共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
CD28 ligation induces tyrosine phosphorylation of Pyk2 but not Fak in Jurkat T cells 总被引:1,自引:0,他引:1
Protein tyrosine kinases are critical for the function of CD28 in T cells. We examined whether the tyrosine kinases Pyk2 and Fak (members of the focal adhesion kinase family) are involved in CD28 signaling. We found that ligating CD28 in Jurkat T cells rapidly increases the tyrosine phosphorylation of Pyk2 but not of Fak. Paxillin, a substrate for Pyk2 and Fak, was not tyrosine-phosphorylated after CD28 ligation. CD28-induced tyrosine phosphorylation of Pyk2 was markedly reduced in the absence of external Ca2+. Previous studies have shown that the T cell antigen receptor (TCR) induces tyrosine phosphorylation of Pyk2. In this report, the concurrent ligation of CD28 and TCR increased tyrosine phosphorylation of Pyk2; however, the extent of phosphorylation by both receptors was equivalent to the sum of that induced by each receptor alone. The Syk/Zap inhibitor piceatannol blocked CD28, and TCR induced tyrosine phosphorylation of Pyk2, suggesting that Syk/Zap is involved in Pyk2 phosphorylation. In contrast, the phosphatidylinositol 3-kinase inhibitor wortmannin blocked TCR- but not CD28-induced phosphorylation of Pyk2, suggesting that CD28 and TCR activate distinct pathways to induce tyrosine phosphorylation of Pyk2. Notably, depleting phorbol 12-myristate 13-acetate-sensitive protein kinase C did not block CD28- and CD3-induced tyrosine phosphorylation of Pyk2. These data provide evidence for the involvement of Pyk2 in the CD28 signaling cascade and suggest that neither Fak nor paxillin is involved in the signaling pathways of CD28. 相似文献
3.
Cloning of murine Stat6 and human Stat6, Stat proteins that are tyrosine phosphorylated in responses to IL-4 and IL-3 but are not required for mitogenesis. 总被引:19,自引:5,他引:19
下载免费PDF全文

F W Quelle K Shimoda W Thierfelder C Fischer A Kim S M Ruben J L Cleveland J H Pierce A D Keegan K Nelms et al. 《Molecular and cellular biology》1995,15(6):3336-3343
4.
Tyrosine phosphorylation of the human T cell antigen receptor zeta-chain: activation via CD3 but not CD2 总被引:4,自引:0,他引:4
A M Weissman P Ross E T Luong P Garcia-Morales M L Jelachich W E Biddison R D Klausner L E Samelson 《Journal of immunology (Baltimore, Md. : 1950)》1988,141(10):3532-3536
TCR stimulation by Ag or anti-receptor antibodies in murine T cells results in the activation of two independent protein kinases, protein kinase C (PKC) and a protein tyrosine kinase. Similarly, stimulation of murine Thy-1 or Ly-6 with mAb also results in activation of both of these kinase pathways. Tyrosine phosphorylation in all cases occurs on the TCR zeta-chain. It is known that Ag and anti-receptor antibodies activate PKC in human T cells. In this study we demonstrate that mitogen or anti-CD3 antibodies activate tyrosine phosphorylation of the human TCR-zeta-chain. PMA, which activates PKC, does not result in zeta-chain tyrosine phosphorylation. Stimulation of human T cells by antibodies that bind the CD2 molecule is an alternate mode of inducing T cell proliferation. These antibodies surprisingly do not induce tyrosine phosphorylation of the zeta-chain. Thus, different methods of cellular activation can result in distinguishable patterns of receptor-mediated biochemical signaling events. 相似文献
5.
Insulin and vanadate selectively induce mitogenesis in quiescent SV40 large T antigen-transformed 3T3 T cells (CSV3–1) but not in quiescent nontransformed 3T3 T cells. Insulin and vanadate mediate this effect in CSV3–1 cells by distinct signal transduction mechanisms that involve protein tyrosine kinase activity. To further study these processes, changes in protein tyrosine phosphorylation induced by insulin and vanadate were investigated. Using immunoprecipitation and Western blotting techniques with antiphosphotyrosine antibodies, we report distinct protein phosphorylation characteristics in insulin- and vanadate-stimulated CSV3–1 cells. The insulin receptor β-subunit is phosphorylated within 2 min after insulin stimulation of transformed CSV3–1 cells. Insulin also stimulates a rapid increase in tyrosine phosphorylation of the 170 kDa insulin receptor substrate-1 and complex formation between the phosphorylated insulin receptor substrate-1 and the 85 kDa subunit of phosphatidylinositol 3'-kinase. In contrast, vanadate does not initially increase detectable phosphorylation of any proteins, including neither the insulin receptor nor the insulin receptor substrate-1. After 60 min, however, a marked increase in tyrosine phosphorylation of 55 and 64 kDa proteins is observed in vanadate-treated CSV3–1 cells. Furthermore, treatment of CSV3–1 cells with genistein abolishes the effects of vanadate on protein tyrosine phosphorylation but only minimally inhibits the effects of insulin. Finally, insulin stimulates the phosphorytion of a 33 kDa protein, whereas vanadate does not. By comparison, in nontransformed 3T3 T cells, insulin induces a delayed and weaker tyrosine phosphorylation of the insulin receptor β-subunit and vanadate does not enhance the tyrosine phosphorylation of the 55 and 64 kDa proteins. These data together indicate that the mitogenic effects of insulin and vanadate are associated with distinct protein phosphorylation patterns that appear to be differentially regulated in SV40-transformed and nontransformed 3T3 T cells. © 1994 Wiley-Liss, Inc. 相似文献
6.
Goodman WA Young AB McCormick TS Cooper KD Levine AD 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(6):3336-3345
Human autoimmune diseases are characterized by systemic T cell dysfunction, resulting in chronically activated Th1 and Th17 cells that are inadequately suppressed by regulatory T cells (Tregs). IL-6, which is overexpressed in tissue and serum of patients with autoimmune diseases, inhibits human Treg function. We sought to determine the mechanism for the antitolerogenic properties of IL-6 by examining the signaling pathways downstream of IL-6R in primary human T cells. Inhibition of Stat3 signaling in MLCs containing IL-6 restores Treg-mediated suppression, demonstrating that IL-6-mediated loss of Treg suppression requires phosphorylation of Stat3. Cultures in which either effector T cells (Teffs) or Tregs were pretreated with Stat3 inhibitors indicate that phosphorylated (p)Stat3 is required in both T cell populations for IL-6-mediated reversal of Treg function. IL-21, which signals preferentially through pStat3, also reverses Treg suppression, in contrast to IL-27 and IFN-γ, which signal preferentially through Stat1 and do not inhibit Treg function. Interestingly, both Teffs and Tregs respond to IL-6 stimulation through strong Stat3 phosphorylation with minimal MAPK/Erk activation and moderate Stat1 phosphorylation. Finally, Teffs stimulated strongly through the TCR are also resistant to suppression by Tregs and show concurrent Stat3 phosphorylation. In these cultures, inhibition of pStat3 restores functional suppression by Tregs. Taken together, our findings suggest that an early dominance of Stat3 signaling, prior to subsequent T cell activation, is required for the loss of functional Treg suppression and that kinase-specific inhibitors may hold therapeutic promise in the treatment of autoimmune and chronic inflammatory diseases. 相似文献
7.
Quast S Zhang W Shive C Kovalovski D Ott PA Herzog BA Boehm BO Tary-Lehmann M Karulin AY Lehmann PV 《Cellular immunology》2005,237(1):28-36
Cytokine assays are gaining increasing importance for human immune monitoring because they reliably detect antigen-specific T cells in primary PBMC, even at low clonal sizes. Double color ELISPOT assays permit the simultaneous visualization of cells producing two different cytokines. Permitting the simultaneous assessment of type 1 and 2 immunity and due to the limited numbers of PBMC available from human study subjects, double color assays should be particularly attractive for clinical trials. Since the performance of double color assays has not yet been validated, we set out to compare them to single color measurements. Testing the recall antigen-induced cytokine response of PBMC, we found that double color assays regularly provided lower numbers of IFN-gamma and IL-5 spots than single color measurements when IL-2 detection was part of the double color assay. We showed that the inhibitory effect resulted from IL-2 absorption and could be overcome by either antibody free preactivation cultures or by inclusion of anti-CD28 antibody. In contrast, the simultaneous detection of IL-2 did not affect the numbers of IL-4 spots. Therefore, unlike IL-2/IL-4 and IFN-gamma/IL-5 assays, IL-2/IFN-gamma, and IL-2/IL-5 assays require compensation for the IL-2 capture to provide accurate numbers for the frequencies of cytokine producing memory T cells. 相似文献
8.
CD45 cross-linking regulates phospholipase C activation and tyrosine phosphorylation of specific substrates in CD3/Ti-stimulated T cells. 总被引:6,自引:0,他引:6
J A Ledbetter G L Schieven F M Uckun J B Imboden 《Journal of immunology (Baltimore, Md. : 1950)》1991,146(5):1577-1583
In lymphocytes, CD45 regulates the increase in cytoplasmic calcium concentration that occurs after receptor cross-linking. Here we show that T cell receptor complex (CD3/Ti)-mediated inositol phosphate production was inhibited by CD45 ligation in Jurkat cells. CD3/Ti signaling in normal T cells was also inhibited by CD45 ligation, but coupling of CD4 with CD3/Ti gave augmented calcium signals that were entirely resistant to the inhibitory effect of CD45. In contrast, CD3-induced T cell proliferation was suppressed by immobilized CD45 mAb even in the presence of CD4 mAb. The effect of CD45 and CD4 ligation on tyrosine phosphorylation during T cell activation was directly examined by immunoblotting with anti-phosphotyrosine. Using immobilized mAb, CD45 ligation suppressed the tyrosine phosphorylation of specific substrates induced by CD3/Ti stimulation, including almost complete suppression of 150-, 36-, and 35-kDa proteins and partial suppression of 76- and 80-kDa proteins. Other tyrosine-phosphorylated proteins induced by CD3/Ti stimulation, including 135- and 21-kDa proteins, were not suppressed by simultaneous ligation of CD3/Ti and CD45. Simultaneous ligation of CD3 and CD4 enhanced tyrosine phosphorylation of all substrates, but did not overcome the CD45-mediated suppression of tyrosine phosphorylation of the 35- and 36-kDa proteins. The CD45-mediated suppression of phospholipase C activation is therefore modulated by association with CD4 without altering the specific inhibition of tyrosine phosphorylation and T cell proliferation after co-ligation of CD45 and CD3/Ti. 相似文献
9.
10.
Humans and mice have evolved distinct pathways for Th1 cell development. Although IL-12 promotes CD4(+) Th1 development in both murine and human T cells, IFN-alphabeta drives Th1 development only in human cells. This IFN-alphabeta-dependent pathway is not conserved in the mouse species due in part to a specific mutation within murine Stat2. Restoration of this pathway in murine T cells would provide the opportunity to more closely model specific human disease states that rely on CD4(+) T cell responses to IFN-alphabeta. To this end, the C terminus of murine Stat2, harboring the mutation, was replaced with the corresponding human Stat2 sequence by a knockin targeting strategy within murine embryonic stem cells. Chimeric m/h Stat2 knockin mice were healthy, bred normally, and exhibited a normal lymphoid compartment. Furthermore, the murine/human STAT2 protein was expressed in murine CD4(+) T cells and was activated by murine IFN-alpha signaling. However, the murine/human STAT2 protein was insufficient to restore full IFN-alpha-driven Th1 development as defined by IFN-gamma expression. Furthermore, IL-12, but not IFN-alpha, promoted acute IFN-gamma secretion in collaboration with IL-18 stimulation in both CD4(+) and CD8(+) T cells. The inability of T cells to commit to Th1 development correlated with the lack of STAT4 phosphorylation in response to IFN-alpha. This finding suggests that, although the C terminus of human STAT2 is required for STAT4 recruitment and activation by the human type I IFNAR (IFN-alphabetaR), it is not sufficient to restore this process through the murine IFNAR complex. 相似文献
11.
Protein kinase A regulates GATA-3-dependent activation of IL-5 gene expression in Th2 cells 总被引:1,自引:0,他引:1
Klein-Hessling S Jha MK Santner-Nanan B Berberich-Siebelt F Baumruker T Schimpl A Serfling E 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(6):2956-2961
Treatment of Th cells with compounds that elevate cAMP levels augments Th2-type lymphokine expression, in particular the synthesis of IL-5. Using primary murine CD4(+) T lymphocytes, we show in this study that inhibition of protein kinase A (PKA) activity in Th2 effector cells impairs IL-5 synthesis, whereas the expression of PKA catalytic subunit alpha enhances IL-5 synthesis in Th0 cells. In addition, we observed by coexpression of PKA catalytic subunit and GATA-3 in Th1 cells that the stimulatory effect of PKA is dependent on GATA-3 activity. These data demonstrate that activation of PKA in Th effector cells induces the IL-5 gene expression in a GATA-3-dependent manner. 相似文献
12.
13.
14.
15.
FAK regulates tyrosine phosphorylation of CAS, paxillin, and PYK2 in cells expressing v-Src, but is not a critical determinant of v-Src transformation. 总被引:13,自引:0,他引:13
FAK (focal adhesion kinase) is a nonreceptor protein-tyrosine kinase activated by tyrosine phosphorylation following integrin-mediated cell adhesion. Oncogenic Src promotes enhanced and deregulated FAK tyrosine phosphorylation which has been proposed to contribute to altered cell growth and/or morphological properties associated with transformation. In this study, an inducible FAK expression system was used to study the potential role of FAK in v-Src transformation. Our results portray FAK as a major v-Src substrate that also plays a role in recruiting v-Src to phosphorylate substrates CAS (Crk-associated substrate) and paxillin. The FAK Tyr-397 autophosphorylation site was necessary for this scaffolding function, but was not required for v-Src to stably interact with and phosphorylate FAK. FAK was also shown to negatively regulate v-Src mediated phosphorylation of the FAK-related kinase PYK2. Despite these effects, FAK does not play an essential role in targeting v-Src to major cellular substrates including CAS and paxillin. Nor is FAK strictly required to achieve the altered morphological and growth characteristics of v-Src transformed cells. 相似文献
16.
J P Piau H Wakasugi J Bertoglio T Tursz D Fradelizi G Gacon 《European journal of biochemistry》1989,185(2):455-459
Interleukin 2 is a growth factor secreted by T lymphocytes upon antigenic stimulation and inducing the proliferation of T cells bearing at their surface the heterodimeric high-affinity form of its receptor. No enzymatic function has so far been demonstrated in the receptor subunits. In an attempt to elucidate the biochemical pathway of signal transduction, we investigated the capacity of interleukin 2 to modulate tyrosine phosphorylation in T cell membranes. Membrane-rich fractions from T cells were tested for their ability to phosphorylate tyrosine in the presence or absence of added recombinant interleukin 2. Using as substrate a synthetic polymer of glutamic acid and tyrosine, we demonstrated a 3-4-fold stimulation of tyrosine phosphorylation in the presence of interleukin 2; this stimulating effect appeared to be well correlated with interleukin 2 function since (a) it was not observed in insensitive cells, (b) it required the presence of the high-affinity form of the receptor and (c) it was dose-dependent. Confirmatory results were obtained by phosphorylating membrane-rich fractions with [gamma-32P]ATP and by analysing the resulting phosphoproteins: only in fractions from cells with the high-affinity form of the receptor were several membrane proteins specifically phosphorylated on tyrosine residues in response to interleukin 2. At least two proteins of 115 and 58 kDa were consistently hyperphosphorylated on tyrosine in an interleukin-2-dependent manner. This stimulation was strongly dependent on the presence of the protein tyrosine phosphatase inhibitor, sodium orthovanadate. Thus, we propose that interleukin 2 enhances tyrosine phosphorylation by stimulating a tyrosine kinase activity. The nature of the enzyme involved remains to be determined. 相似文献
17.
Mycophenolic acid inhibits IL-2-dependent T cell proliferation,but not IL-2-dependent survival and sensitization to apoptosis 总被引:2,自引:0,他引:2
Quéméneur L Flacher M Gerland LM Ffrench M Revillard JP Bonnefoy-Berard N 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(5):2747-2755
Mycophenolic acid (MPA), the active metabolite of the immunosuppressive drug mycophenolate mofetil, is a selective inhibitor of inosine 5'-monophosphate dehydrogenase type II, a de novo purine nucleotide synthesis enzyme expressed in T and B lymphocytes and up-regulated upon cell activation. In this study, we report that the blockade of guanosine nucleotide synthesis by MPA inhibits mitogen-induced proliferation of PBL, an effect fully reversed by addition of guanosine and shared with mizoribine, another inhibitor of inosine 5'-monophosphate dehydrogenase. Because MPA does not inhibit early TCR-mediated activation events, such as CD25 expression and IL-2 synthesis, we investigated how it interferes with cytokine-dependent proliferation and survival. In activated lymphoblasts that are dependent on IL-2 or IL-15 for their proliferation, MPA does not impair signaling events such as of the extracellular signal-regulated kinase 2 and Stat5 phosphorylation, but inhibits down-regulation of the cyclin-dependent kinase inhibitor p27(Kip1). Therefore, in activated lymphoblasts, MPA specifically interferes with cytokine-dependent signals that control cell cycle and blocks activated T cells in the mid-G(1) phase of the cell cycle. Although it blocks IL-2-mediated proliferation, MPA does not inhibit cell survival and Bcl-x(L) up-regulation by IL-2 or other cytokines whose receptors share the common gamma-chain (CD132). Finally, MPA does not interfere with IL-2-dependent acquisition of susceptibility to CD95-mediated apoptosis and degradation of cellular FLIP. Therefore, MPA has unique functional properties not shared by other immunosuppressive drugs interfering with IL-2R signaling events such as rapamycin and CD25 mAbs. 相似文献
18.
IL-4 regulates endothelial cell activation by IL-1, tumor necrosis factor, or IFN-gamma. 总被引:31,自引:0,他引:31
Alteration in the surface membrane of endothelial cells (EC) is a feature of endothelial activation both at sites of inflammation in vivo and after stimulation with cytokines in vitro. The effects of stimulating EC with IL-1 or TNF include enhanced adhesiveness for polymorphonuclear leukocytes (PMN) and T cells, the induction of EC leukocyte adhesion molecule-1 (ELAM-1) expression, and the increased expression of intercellular adhesion molecule-1 (ICAM-1) and the 1.4C3 Ag. In contrast, IFN-gamma stimulation increases EC binding of T cells but not PMN and enhances ICAM-1 expression but not ELAM-1 or 1.4C3 Ag expression. Recently we have reported that the T cell-derived cytokine IL-4 also increases EC adhesiveness for T cells but not PMN. In this study we have examined the effect of IL-4 on the expression of several cytokine-inducible EC activation Ag, by using a previously described ELISA technique. IL-4 modulation of activation Ag expression was concentration dependent, optimal at around 100 U/ml, and exhibited a unique pattern compared to that seen with the other cytokines. Although, IL-4 stimulation increased 1.4C3 Ag expression (p less than 0.001), it significantly inhibited constitutive ICAM-1 expression (p less than 0.01) and did not induce ELAM-1. Furthermore, IL-4 exhibited significant synergy with IL-1 or TNF in inducing 1.4C3 Ag expression (p less than 0.001) but inhibited the increased expression of ICAM-1 produced by IL-1, TNF, or IFN-gamma (p less than 0.01) and inhibited the induction of ELAM-1 by IL-1 and TNF (p less than 0.001). In contrast, IL-4 had no effect on the expression of EC HLA-class I, -DR, -DP, or -DQ and neither enhanced nor inhibited the effect of IFN-gamma on the expression of these molecules. Finally, although IL-4 alone caused little if any shape change in EC monolayers, it strongly synergized with TNF or IFN-gamma in causing a change in shape to a more fibroblastic morphology. These observations indicate that IL-4 increases EC adhesiveness for T cells by the induction of a different adhesion molecule to ICAM-1. Furthermore, the ability of IL-4 to both enhance and inhibit the expression of activation Ag on EC already activated by IL-1, TNF, or IFN-gamma suggests that it may be important in altering the quality of inflammatory responses such as may occur during the development and maintenance of chronic or immune-mediated inflammation. 相似文献
19.
T4 endocytosis and phosphorylation induced by phorbol esters but not by mitogen or HIV infection 总被引:15,自引:0,他引:15
J A Hoxie J L Rackowski B S Haggarty G N Gaulton 《Journal of immunology (Baltimore, Md. : 1950)》1988,140(3):786-795
The T4 (CD4) molecule has been shown to facilitate the interactions of T cells with HLA class II determinants, to function as a signal transducing molecule, and to serve as a receptor for HIV. Recent studies demonstrated that both phorbol esters and antigen stimulation induced the rapid and transient modulation and phosphorylation of T4 on an IL-2-dependent line of cloned peripheral blood T4+ cells. In the current study, we define the kinetics of T4 phosphorylation and internalization induced by phorbol esters and determine the extent to which this metabolic pathway is required for T cell proliferation, activation, and HIV infection. On both peripheral blood T4+ cells and the T cell line Sup-T1, the modulation and internalization of surface T4 induced by phorbol 12, 13-dibutyrate (PDB) was preceded by rapid and transient phosphorylation. On both cell types, by 48 h, T4 was reexpressed on the cell surface in a nonphosphorylated form and was shown to be resistant to phosphorylation and internalization when these cells were reexposed to PDB. In contrast, T4 on the surface of PBL was neither phosphorylated nor down-modulated when PBL were stimulated by PHA, indicating that these effects were not simply the result of T cell activation or proliferation. In additional studies, we demonstrate that this pathway for T4 phosphorylation and internalization is not required for HIV infection by showing that 1) the binding of the HIV gp 120 envelope to T4 does not induce phosphorylation of T4, 2) Sup-T1 cells that are rendered resistant to phorbol ester-induced T4 internalization and phosphorylation by prolonged culture in PDB remain highly susceptible to HIV infection, and 3) clones of HIV-producing cells expressing high levels of surface T4 that is complexed with viral envelope remain susceptible to PDB-induced modulation of T4. This observation suggests that, at least on lymphoid cells, HIV penetration does not occur exclusively by R-mediated endocytosis. 相似文献
20.
IL-4 increases human endothelial cell adhesiveness for T cells but not for neutrophils 总被引:23,自引:0,他引:23
M H Thornhill U Kyan-Aung D O Haskard 《Journal of immunology (Baltimore, Md. : 1950)》1990,144(8):3060-3065
The adhesion of leukocytes to vascular endothelium is the first step in their passage from the blood into inflammatory tissues. By modulating endothelial cell (EC) adhesiveness for leukocytes, cytokines may regulate leukocyte accumulation and hence the nature and progression of inflammatory responses. We have found that the T cell cytokine IL-4 increases the adhesion of T cells, but not neutrophils, to human umbilical vein EC monolayers. The increase in T cell adhesion induced by IL-4 was dose dependent (ED50 = 5 U/ml) and peaked around 33 U/ml. No increase in adhesion of neutrophils was observed at concentrations of IL-4 up to 1000 U/ml. The kinetic of the increase in T cell adhesion exhibited a steady rise peaking between 18 and 24 h before returning to basal levels by 72 h. The IL-4 specificity of the effect was confirmed by the ability of neutralizing anti-IL-4, but not anti-TNF, antibodies to abolish the effect. The increase in T cell-EC adhesion was due to an effect of IL-4 on EC inasmuch as preincubation of the T cells with IL-4 did not increase T cell binding. Furthermore, preincubation of A549 epithelial cell line monolayers with IL-4 caused no increase in T cell binding whereas A549 cells and EC showed a similarly enhanced adhesiveness for T cells after preincubation with IL-1, TNF, or IFN-gamma. EC treated with IL-4 retained their increased adhesiveness for T cells after light fixation, suggesting that IL-4 up-regulates binding by increasing the expression or accessibility of EC surface receptors for lymphocytes. Although antibodies to intercellular adhesion molecule-1 (CD54) and the beta-chain (CD18) of lymphocyte function-associated Ag-1 (CD11a/CD18) partially inhibited T cell adhesion to unstimulated EC, they did not affect the increase in adhesion due to IL-4 stimulation, indicating that the increased binding resulted from the generation of an alternative binding receptor(s) on the EC membrane. These findings suggest that IL-4 may play a role in the selective recruitment of T cells into sites of immune-mediated chronic inflammation. 相似文献