首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human immunodeficiency virus and other lentiviruses infect cells independent of cell cycle progression, but gammaretroviruses, such as the murine leukemia virus (MLV) require passage of cells through mitosis. This property is thought to be important for the ability of HIV to infect resting CD4+ T cells and terminally differentiated macrophages. Multiple and independent redundant nuclear localization signals encoded by HIV have been hypothesized to facilitate migration of viral genomes into the nucleus. The integrase (IN) protein of HIV is one of the HIV elements that targets to the nucleus; however, its role in nuclear entry of virus genomes has been difficult to describe because mutations in IN are pleiotropic. To investigate the importance of the HIV IN protein for infection of non-dividing cells, and to investigate whether or not IN was redundant with other viral signals for cell cycle-independent nuclear entry, we constructed an HIV-based chimeric virus in which the entire IN protein of HIV was replaced by that of MLV. This chimeric virus with a heterologous IN was infectious at a low level, and was able to integrate in an IN-dependent manner. Furthermore, this virus infected non-dividing cells as well as it infected dividing cells. Moreover, we used the chimeric HIV with MLV IN to further eliminate all of the other described nuclear localization signals from an HIV genome--matrix, IN, Viral Protein R, and the central polypurine tract--and show that no combination of the virally encoded NLS is essential for the ability of HIV to infect non-dividing cells.  相似文献   

2.
A major difference between lentiviruses such as human immunodeficiency virus (HIV) and most other retroviruses is their ability to productively infect nondividing cells. We present here genetic evidence for involvement of the capsid protein (CA) in the infectious phenotype in nondividing cells. A chimeric HIV type 1 (HIV-1) in which the MA and CA of HIV-1 are replaced with the MA, p12, and CA encoding sequences from murine leukemia virus (MLV) loses the ability to efficiently infect nondividing cells. Analysis of the accumulation of two-long-terminal-repeat circles implies that the impairment of nuclear transport of preintegration complexes is responsible for the restricted infection of this chimeric virus in nondividing cells. Incorporation of MLV MA and MLV p12 into HIV virions alone does not exert any adverse effects on viral infection in interphase cells. These results suggest that CA is the dominant determinant for the difference between HIV and MLV in the ability to transduce nondividing cells.  相似文献   

3.
As a member of the Retrovirus family, human immunodeficiency virus (HIV), a causative agent of AIDS, replicates by integrating its genome into the host cell's nuclear DNA. However, in contrast to most retroviruses that depend on mitotic dissolution of the nuclear envelope to gain access to the host cell's genome, the HIV pre-integration complex can enter the nucleus of the target cell during the interphase. Such capacity greatly enhances HIV replication and allows the virus to productively infect terminally differentiated nonproliferating cells, such as macrophages. Infection of macrophages is a critical factor in the pathogenesis of diseases caused by HIV-1 and other lentiviruses. The mechanisms responsible for this unusual feature of HIV have enticed researchers since the early 90s, when the first characterization of the HIV-1 pre-integration complex was reported. Several viral factors, including matrix protein, integrase, viral protein R, and central DNA flap, have been proposed as regulators of HIV-1 nuclear import, only to be later shown as nonessential for this process. As a result, after more than a decade of intense research, there is still no consensus on which HIV-1 and cellular proteins control this critical step in HIV-1 replication. In this review, we will discuss recent advances and suggest possible solutions to the controversial issue of HIV-1 nuclear import.  相似文献   

4.
Retroviruses must gain access to the host cell nucleus for subsequent replication and viral propagation. Human immunodeficiency virus type 1 (HIV-1) and other primate lentiviruses are distinguished from the gammaretroviruses by their ability to infect nondividing cells such as macrophages, an important viral reservoir in vivo. Rather than requiring nuclear membrane breakdown during cell division, the HIV-1 preintegration complex (PIC) enters the nucleus by traversing the central aqueous channel of the limiting nuclear pore complex. The HIV-1 PIC contains three nucleophilic proteins, matrix, integrase, and Vpr, all of which have been implicated in nuclear targeting. The mechanism by which Vpr can display such nucleophilic properties and yet also be available for incorporation into virions assembling at the plasma membrane is unresolved. We recently characterized Vpr as a nucleocytoplasmic shuttling protein that contains two novel nuclear import signals and an exportin-1-dependent nuclear export signal (NES). We now demonstrate that mutation of this NES impairs the incorporation of Vpr into newly formed virions. Furthermore, we find that the Vpr NES is required for efficient HIV replication in tissue macrophages present in human spleens and tonsils. These findings underscore how the nucleocytoplasmic shuttling of Vpr not only contributes to nuclear import of the HIV-1 PIC but also enables Vpr to be present in the cytoplasm for incorporation into virions, leading to enhancement of viral spread within nondividing tissue macrophages.  相似文献   

5.
HIV and other lentiviruses can productively infect nondividing cells, whereas most other retroviruses, such as murine leukemia virus, require cell division for efficient infection. However, the determinants for this phenotype have been controversial. Here, we show that HIV-1 capsid (CA) is involved in facilitating HIV infection of nondividing cells because amino acid changes on CA severely disrupt the cell-cycle independence of HIV. One mutant in the N-terminal domain of CA in particular has lost the cell-cycle independence in all cells tested, including primary macrophages. The defect in this mutant appears to be at a stage past nuclear entry. We also find that the loss of cell-cycle independence can be cell-type specific, which suggests that a cellular factor affects the ability of HIV to infect nondividing cells. Our data suggest that CA is directly involved at some step in the viral life cycle that is important for infection of nondividing cells.  相似文献   

6.
7.
8.
The HIV p17 or matrix (MA) protein has long been implicated in the process of nuclear import of the HIV genome and thus the ability of the virus to infect nondividing cells such as macrophages. While it has been demonstrated that MA is not absolutely required for this process, debate continues to surround the subcellular targeting properties of MA and its potential contribution to nuclear import of the HIV cDNA. Through the use of in vitro techniques we have determined that, despite the ability of MA to interact with importins, the full-length protein fails to enter the nucleus of cells. While MA does contain a region of basic amino acids within its N-terminus which can confer nuclear accumulation of a fusion protein, we show that this is due to nuclear retention mediated by DNA binding and does not represent facilitated import. Importantly, we show that the 26KK residues of MA, previously thought to be part of a nuclear localization sequence, are absolutely required for a number of MA's functions including its ability to bind DNA and RNA and its propensity to form high-order multimers/protein aggregates. The results presented here indicate that the N-terminal basic domain of MA does not appear likely to play a role in HIV cDNA nuclear import; rather this region appears to be a crucial structural and functional motif whose integrity is required for a number of other roles performed by MA during viral infection.  相似文献   

9.
Specific viral proteins enter the nucleus of infected cells to perform essential functions, as part of the viral life cycle. The integrase (IN) molecule of human immunodeficiency virus (HIV)-1 is of particular interest in this context due to its integral role in integrating the HIV genome into that of the infected host cell. Most IN-based antiviral compounds target the IN/DNA interaction, but since IN must first enter the nucleus before it can perform these critical functions, nuclear transport of IN is also an attractive target for therapeutic intervention. Here the authors describe a novel high-throughput screening assay for identifying inhibitors of nuclear import, particularly IN, based on amplified luminescent proximity homogeneous assay (AlphaScreen(?)) technology, which is high throughput, requires low amounts of material, and is efficient and cost-effective. The authors use the assay to screen for specific inhibitors of the interaction between IN and its nuclear transport receptor importin α/β, successfully identifying several inhibitors of the IN/importin α/β interaction. Importantly, they demonstrate that one of the identified compounds, mifepristone, is effective in preventing active nuclear transport of IN in transfected cells and hence may represent a useful anti-HIV therapeutic. The screen also identified broad-spectrum importin α/β inhibitors such as ivermectin, which may represent useful tools for nuclear transport research in the future. The authors validate the activity and specificity of mifepristone and ivermectin in inhibiting nuclear protein import in living cells, underlining the utility of the screening approach.  相似文献   

10.
Lentiviruses, human immunodeficiency viruses (HIVs), and simian immunodeficiency viruses (SIVs) are distinguished from oncoretroviruses by their ability to infect nondividing cells such as macrophages. Retroviruses must gain access to the host cell nucleus for replication and propagation. HIV and SIV preintegration complexes (PIC) enter nuclei after traversing the central aqueous channel of the limiting nuclear pore complex without membrane breakdown. Among the nucleophilic proteins, namely, matrix, integrase, Vpx, and Vpr, present in HIV type 2/SIV PIC, Vpx is implicated in nuclear targeting and is also available for incorporation into budding virions at the plasma membrane. The mechanisms of these two opposite functions are not known. We demonstrate that Vpx is a nucleocytoplasmic shuttling protein and contains two novel noncanonical nuclear import signals and a leptomycin B-sensitive nuclear export signal. In addition, Vpx interacts with the cellular tyrosine kinase Fyn through its C-terminal proline-rich motif. Furthermore, our data indicate that Fyn kinase phosphorylates Vpx and regulates its export from nucleus. Replacement of conserved tryptophan residues within domain 41 to 63 and tyrosine residues at positions 66, 69, and 71 in Vpx impairs its nuclear export, virion incorporation, and SIV replication in macrophages. Nuclear export is essential to ensure the availability of Vpx in the cytoplasm for incorporation into virions, leading to efficient viral replication within nondividing cells.  相似文献   

11.
12.
P Lewis  M Hensel    M Emerman 《The EMBO journal》1992,11(8):3053-3058
Cell proliferation is necessary for proviral integration and productive infection of most retroviruses. Nevertheless, the human immunodeficiency virus (HIV) can infect non-dividing macrophages. This ability to grow in non-dividing cells is not specific to macrophages because, as we show here, CD4+ HeLa cells arrested at stage G2 of the cell cycle can be infected by HIV-1. Proliferation is necessary for these same cells to be infected by a murine retrovirus, MuLV. HIV-1 integrates into the arrested cell DNA and produces viral RNA and protein in a pattern similar to that in normal cells. In addition, our data suggest that the ability to infect non-dividing cells is due to one of the HIV-1 core virion proteins. HIV infection of non-dividing cells distinguishes lentiviruses from other retroviruses and is likely to be important in the natural history of HIV infection.  相似文献   

13.
14.
15.
In addition to its well-documented role in integration of the viral genome, the HIV-1 enzyme IN (integrase) is thought to be involved in the preceding step of importing the viral cDNA into the nucleus. The ability of HIV to transport its cDNA through an intact nuclear envelope allows HIV-1 to infect non-dividing cells, which is thought to be crucial for the persistent nature of HIV/AIDS. Despite this, the mechanism utilized by HIV-1 to import its cDNA into the nucleus, and the viral proteins involved, remains ill-defined. In the present study we utilize in vitro techniques to assess the nuclear import properties of the IN protein, and show that IN interacts with members of the Imp (Importin) family of nuclear transport proteins with high affinity and exhibits rapid nuclear accumulation within an in vitro assay, indicating that IN possesses potent nucleophilic potential. IN nuclear import appears to be dependent on the Imp alpha/beta heterodimer and Ran GTP (Ran in its GTP-bound state), but does not require ATP. Importantly, we show that IN is capable of binding DNA and facilitating its import into the nucleus of semi-intact cells via a process that involves basic residues within amino acids 186-188 of IN. These results confirm IN as an efficient mediator of DNA nuclear import in vitro and imply the potential for IN to fulfil such a role in vivo. These results may not only aid in highlighting potential therapeutic targets for impeding the progression of HIV/AIDS, but may also be relevant for non-viral gene delivery.  相似文献   

16.
17.
Like its retroviral relatives, the long terminal repeat retrotransposon Ty1 in the yeast Saccharomyces cerevisiae must traverse a permanently intact nuclear membrane for successful transposition and replication. For retrotransposition to occur, at least a subset of Ty1 proteins, including the Ty1 integrase, must enter the nucleus. Nuclear localization of integrase is dependent upon a C-terminal nuclear targeting sequence. However, the nuclear import machinery that recognizes this nuclear targeting signal has not been defined. We investigated the mechanism by which Ty1 integrase gains access to nuclear DNA as a model for how other retroelements, including retroviruses like HIV, may utilize cellular nuclear transport machinery to import their essential nuclear proteins. We show that Ty1 retrotransposition is significantly impaired in yeast mutants that alter the classical nuclear protein import pathway, including the Ran-GTPase, and the dimeric import receptor, importin-alpha/beta. Although Ty1 proteins are made and processed in these mutant cells, our studies reveal that an integrase reporter is not properly targeted to the nucleus in cells carrying mutations in the classical nuclear import machinery. Furthermore, we demonstrate that integrase coimmunoprecipitates with the importin-alpha transport receptor and directly binds to importin-alpha. Taken together, these data suggest Ty1 integrase can employ the classical nuclear protein transport machinery to enter the nucleus.  相似文献   

18.
Qi M  Yang R  Aiken C 《Journal of virology》2008,82(24):12001-12008
Among retroviruses, lentiviruses are unusual in their ability to efficiently infect both dividing and nondividing cells, such as activated T cells and macrophages, respectively. Recent studies implicate the viral capsid protein (CA) as a key determinant of cell-cycle-independent infection by human immunodeficiency virus type 1 (HIV-1). We investigated the effects of the host cell protein cyclophilin A (CypA), which binds to HIV-1 CA, on HIV-1 infection of nondividing cells. The HIV-1 CA mutants A92E, T54A, and R132K were impaired for infection of aphidicolin-arrested HeLa cells, but not HOS cells. The mutants synthesized normal quantities of two-long-terminal-repeat circles in arrested HeLa cells, indicating that the mutant preintegration complexes can enter the nuclei of both dividing and nondividing cells. The impaired infectivity of the CA mutants on both dividing and nondividing HeLa cells was relieved by either pharmacological or genetic disruption of the CypA-CA interaction or by RNA interference-mediated depletion of CypA expression in target cells. A second-site suppressor of the CypA-restricted phenotype also restored the ability of CypA-restricted HIV-1 mutants to infect growth-arrested HeLa cells. These results indicate that CypA-restricted mutants are specifically impaired at a step between nuclear import and integration in nondividing HeLa cells. This study reveals a novel target cell-specific restriction of HIV-1 CA mutants in nondividing cells that is dependent on CypA-CA interactions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号