partitioning among burn patches is, at least in part, a result of dispersal ability. Genetic structure within burn patches includes colonies consisting of close kin with genic partitioning among nests. Relatedness structure within colonies suggests that polygamy, multiple breeding pairs, and a lack of inbreeding typifies the mating system.  相似文献   

4.
Coenagrion mercuriale (Charpentier) (Odonata: Zygoptera) is one of Europe's most threatened damselflies and is listed in the European Habitats directive. We combined an intensive mark-release-recapture (MRR) study with a microsatellite-based genetic analysis for C. mercuriale from the Itchen Valley, UK, as part of an effort to understand the dispersal characteristics of this protected species. MRR data indicate that adult damselflies are highly sedentary, with only a low frequency of interpatch movement that is predominantly to neighbouring sites. This restricted dispersal leads to significant genetic differentiation throughout most of the Itchen Valley, except between areas of continuous habitat, and isolation by distance (IBD), even though the core populations are separated by less than 10 km. An urban area separating some sites had a strong effect on the spatial genetic structure. Average pairwise relatedness between individual damselflies is positive at short distances, reflecting fine-scale genetic clustering and IBD both within- and between-habitat patches. Damselflies from a fragmented habitat have higher average kinship than those from a large continuous population, probably because of poorer dispersal and localized breeding in the former. Although indirect estimates of gene flow must be interpreted with caution, it is encouraging that our results indicate that the spatial pattern of genetic variation matches closely with that expected from direct observations of movement. These data are further discussed with respect to possible barriers to dispersal within the study site and the ecology and conservation of C. mercuriale. To our knowledge, this is the first report of fine-scale genetic structuring in any zygopteran species.  相似文献   

5.
We studied five populations of a rainforest understory insectivorous bird (Myrmeciza exsul, chestnut-backed antbird) in a fragmented landscape in northeastern Costa Rica in order to test hypotheses about the influence of forest fragmentation on population genetic structure using 16 microsatellite loci. Bayesian assignment approaches—perhaps the most conservative analyses we performed—consistently grouped the sites into two distinct groups, with all individuals from the smallest and most isolated population clustering separately from the other four sites. Additional analyses revealed (1) overall significant genetic structure; (2) a pattern of population differentiation consistent with a hypothesis of isolation by resistance (landscape connectivity), but not distance; and (3) relatively short dispersal distances indicated by elevated mean pairwise relatedness in several of the sites. Our results are somewhat surprising given the small geographic distances between sites (11–34?km) and the short time (~60?years) since wide-spread deforestation in this landscape. We suspect fine-scale genetic structure may occur in many resident tropical bird species, and in the case of the chestnut-backed antbird it appears that anthropogenic habitat fragmentation has important population genetic implications. It appears that chestnut-backed antbirds may persist in fragmented landscapes in the absence of significant migration among patches, but mechanisms that allow this species to persist when many other similar species do not are not well understood.  相似文献   

6.
Amphibians are a globally distributed and diverse lineage, but much of our current understanding of their population genetic structure comes from studies in mesic temperate habitats. We characterize the population genetic structure of two sympatric explosive breeding amphibians in the southwestern deserts of the United States: the Great Plains toad ( Anaxyrus cognatus ) and Couch's spadefoot toad ( Scaphiopus couchii ). For both species, we find limited genetic differentiation even between populations in adjacent valleys separated by dispersal barriers such as mountainous habitats. To understand how population genetic patterns in these two arid-adapted species compare to taxa in more mesic environments, we computed a standardized measure of population differentiation for A. cognatus , S. couchii , and for pond-breeding amphibians that inhabit mesic temperate environments. Our results indicate that the arid-adapted species have lower population genetic structure at fine and moderate scales than most other amphibian species we surveyed. We hypothesize that stochasticity in the availability of appropriate breeding sites as well as landscape homogeneity may result in increased population connectivity in desert-adapted frogs. Future work examining fine-scale population structure in amphibians from a diversity of habitats will test the generality of our findings. Intraspecific comparisons among localities with varied seasonality and habitats will be particularly useful for investigating the interaction between species-typical population dynamics and environmental characteristics as determinants of population connectivity in pond-breeding amphibians.  相似文献   

7.
Organisms typically show evidence of adaptation to features within their local environment. However, many species undergo long‐distance dispersal or migration across larger geographic regions that consist of highly heterogeneous habitats. Therefore, selection may influence adaptive genetic variation associated with landscape features at residing sites and along migration routes in migratory species. We tested for genomic adaptation to landscape features at natal spawning sites and along migration paths to the ocean of anadromous steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin. Results from multivariate ordination, gene–environment association and outlier analyses using 24,526 single nucleotide polymorphisms (SNPs) provided evidence that adaptive allele frequencies were more commonly associated with landscape features along migration paths than features at natal sites (91.8% vs. 8.2% of adaptive loci, respectively). Among the 45 landscape variables tested, migration distance to the ocean and mean annual precipitation along migration paths were significantly associated with adaptive genetic variation in three distinct genetic groups. Additionally, variables such as minimum migration water temperature and mean migration slope were significant only in inland stocks of steelhead that migrate up to 1,200 km farther than those near the coast, indicating regional differences in migratory selective pressures. This study provides novel approaches for investigating migratory corridors and some of the first evidence that environment along migration paths can lead to substantial divergent selection. Consequently, our approach to understand genetic adaptation to migration conditions can be applied to other migratory species when migration or dispersal paths are generally known.  相似文献   

8.
We examined fine-scale genetic variation among breeding aggregations of the spotted salamander (Ambystoma maculatum) to quantify dispersal, interpopulation connectivity and population genetic structure. Spotted salamanders rely on temporary ponds or wetlands for aggregate breeding. Adequate breeding sites are relatively isolated from one another and field studies suggest considerable adult site fidelity; therefore, we expected to find population structure and differentiation at small spatial scales. We used microsatellites to estimate population structure and dispersal among 29 breeding aggregations in Tompkins County, New York, USA, an area encompassing 1272 km(2). Bayesian and frequency-based analyses revealed fine-scale genetic structure with two genetically defined demes: the North deme included seven breeding ponds, and the South deme included 13 ponds. Nine ponds showed evidence of admixture between these two genetic pools. Bayesian assignment tests for detection of interpopulation dispersal indicate that immigration among ponds is common within demes, and that certain populations serve as sources of immigrants to neighbouring ponds. Likewise, spatial genetic correlation analyses showed that populations < or = 4.8 km distant from each other show significant genetic correlation that is not evident at higher scales. Within-population levels of relatedness are consistently larger than expected if mating were completely random across ponds, and in the case of a few ponds, within-population processes such as inbreeding or reproductive skew contribute significantly to differentiation from neighbouring ponds. Our data underscore the importance of these within-population processes as a source of genetic diversity across the landscape, despite considerable population connectivity. Our data further suggest that spotted salamander breeding groups behave as metapopulations, with population clusters as functional units, but sufficient migration among demes to allow for potential rescue and recolonization. Amphibian habitats are becoming increasingly fragmented and a clear understanding of dispersal and patterns of population connectivity for taxa with different ecologies and life histories is crucial for their conservation.  相似文献   

9.
Throughout its distribution in North America, the threatened eastern massasauga rattlesnake ( Sistrurus c. catenatus ) persists in a series of habitat-isolated disjunct populations of varying size. Here, we use six microsatellite DNA loci to generate information on the degree of genetic differentiation between, and the levels of inbreeding within populations to understand how evolutionary processes operate in these populations and aid the development of conservation plans for this species. Samples were collected from 199 individuals from five populations in Ontario, New York and Ohio. Our results show that all sampled populations: (i) differ significantly in allele frequencies even though some populations are < 50 km apart, and may contain genetically distinct subpopulations < 2 km apart; (ii) have an average of 23% of alleles that are population specific; and (iii) have significant F IS values (mean overall F IS= 0.194) probably due to a combination of Wahlund effects resulting from fine-scale genetic differentiation within populations and the presence of null alleles. Our results imply that massasauga populations may be genetically structured on an extremely fine scale even within continuous populations, possibly due to limited dispersal. Additional information is needed to determine if dispersal and mating behaviour within populations can account for this structure and whether the observed differentiation is due to random processes such as drift or to local adaptation. From a conservation perspective, our results imply that these massasauga populations should be managed as demographically independent units and that each has high conservation value in terms of containing unique genetic variation.  相似文献   

10.
How genetic diversity is maintained in philopatric colonial systems remains unclear, and understanding the dynamic balance of philopatry and dispersal at all spatial scales is essential to the study of the evolution of coloniality. In the King penguin, Aptenodytes patagonicus, return rates of post-fledging chicks to their natal sub-colony are remarkably high. Empirical studies have shown that adults return year after year to their previous breeding territories within a radius of a few meters. Yet, little reliable data are available on intra- and inter-colonial dispersal in this species. Here, we present the first fine-scale study of the genetic structure in a king penguin colony in the Crozet Archipelago. Samples were collected from individual chicks and analysed at 8 microsatellite loci. Precise geolocation data of hatching sites and selective pressures associated with habitat features were recorded for all sampling locations. We found that despite strong natal and breeding site fidelity, king penguins retain a high degree of panmixia and genetic diversity. Yet, genetic structure appears markedly heterogeneous across the colony, with higher-than-expected inbreeding levels, and local inbreeding and relatedness hotspots that overlap predicted higher-quality nesting locations. This points towards heterogeneous population structure at the sub-colony level, in which fine-scale environmental features drive local philopatric behaviour, while lower-quality patches may act as genetic mixing mechanisms at the colony level. These findings show how a lack of global genetic structuring can emerge from small-scale heterogeneity in ecological parameters, as opposed to the classical model of homogeneous dispersal. Our results also emphasize the importance of sampling design for estimation of population parameters in colonial seabirds, as at high spatial resolution, basic genetic features are shown to be location-dependent. Finally, this study stresses the importance of understanding intra-colonial dispersal and genetic mixing mechanisms in order to better estimate species-wide gene flows and population dynamics.  相似文献   

11.

Background

Data on spatial genetic patterns may provide information about the ecological and behavioural mechanisms underlying population structure. Indeed, social organization and dispersal patterns of species may be reflected by the pattern of genetic structure within a population.

Methodology/Principal Findings

We investigated the fine-scale spatial genetic structure of a roe deer (Capreolus capreolus) population in Trois-Fontaines (France) using 12 microsatellite loci. The roe deer is weakly polygynous and highly sedentary, and can form matrilineal clans. We show that relatedness among individuals was negatively correlated with geographic distance, indicating that spatially proximate individuals are also genetically close. More unusually for a large mammalian herbivore, the link between relatedness and distance did not differ between the sexes, which is consistent with the lack of sex-biased dispersal and the weakly polygynous mating system of roe deer.

Conclusions/Significance

Our results contrast with previous reports on highly polygynous species with male-biased dispersal, such as red deer, where local genetic structure was detected in females only. This divergence between species highlights the importance of socio-spatial organization in determining local genetic structure of vertebrate populations.  相似文献   

12.
The kin structure and dispersal pattern of polar bears ( Ursus maritimus ) of the Barents Sea was investigated during the spring mating season using two complementary approaches. First, individual genotypes based on the analyses of 27 microsatellite loci of 583 polar bears were related to field information gathered from 1146 bears in order to reconstruct the animals' pedigrees and to infer geographical distances between adult bears of different relatedness categories. According to the data, the median natal dispersal distance of the male animals was 52 km while that of the females was 93 km. Second, the relatedness of pairs of adult bears was estimated and correlated to the geographical distance between them. The female dyads had a much stronger kin structure than the male dyads. The 'pedigree approach' revealed a male kin structure which could not be detected using the 'relatedness approach'. This suggests that, on a broader scale, effective dispersal is slightly male biased. Despite fidelity to natal areas, male-mediated gene flow may nevertheless prevent genetic differentiation. Males might occasionally shift their home range which could therefore lead to a male-biased breeding dispersal. Our results showed that a nonterritorial species such as the polar bear that has a high dispersal potential, lives in a highly unstable environment and migrates seasonally is still able to exhibit a distinct kin structure during the mating season.  相似文献   

13.
Although two cryptic pipistrelle bat species, Pipistrellus pipistrellus and Pipistrellus pygmaeus , belong among the most common bat species in Europe, it is still unclear whether they can migrate over long distances between summer and winter roosts. Long-distance migratory species may be expected to show low levels of genetic structuring in large areas due to regular mixing of the gene pool by mating that occurs during migration and/or hibernation. Conversely, the dispersal of gametes in sedentary species is spatially restricted, populations are more genetically structured, and isolation by relatively short distance is visible. By analysing diversity of highly variable microsatellites within and among summer colonies of both studied species in central Europe, we found that differentiation between populations is very weak. Both classical F ST and Bayesian clustering approach failed to detect genetic structure among colonies and there was no significant isolation-by-distance pattern. The analyses of relatedness, however, revealed that individuals within colonies are more related than random suggesting philopatry of at least one sex. The results were very similar for the two species. The high level of gene flow among central European populations, even on large geographic distances, is discussed in relation with migrations, dispersal, and mating behaviour.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 103–114.  相似文献   

14.
Aim Natural and human‐induced differences in frugivore assemblages can influence the seed dispersal distances of trees. An important issue in seed dispersal systems is to understand whether differences in seed dispersal distances also affect the genetic structure of mature trees. One possible approach to test for a relationship between seed dispersal and the genetic structure of mature trees is to compare the genetic structure of two closely related tree species between two biogeographical regions that differ in frugivore assemblages and seed dispersal distances. Previous studies on two Commiphora species revealed that Commiphora guillauminii in Madagascar has a much lower seed dispersal distance than Commiphora harveyi in South Africa. We tested whether the lower seed dispersal distance might have caused decreased gene flow, resulting in a stronger genetic structure in Madagascar than in South Africa. Location Madagascar and South Africa. Methods Using amplified fragment length polymorphism markers we investigated the genetic structure of 134 trees in Madagascar and 158 trees in South Africa at a local and a regional spatial scale. Results In concordance with our hypothesis, kinship analysis suggests that gene flow was restricted mostly to 3 km in Madagascar and to 30 km in South Africa. At the local spatial scale, the genetic differentiation among groups of trees within sample sites was marginally significantly higher in Madagascar (FST = 0.069) than in South Africa (FST = 0.021). However, at a regional spatial scale genetic differentiation was lower in Madagascar (FST = 0.053) than in South Africa (FST = 0.163). Main conclusions Our results show that lower seed dispersal distances of trees were linked to higher genetic differentiation of trees only at a local spatial scale. This suggests that seed dispersal affects the genetic population structure of trees at a local, but not at a regional, spatial scale.  相似文献   

15.
Although a number of recent studies of marine holoplankton have reported significant genetic structure among populations, little is currently known about the biological and oceanographic processes that influence population connectivity in oceanic plankton. In order to examine how depth preferences influence dispersal in oceanic plankton, I characterized the genetic structure of a copepod with diel vertical migration (DVM) (Pleuromamma xiphias), throughout its global distribution, and compared these results to those expected given the interaction of this species' habitat depth with ocean circulation and bathymetry. Mitochondrial COI sequences from 651 individuals from 28 sites in the Indian, Pacific, and Atlantic Oceans revealed highly significant genetic differentiation both within and among ocean basins. Limited dispersal among distinct pelagic provinces seems to have played a major role in population differentiation in this species, with strong genetic breaks observed across known oceanographic fronts or current systems in all three ocean basins. The Indo-West Pacific (IWP) holds a highly distinct genetic population of this species that was sampled in both the western Pacific and eastern Indian Oceans. This suggests that the IWP does not act as a strong barrier to gene flow between basins, as expected, despite the relatively shallow water depth (<200 m) and vertically extensive (>400 m) diel migration of this species. A pattern of isolation by distance was observed in the Indian Ocean with genetic differentiation among samples down to spatial scales of ~800 km, indicating that realized dispersal in P. xiphias occurs over much smaller spatial scales than in previously reported oceanic holoplankton. Given its highly regionalized population genetic structure, P. xiphias may have some capacity to adapt to local oceanographic conditions, and it should not be assumed that populations of this species in distinct pelagic biomes will respond in the same way to shared physical or climatic forcing.  相似文献   

16.
Patterns of genetic structure for some bee species suggest that gene flow may be limited across natural and human-created barriers and that local dispersal or natal site fidelity may be common. Interestingly, this past work has primarily focused on female bees, despite the fact that males may differ substantially in their dispersal processes. By examining genetic structure and diploidy in males, it is possible to gain insight into potential barriers to gene flow and drivers of inbreeding. In this study, we examine diploidy as well as regional and local spatial genetic structure using males of Bombus vosnesenskii, a stable bumble bee species found across western North America. Specifically, we investigate patterns of genetic structure in both island and mainland populations, across spatial scales, and over a range of natural and human-altered habitats. We document high levels of male diploidy, with significantly higher levels in mainland populations compared to island populations and increasing diploidy in areas with poor nesting habitat. Interestingly, we also find evidence of significant spatial genetic structure from 0 to 10 km and 0 to 5 km on island and mainland populations, respectively. Finally, we document low but significant genetic differentiation across the region (ΦST = 0.049). Overall, this work reveals the unique potential for biogeographic context and local habitat composition to drive male diploidy patterns in bumble bees.  相似文献   

17.
Overexploitation of marine species invariably results in population decline but can also have indirect effects on ecological processes such as larval dispersal and recruitment that ultimately affect genetic diversity and population resilience. We compared microsatellite DNA variation among depleted and healthy populations of the black-lip abalone Haliotis rubra from Tasmania, Australia, to determine if over-fishing had affected genetic diversity. We also used genetic data to assess whether variation in the scale and frequency of larval dispersal was linked to greater population decline in some regions than in others, and if larval dispersal was sufficient to facilitate natural recovery of depleted populations. Surprisingly, allelic diversity was higher in depleted populations than in healthy populations ( P <  0.05). Significant subdivision across hundreds of metres among our sampling sites ( F ST = 0.026, P  < 0.01), coupled with assignment tests, indicated that larval dispersal is restricted in all regions studied, and that abalone populations across Tasmania are largely self-recruiting. Low levels of larval exchange appear to occur at the meso-scale (7–20 km), but age estimates based on shell size indicated that successful migration of larvae between any two sites may happen only once every few years. We suggest that genetic diversity may be higher in depleted populations due to the higher relative ratio of migrant to self-recruiting larvae. In addition, we expect that recovery of depleted abalone populations will be reliant on sources of larvae at the meso-scale (tens of km), but that natural recovery is only likely to occur on a timescale unacceptable to fishers and resource managers.  相似文献   

18.
Sex-biased dispersal is common in many animals, with male-biased dispersal often found in studies of mammals and reptiles, including interpretations of spatial genetic structure, ostensibly as a result of male–male competition and a lack of male parental care. Few studies of sex-biased dispersal have been conducted in turtles, but a handful of studies, in saltwater turtles and in terrestrial turtles, have detected male-biased dispersal as expected. We tested for sex-biased dispersal in the endangered freshwater turtle, the spotted turtle (Clemmys guttata) by investigating fine-scale genetic spatial structure of males and females. We found significant spatial genetic structure in both sexes, but the patterns mimicked each other. Both males and females typically had higher than expected relatedness at distances <25 km, and in many distance classes greater than 25 km, less than expected relatedness. Similar patterns were apparent whether we used only loci in Hardy–Weinberg equilibrium (n = 7) or also included loci with potential null alleles (n = 5). We conclude that, contrary to expectations, sex-biased dispersal is not occurring in this species, possibly related to the reverse sexual dimorphism in this species, with females having brighter colors. We did, however, detect significant spatial genetic structure in males and females, separate and combined, showing philopatry within a genetic patch size of <25 km in C. guttata, which is concerning for an endangered species whose populations are often separated by distances greater than the genetic patch size.  相似文献   

19.
Several recent empirical studies have challenged the prevailing dogma that broadcast-spawning species exhibit little or no population genetic structure by documenting genetic discontinuities associated with large-scale oceanographic features. However, relatively few studies have explored patterns of genetic differentiation over fine spatial scales. Consequently, we used a hierarchical sampling design to investigate the basis of a weak but significant genetic difference previously reported between Antarctic limpets (Nacella concinna) sampled from Adelaide and Galindez Islands near the base of the Antarctic Peninsula. Three sites within Ryder Bay, Adelaide Island (Rothera Point, Leonie and Anchorage Islands) were each sub-sampled three times, yielding a total of 405 samples that were genotyped at 155 informative Amplified Fragment Length Polymorphisms (AFLPs). Contrary to our initial expectations, limpets from Anchorage Island were found to be subtly, but significantly distinct from those sampled from the other sites. This suggests that local processes may play an important role in generating fine-scale population structure even in species with excellent dispersal capabilities, and highlights the importance of sampling at multiple spatial scales in population genetic surveys.  相似文献   

20.
The level of gene flow is an important factor influencing genetic differentiation between populations. Typically, geographic distance is considered to be the major factor limiting dispersal and should thus only influence the degree of genetic divergence at larger spatial scales. However, recent studies have revealed the possibility for small-scale genetic differentiation, suggesting that the spatial scale considered is pivotal for finding patterns of isolation by distance. To address this question, genetic and morphological differentiation were studied at two spatial scales (range 2–13 km and range 300 m to 2 km) in the perch ( Perca fluviatilis L.) from the east coast archipelago of Sweden, using seven microsatellite loci and geometric morphometrics. We found highly significant genetic differentiation between sampled locations at both scales. At the larger spatial scale, the distance per se was not affecting the level of divergence. At the small scale, however, we found subtle patterns of isolation by distance. In addition, we also found morphological divergence between locations, congruent with a spatial separation at a microgeographic scale, most likely due to phenotypic plasticity. The present study highlights the importance of geographical scale and indicates that there might be a disparity between the dispersal capacity of a species and the actual movement of genes. Thus, how we view the environment and possible barriers to dispersal might have great implications for our ability to fully understand the evolution of genetic differentiation, local adaptation, and, in the end, speciation.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 746–758.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号