首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance to re-infection of rainbow trout to Loma salmonae, a microsporidian gill parasite has been previously documented and this study examined how rapidly this resistance develops. Naive rainbow trout were inoculated intraperitoneally (IP) with an inactivated spore-based vaccine and were then given an oral challenge with a high dose of L. salmonae spores at various weeks after being vaccinated. Non-vaccinated naive fish (exposed group) were challenged alongside of each group of vaccinated fish to ensure that the challenges were relatively standardised. In each group of fish, four weeks after the challenge, numbers of xenomas were counted on a gill arch for all fish. Vaccinated trout were completely resistant to a L. salmonae challenge six weeks after vaccination, although the onset of resistance began at approximately week 3, as observed with a reduction in the percent infected and xenoma intensity. The maximum percent infected for the vaccinated fish was 83% following a challenge two weeks following vaccination, whereas for the exposed group the maximum prevalence of 100% was reached several times. With continued research, a spore-based vaccine for L. salmonae has the potential to become the first commercially available parasite vaccine for fish.  相似文献   

2.
The existence of a layer of mucus covering the gill lamellae of healthy rainbow trout (Oncorhynchus mykiss) was investigated. Using cryo-scanning electron microscopy, a smooth, undulating, thin layer was observed which completely covered gill filaments and lamellae, thereby obscuring epithelial microridges. After processing cryopreserved gill arches in glutaraldehyde for conventional scanning electron microscopy, the layer was no longer present and epithelial microridges were clearly visible. The identity of this layer was investigated using cryopreserved gills which were treated in one of two ways. First, gills were incubated with a rabbit antiserum to gill mucus, with normal rabbit serum, or with phosphate-buffered saline. Following fixation in glutaraldehyde and processing, only the gill tissue incubated with the mucus-specific antiserum was still covered with the smooth layer. The layer was also retained on the gills of fish anesthetized in a solution containing mucusspecific antiserum and then processes in glutaraldehyde for conventional scanning electron microscopy. The tenacious nature of the mucous layer was demonstrated by its stability following exposure to formalin and a cationic detergent. Second, the presence of this layer was confirmed on gill tissue which was cryopreserved, followed by freeze-substitution and vapor fixation, and then examined by transmission electron microscopy.  相似文献   

3.
The existence of a layer of mucus covering the gill lamellae of healthy rainbow trout (Oncorhynchus mykiss) was investigated. Using cryo-scanning electron microscopy, a smooth, undulating, thin layer was observed which completely covered gill filaments and lamellae, thereby obscuring epithelial microridges. After processing cryopreserved gill arches in glutaraldehyde for conventional scanning electron microscopy, the layer was no longer present and epithelial microridges were clearly visible. The identity of this layer was investigated using cryopreserved gills which were treated in one of two ways. First, gills were incubated with a rabbit antiserum to gill mucus, with normal rabbit serum, or with phosphate-buffered saline. Following fixation in glutaraldehyde and processing, only the gill tissue incubated with the mucus-specific antiserum was still covered with the smooth layer. The layer was also retained on the gills of fish anesthetized in a solution containing mucusspecific antiserum and then processes in glutaraldehyde for conventional scanning electron microscopy. The tenacious nature of the mucous layer was demonstrated by its stability following exposure to formalin and a cationic detergent. Second, the presence of this layer was confirmed on gill tissue which was cryopreserved, followed by freeze-substitution and vapor fixation, and then examined by transmission electron microscopy.  相似文献   

4.
Deoxynivalenol (DON) is one of the most frequently detected mycotoxins in agricultural commodities used as animal feedstuff in Central Europe. This study focuses on determining effects of diets containing DON on oxidative stress markers and detoxifying enzymes in rainbow trout (Oncorhynchus mykiss). The fish were fed with commercial pellets containing DON at a concentration of 2 mg kg?1. Selected enzymes were measured in liver, gill and caudal kidney of the fish after 23 and 32 days of the experiment. Significant differences between the control and experimental groups were observed concerning activities of glutathione peroxidase (GPx) in kidney, glutathione reductase (GR) in gill and kidney, catalase (CAT) in kidney and liver and glutathione S‐transferase (GST) in gill and liver. No significant differences were found for superoxide dismutase (SOD) gene expression, lipid peroxidation (TBARS) and the ferric reducing ability of plasma (FRAP). The data show that DON in the diet at the concentration below EC recommendation (2006/576/EC) induces oxidative stress in the rainbow trout.  相似文献   

5.
6.
This study describes the development of a trout gill perfusion model, consisting of an excised branchial arch from rainbow trout (Oncorhynchus mykiss L.), perfused via the afferent branchial artery and suspended in a circular organ chamber filled with Ringer solution. Different perfusion fluids were tested: Ringer, Cortland, Ringer + procaine, Ringer + adrenalin, Cortland + procaine, Cortland + adrenalin and Cortland + dextran 1%. The latter perfusion fluid proved to be satisfactory, maintaining the gill tissue in a healthy condition outside the body of the fish for at least 180 min. Using this model, the interaction of damaging agents with the trout gill tissue may be studied under carefully controlled conditions. The trout gill perfusion model leads effectively to a reduction in the number of experimental animals to be used and also involves an elimination of pain and/or suffering, which is as good as complete.  相似文献   

7.
Synopsis A quantitative analysis has been made of the glycoproteins present in the goblet cells of the epidermis, gill filaments and gill lamellae of three species of teleost fish. The glycoproteins have been identified by a combination of techniques, including the use of the enzyme sialidase followed by Alcian Blue staining, at pH 2.6 or I. o, in combination with periodic acid-Schiff. The selected fish were representative of species living in marine, freshwater and estuarine environments.The range of glycoproteins identified in these fish was similar to that found in mammalian tissue in that both neutral and acid glycoproteins were present, the latter included both sialomucins sensitive and resistant to sialidase, and sulphomucin. A single goblet cell contained either neutral or acid glycoproteins alone or in combination. Only the epidermis of the plaice and rainbow trout contained uniform cell populations producing acid glycoproteins, the former sulphomucin and the latter mainly sialomucin. At each site in the flounder and in the gill epithelia of the plaice and rainbow trout, the goblet cell population was mixed, with cells producing each type of glycoprotein. The number of goblet cells producing each type of glycoprotein varied at each tissue site.  相似文献   

8.
THE TOXICITY OF ZINC SULPHATE TO RAINBOW TROUT   总被引:4,自引:0,他引:4  
The toxicity of zinc sulphate to rainbow trout ( Salmo gairdnerii Richardson) has been investigated in waters of different chemical and physical properties.
Zinc sulphate was less toxic to rainbow trout in hard water than in soft water; when the log concentration of zinc was plotted against log median period of survival of the fish the dose response curve was linear in a very soft water, and curvilinear in a hard water, approaching an apparent threshold concentration. Solutions of zinc sulphate containing calcium chloride were less toxic than those containing an equivalent concentration of calcium as bicarbonate.
An increase in temperature decreased the survival time of rainbow trout in solutions of zinc sulphate in a hard water, but the threshold concentration was not appreciably affected by changes in temperature.
A reduction in the dissolved oxygen concentration of the water increased the toxicity of zinc sulphate, but the effect was reduced when the fish were previously acclimatized to the lower oxygen concentration of the test.
The cause of death of fish in solutions of zinc sulphate was not by the precipitation of mucus on the gills but probably by damage to the gill epithelium.  相似文献   

9.
Two semisynthetic diets differing in the levels of pantothenic acid (PA) supplementation (0 or 40 mg kg−1 diet) were fed to rainbow trout, Salmo gairdneri Richardson, initially weighing 0.7 g fish−1. Each diet was fed to two tanks of fish and, at the start of the feeding trial, each tank contained 200 animals. The experiment was conducted for 28 days during which time, every 2 days, gill tissue was sampled and food consumption was determined. Lamellar hyperplasia was first detected in the gills of deficient fish on the 12th day sample, while reduced feed intake was first manifest at 16 days. Hyperplasia first appeared in the distal regions of the gill filaments, but the lesion rapidly progressed in a proximal direction and 35 of 40 fish examined on days 22–28 exhibited hyperplasia on more than 75% of the filament surface. Gill lamellar hyperplasia is a sensitive indicator of PA deficiency in the rainbow trout. Moreover, the lesion is specific to PA deficiency since its developmental pattern differs histologically from the lamellar hyperplasia of the non-nutritional gill diseases.  相似文献   

10.
Nagler JJ  Cavileer T  Sullivan J  Cyr DG  Rexroad C 《Gene》2007,392(1-2):164-173
Estrogen hormones interact with cellular ERs to exert their biological effects in vertebrate animals. Similar to other animals, fishes have two distinct ER subtypes, ERalpha (NR3A1) and ERbeta (NR3A2). The ERbeta subtype is found as two different isoforms in several fish species because of a gene duplication event. Although predicted, two different isoforms of ERalpha have not been demonstrated in any fish species. In the rainbow trout (Oncorhynchus mykiss), the only ER described is an isoform of the ERalpha subtype (i.e. ERalpha1, NR3A1a). The purpose of this study was to determine whether the gene for the other ERalpha isoform, ERalpha2 (i.e., NR3A1b), exists in the rainbow trout. A RT-PCR and cloning strategy, followed by screening a rainbow trout BAC library yielded a unique DNA sequence coding for 558 amino acids. The deduced amino acid sequence had a 75.4% overall similarity to ERalpha1. Both the rainbow trout ERbeta subtypes, ERbeta1 [NR3A2a] and ERbeta2, [NR3A2b] which were previously unknown in this species, were also sequenced as part of this study, and the amino acid sequences were found to be very different from the ERalphas (approximately 40% similarity). ERbeta1 and ERbeta2 had 594 and 604 amino acids, respectively, and had 57.6% sequence similarity when compared to one another. This information provides what we expect to be the first complete nuclear ER gene family in a fish. A comprehensive phylogenetic analysis with all other known fish ER gene sequences was undertaken to understand the evolution of fish ERs. The results show a single ERalpha subtype clade, with the closest relative to rainbow trout ERalpha2 being rainbow trout ERalpha1, suggesting a recent, unique duplication event to create these two isoforms. For the ERbeta subtype there are two distinct subclades, one represented by the ERbeta1 isoform and the other by the ERbeta2 isoform. The rainbow trout ERbeta1 and ERbeta2 are not closely associated with each other, but instead fall into their respective ERbeta subclades with other known fish species. Real-time RT-PCR was used to measure the mRNA levels of all four ER isoforms (ERalpha1, ERalpha2, ERbeta1, and ERbeta2) in stomach, spleen, heart, brain, pituitary, muscle, anterior kidney, posterior kidney, liver, gill, testis and ovary samples from rainbow trout. The mRNAs for each of the four ERs were detected in every tissue examined. The liver tended to have the highest ER mRNA levels along with the testes, while the lowest levels were generally found in the stomach or heart. The nuclear ERs have a significant and ubiquitous distribution in the rainbow trout providing the potential for complex interactions that involve the functioning of many organ systems.  相似文献   

11.
The susceptibility of 2 strains of rainbow trout Oncorhynchus mykiss, 1 from North America (TL) and 1 from Germany (GR), to Myxobolus cerebralis (the cause of salmonid whirling disease) was assessed following exposure to the infectious stages (triactinomyxons). Two laboratory experiments were conducted with age-matched rainbow trout of each strain. At the beginning of the study, the 2 trout strains were aged ca. 570 degree-days in Expt 1, and ca. 999 degree-days in Expt 2. In both experiments, replicate groups of each trout strain were exposed to 10, 100, 1000 or 10000 triactinomyxons (TAMs) fish(-1) for 2 h. The fish were then held in aquaria receiving 15 degrees C well-water. Severity of infection was evaluated 5 mo after exposure by presence of clinical signs (whirling and/or black tail), prevalence of infection, severity of microscopic lesions, and spore counts. Clinical signs of whirling disease were evident only in the younger fish exposed in Expt 1: These occurred first among TL rainbow trout at the highest dose at 6 to 7 wk post exposure and then 2 wk later in fish at the 1000 TAMs dose. Black tail was also observed among GR rainbow trout at the 10000 TAMs dose only, but in fewer fish. The prevalence of infection, spore numbers, and severity of microscopic lesions due to M. cerebralis among GR rainbow trout were less at all doses compared to TL rainbow trout. Risk of infection analyses showed that TL rainbow trout were more prone to infection at the lower doses than GR trout. Mean spore counts were consistently (10- to 100-fold) less in GR than TL trout at doses of 1000 TAMs or lower. Microscopic lesions increased with increasing dose in both strains of rainbow trout. The mechanisms underlying the greater resistance of the GR strain to M. cerebralis infections are unknown, but are under investigation as part of a long-term project to determine the basis for resistance and susceptibility of salmonid fishes to whirling disease.  相似文献   

12.
The spermatogonia of fish can be classified as being either undifferentiated type A spermatogonia or differentiated type B spermatogonia. Although type A spermatogonia, which contain spermatogonial stem cells, have been demonstrated to be a suitable material for germ cell transplantation, no molecular markers for distinguishing between type A and type B spermatogonia in fish have been developed to date. We therefore sought to develop a molecular marker for type A spermatogonia in rainbow trout. Using GFP-dependent flow cytometry (FCM), enriched fractions of type A and type B spermatogonia, testicular somatic cells, and primordial germ cells were prepared from rainbow trout possessing the green fluorescent protein (GFP) gene driven by trout vasa regulatory regions (pvasa-GFP rainbow trout). The gene-expression profiles of each cell fraction were then compared with a microarray containing cDNAs representing 16,006 genes from several salmonid species. Genes exhibiting high expression for type A spermatogonia relative to above-mentioned other types of gonadal cells were identified and subjected to RT-PCR and quatitative PCR analysis. Since only the rainbow trout notch1 homologue showed significantly high expression in the type A spermatogonia-enriched fraction, we propose that notch1 may be a useful molecular marker for type A spermatogonia. The combination of GFP-dependent FCM and microarray analysis of pvasa-GFP rainbow trout can therefore be applied to the identification of potentially useful molecular markers of germ cells in fish.  相似文献   

13.
Occurrence of Flavobacterium psychrophilum in fish farms and fish-farming environments was studied using agar plate cultivation, the immunoflourescence antibody technique (IFAT) and nested PCR. Characteristics of 64 F. psychrophilum isolates from rainbow trout Oncorhynchus mykiss, fish farm rearing water, ovarian fluid and wild fish were serotyped, ribotyped and compared biochemically. Virulence of F. psychrophilum isolates from different sources was compared by injection into rainbow trout. Additionally, the number of F. psychrophilum cells shed by naturally infected rainbow trout was determined. F. psychrophilum was detected and isolated from skin mucus, skin lesions and internal organs of diseased rainbow trout and from fish without clinical disease. The pathogen was also present in wild perch Perca fluviatilis, roach Rutilus rutilus, and ovarian fluids of farmed rainbow trout brood fish. Isolates were biochemically homogenous, excluding the capability to degrade elastin. Five different agglutination patterns with different antisera against F. psychrophilum were found among the isolates studied. Although several different ribopatterns were found (ClaI: 12 ribopatterns and HaeIII: 9 ribopatterns), ribotype A was the most dominant. Farmed rainbow trout brood fish carried a broad-spectrum of serologically and genetically different F. psychrophilum in ovarian fluids. Virulence of the tested isolates in rainbow trout varied and naturally infected rainbow trout shed 10(4) to 10(8) cells fish(-1) h(-1) of F. psychrophilum into the surrounding water.  相似文献   

14.
Rainbow trout (Oncorhynchus mykiss) are often used to estimate important biotic ligand model (BLM) parameters, such as metal-binding affinity (log K) and capacity (Bmax). However, rainbow trout do not typically occupy metal-contaminated environments, whereas yellow perch (Perca flavescens) are ubiquitous throughout most of North America. This study demonstrates that dynamic processes that regulate Cu uptake at the gill differ between rainbow trout and yellow perch. Rainbow trout were more sensitive to acute aqueous Cu than yellow perch, and toxicity was exacerbated in soft water relative to similar exposures in hard water. Whole body Na loss rate could account for acute Cu toxicity in both species, as opposed to new Cu uptake rate that was not as predictive. Time course experiments using radiolabelled Cu (64Cu) revealed that branchial Cu uptake was rather variable within the first 12 h of exposure, and appeared to be a function of Cu concentration, water hardness, and fish species. After 12 h, new branchial Cu concentrations stabilized in both species, suggesting that metal exposures used to estimate BLM parameters should be increased in duration from 3 h to 12+ h. In rainbow trout, 71% of the new Cu bound to the gill was exchangeable (i.e., able to either enter the fish or be released back to the water), as opposed to only 48% in yellow perch. This suggests that at equal exposure concentrations, proportionally more branchial Cu can be taken up by rainbow trout than yellow perch, which can then go on to confer toxicity. These qualitative differences in branchial Cu handling between the two species emphasize the need to develop BLM parameters for each species of interest, rather than the current practice of extrapolating BLM results derived from rainbow trout (or other laboratory-reared species) to other species. Data reported here indicate that a one-size-fits-all approach to predictive modeling, mostly based on rainbow trout studies, may not suffice for making predictions about metal toxicity to yellow perch—that is, a species that inhabits metal-contaminated lakes around northern Canadian industrial operations.  相似文献   

15.
16.
1. When rainbow trout were exposed to cadmium by intraperitoneal injection, there was a rapid (within 3hr) and significant (approx. 63%) loss of the metal from the whole bodies of the fish.2. Of the metal retained in the bodies of the fish (approx. 37% of the injected dose), more than 98% was accounted for collectively among the liver, kidney and gills.3. Subsequent maintenance of the rainbow trout in fresh water for up to 98 days post-metal administration, indicated that there was no further loss of the cadmium accumulated in the organs studied and that the distribution of the metal among the liver, kidney and gills remained unchanged over that period.4. During this 98-day period of maintenance of the fish, tissue concentrations of metallothionein-specific mRNA and metallothionein protein were quantified using riboprobe and ELISA systems respectively. Metallothionein-specific mRNA concentrations increased rapidly (within 24 hr) before falling back to levels similar to, or slightly greater than, those found in control animals. The concentration of metallothionein protein also increased significantly (within 3 days) then remained elevated thereafter.5. Throughout the experimental period, the concentrations of zinc and copper were also monitored in the liver, kidney and gills of the rainbow trout. The concentrations of each ion differed between each of the organs but did not change during the experiment.6. The induction of metallothionein gene expression by cadmium in the liver, kidney and gill of rainbow trout and the subsequent sequestration of the toxic metal is discussed with regard to the relative levels of these other essential metal ions.  相似文献   

17.
Observations on the gill morphology of individual gill arches of walleye, Stizostedion vitreum vitreum and rainbow trout, Salmo gairdneri suggest that the first two arches account for the highest proportion of gill filament number, secondary lamellae number, lamellae area, and gill surface area. Interspecific comparisons suggest walleye contain a larger number of gill filaments, with a lower secondary lamellae count, but a larger gill surface area than a trout of the same weight. This is partially attributed to the larger surface area of each lamella in a walleye than in a trout.
A detailed examination suggests the surface area of a lamella is dependent on its position on the gill filament, and the position of the gill filament on the gill arch.  相似文献   

18.
The present study was conducted to investigate whether individual rainbow trout Oncorhynchus mykiss can simultaneously anticipate two daily meals, and to evaluate the influence of time-restricted feeding schedules and light-dark (L:D) cycles on the timing of self-feeding activity. Individual rainbow trout were capable of anticipating not only a single meal but also two daily meals scheduled at different times; the duration of anticipation was short and precise. This seems to be the first convincing evidence to show that a single fish can simultaneously anticipate two daily meals. Change in the onset and cessation of light did not affect the duration of food-anticipatory activity, although it led to shift the phases of the light-related self-feeding activity. Moreover, under constant light and ad lib feeding conditions, only one band of rhythmic activity was observed in individual rainbow trout that had previously developed food-anticipatory activity to each of the two daily meals.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号