首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alain Gauthier 《BBA》2006,1757(11):1547-1556
The flash-induced thermoluminescence (TL) technique was used to investigate the action of N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) on charge recombination in photosystem II (PSII). Addition of low concentrations (μM range) of TMPD to thylakoid samples strongly decreased the yield of TL emanating from S2QB and S3QB (B-band), S2QA (Q-band), and YD+QA (C-band) charge pairs. Further, the temperature-dependent decline in the amplitude of chlorophyll fluorescence after a flash of white light was strongly retarded by TMPD when measured in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Though the period-four oscillation of the B-band emission was conserved in samples treated with TMPD, the flash-dependent yields (Yn) were strongly declined. This coincided with an upshift in the maximum yield of the B-band in the period-four oscillation to the next flash. The above characteristics were similar to the action of the ADRY agent, carbonylcyanide m-chlorophenylhydrazone (CCCP). Simulation of the B-band oscillation pattern using the integrated Joliot-Kok model of the S-state transitions and binary oscillations of QB confirmed that TMPD decreased the initial population of PSII centers with an oxidized plastoquinone molecule in the QB niche. It was deduced that the action of TMPD was similar to CCCP, TMPD being able to compete with plastoquinone for binding at the QB-site and to reduce the higher S-states of the Mn cluster.  相似文献   

2.
The spectra of the absorbance changes due to the turnover of the so-called S-states of the oxygen-evolving apparatus were determined. The changes were induced by a series of saturating flashes in dark-adapted Photosystem II preparations, isolated from spinach chloroplasts. The electron acceptor was 2,5-dichloro-p-benzoquinone. The fraction of System II centers involved in each S-state transition on each flash was calculated from the oscillation pattern of the 1 ms absorbance transient which accompanies oxygen release. The difference spectrum associated with each S-state transition was then calculated from the observed flash-induced difference spectra. The spectra were found to contain a contribution by electron transfer at the acceptor side, which oscillated during the flash series approximately with a periodicity of two and was apparently modulated to some extent by the redox state of the donor side. At the donor side, the S0 → S1, S1 → S2 and S2 → S3 transitions were all three accompanied by the same absorbance difference spectrum, attributed previously to an oxidation of Mn(III) to Mn(IV) (Dekker, J.P., Van Gorkom, H.J., Brok, M. and Ouwehand, L. (1984) Biochim. Biophys. Acta 764, 301–309). It is concluded that each of these S-state transitions involves the oxidation of an Mn(III) to Mn(IV). The spectrum and amplitude of the millisecond transient were in agreement with its assignment to the reduction of the oxidized secondary donor Z+ and the three Mn(IV) ions.  相似文献   

3.
The temperature dependence of donor side reactions was analysed within the framework of the Marcus theory of nonadiabatic electron transfer. The following results were obtained for PS II membrane fragments from spinach: (1) the reorganisation energy of P680+? reduction by YZ is of the order of 0.5?eV in samples with a functionally fully competent water oxidising complex (WOC); (2) destruction of the WOC by Tris-washing gives rise to a drastic increase of λ to values of the order of 1.6?eV; (3) the reorganisation energies of the oxidation steps in the WOC are dependent, on the redox states S i with values of about 0.6?eV for the reactions YZ OX S 0→YZ S 1 and YZ OX S 1→YZ S 2, 1.6?eV for the reaction YZ OX S 2→YZ S 3 and 1.1?eV (above a characteristic temperature uc of about 6??°C) for the reaction YZ OX S 3→→YZ S 0+O2. Using an empirical rate constant-distance relationship, the van der Waals distance between YZ and P680 was found to be about 10?Å, independent of the presence or absence of the WOC, whereas the distance between YZ and the manganese cluster in the WOC was ≥15?Å. Based on the calculated activation energies the environment of YZ is inferred to be almost "dry" and hydrophobic when the WOC is intact but becomes enriched with water molecules after WOC destruction. Furthermore, it is concluded that the transition S 2S 3 is an electron transfer reaction gated by a conformational change, i.e. it comprises significant structural changes of functional relevance. Measurements of kinetic H/D isotope exchange effects support the idea that none of these reactions is gated by the break of a covalent O-H bond. The implications of these findings for the mechanism of water oxidation are discussed.  相似文献   

4.
Electric field-induced charge recombination in Photosystem II (PS II) was studied in osmotically swollen spinach chloroplasts (blebs) by measurement of the concomitant chlorophyll luminescence emission (electroluminescence). A pronounced dependence on the redox state of the two-electron gate QB was observed and the earlier failure to detect it is explained. The influence of the QB/QB oscillation on electroluminescence was dependent on the redox state of the oxygen evolving complex; at times around one millisecond after flash illumination a large effect was observed in the states S2 and S3, but not in the state S4 (actually Z+S3). The presence of the oxidized secondary electron donor, tyrosine Z+, appeared to prevent expression of the QB/QB effect on electroluminescence, possibly because this effect is primarily due to a shift of the redox equilibrium between Z/Z+ and the oxygen evolving complex.Abbreviations BSA bovine serum albumin - EDTA ethylene-diaminetetraacetic acid - EL electroluminescence - FCCP carbonylcyanide p-trifluoromethyloxyphenyl-hydrazone - HEPESI 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - I primary electron acceptor - MOPS 3-(N-morpholino) propane sulfonic acid - P680 primary electron donor of Photosystem II - P700 primary electron donor of Photosystem I - QA and QB secondary and tertiary electron acceptors of Photosystem II - Z secondary electron donor (D1 Tyr 161)  相似文献   

5.
《BBA》2023,1864(4):148998
Chloride (Cl) is essential for O2 evolution during photosynthetic water oxidation. Two chlorides near the water-oxidizing complex (WOC) in Photosystem II (PSII) structures from Thermosynechococcus elongatus (and T. vulcanus) have been postulated to transfer protons generated from water oxidation. We monitored four criteria: primary charge separation flash yield (P* → P+QA), rates of water oxidation steps (S-states), rate of proton evolution, and flash O2 yield oscillations by measuring chlorophyll variable fluorescence (P* quenching), pH-sensitive dye changes, and oximetry. Br-substitution slows and destabilizes cellular growth, resulting from lower light-saturated O2 evolution rate (−20 %) and proton release (−36 % ΔpH gradient). The latter implies less ATP production. In Br- cultures, protonogenic S-state transitions (S2 → S3 → S0’) slow with increasing light intensity and during O2/water exchange (S0’ → S0 → S1), while the non-protonogenic S1 → S2 transition is kinetically unaffected. As flash rate increases in Cl cultures, both rate and extent of acidification of the lumen increase, while charge recombination is suppressed relative to Br. The Cl advantage in rapid proton escape from the WOC to lumen is attributed to correlated ion-pair movement of H3O+Cl in dry water channels vs. separated Br and H+ ion movement through different regions (>200-fold difference in Bronsted acidities). By contrast, at low flash rates a previously unreported reversal occurs that favors Br cultures for both proton evolution and less PSII charge recombination. In Br cultures, slower proton transfer rate is attributed to stronger ion-pairing of Br with AA residues lining the water channels. Both anions charge-neutralize protons and shepherd them to the lumen using dry aqueous channels.  相似文献   

6.
Sándor Demeter  Imre Vass 《BBA》1984,764(1):24-32
In the glow curves of chloroplasts excited by a series of flashes at +1°C the intensity of the main thermoluminescence band appearing at +30°C (B band; B, secondary acceptor of Photosystem II) exhibits a period-4 oscillation with maxima on the 2nd and 6th flashes indicating the participation of the S3 state of the water-splitting system in the radiative charge recombination reaction. After long-term dark adaptation of chloroplasts (6 h), when the major part of the secondary acceptor pool (B pool) is oxidized, a period-2 contribution with maxima occurring at uneven flash numbers appears in the oscillation pattern. The B band can even be excited at ?160°C as well as by a single flash in which case the water-splitting system undergoes only one transition (S1 → S2). The experimental observations and computer simulation of the oscillatory patterns suggest that the B band originates from charge recombination of the S2B? and S3B? redox states. The half-time of charge recombination responsible for the B band is 48 s. When a major part of the plastoquinone pool is reduced due to prolonged excitation of the chloroplasts by continuous light, a second band (Q band; Q, primary acceptor of Photosystem II) appears in the glow curve at +10°C which overlaps with the B band. In chloroplasts excited by flashes prior to DCMU addition only the Q band can be observed showing maxima in the oscillation pattern at flash numbers 2, 6 and 10. The Q band can also be induced by flashes after DCMU addition which allows only one transition of the water-splitting system (S1 → S2). In the presence of DCMU, electrons accumulate on the primary acceptor Q, thus the Q band can be ascribed to the charge recombination of either the S2Q? or S3Q? states depending on whether the water-splitting system is in the S2 or the S3 state. The half-time of the back reaction of Q? with the donor side of PS II (S2 or S3 states) is 3 s. It was also observed that in a sequence of flashes the peak positions of the Q and B bands do not depend on the advancement of the water-splitting system from the S2 state to the S3 state. This result implies that the midpoint potential of the water-splitting system remains unmodified during the S2 → S3 transition.  相似文献   

7.
Flash-induced redox reactions in spinach PS II core particles were investigated with absorbance difference spectroscopy in the UV-region and EPR spectroscopy. In the absence of artificial electron acceptors, electron transport was limited to a single turnover. Addition of the electron acceptors DCBQ and ferricyanide restored the characteristic period-four oscillation in the UV absorbance associated with the S-state cycle, but not the period-two oscillation indicative of the alternating appearance and disappearance of a semiquinone at the QB-site. In contrast to PS II membranes, all active centers were in state S1 after dark adaptation. The absorbance increase associated with the S-state transitions on the first two flashes, attributed to the Z+S1ZS2 and Z+S2ZS3 transitions, respectively, had half-times of 95 and 380 s, similar to those reported for PS II membrane fragments. The decrease due to the Z+S3ZS0 transition on the third flash had a half-time of 4.5 ms, as in salt-washed PS II membrane fragments. On the fourth flash a small, unresolved, increase of less than 3 s was observed, which might be due to the Z+S0ZS1 transition. The deactivation of the higher S-states was unusually fast and occurred within a few seconds and so was the oxidation of S0 to S1 in the dark, which had a half-time of 2–3 min. The same lifetime was found for tyrosine D+, which appeared to be formed within milliseconds after the first flash in about 10% inactive centers and after the third and later flashes by active centers in Z+S3.Abbreviations Bis-Tris (bis[2-hydroxyethyl]imino-tris[hydroxymethyl]methane) - D secondary electron donor of PS II - DCBQ 2,5-dichloro-p-benzoquinone - DCMU 3-(3,4dichlorophenyl)-1,1-dimethylurea - PS II Photosystem II - QA secondary electron acceptor of PS II - S0–3 redox state of the oxygen-evolving complex - Z secondary electron donor of PS II  相似文献   

8.
The effect of desiccation and rehydration on the function of Photosystem II has been studied in the desiccation tolerant lichen Cladonia convoluta by thermoluminescence. We have shown that in functional fully hydrated thalli thermoluminescence signals can be observed from the recombination of the S2(3)QB (B band), S2QA (Q band), Tyr-D+QA (C band) and Tyr-Z+(His+)QA (A band) charge stabilization states. These thermoluminescence signals are completely absent in desiccated thalli, but rapidly reappear on rehydration. Flash-induced oscillation in the amplitude of the thermoluminescence band from the S2(3)QB recombination shows the usual pattern with maxima after 2 and 6 flashes when rehydration takes place in light. However, after rehydration in complete darkness, there is no thermoluminescence emission after the 1 st flash, and the maxima of the subsequent oscillation are shifted to the 3rd and 7th flashes. It is concluded that desiccation of Cladonia convoluta converts PS II into a nonfunctional state. This state is characterized by the lack of stable charge separation and recombination, as well as by a one-electron reduction of the water-oxidizing complex. Restoration of PS II function during rehydration can proceed both in the light and in darkness. After rehydration in the dark, the first charge separation act is utilized in restoring the usual oxidation state of the water-oxidizing comples.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DT desiccation tolerant - PS II Photosystem II - TL thermoluminescence - P680 reaction center Chl of PS II - QA and QB puinone electron acceptors of PS II - S0,...,S4 the redox states of the water-oxidizing complex - Tyr-Z and Tyr-D redox-active tyrosine electron donors of PS II  相似文献   

9.
Photosystem II (PS II) is the site of oxygen evolution. Activation of dark adapted samples by a train of saturating flashes produces oxygen with a yield per flash which oscillates with a periodicity of four. Damping of the oxygen oscillations is accounted for by misses and double hits. The mechanisms hidden behind these parameters are not yet fully understood. The components which participate in charge transfer and storage in PS II are believed to be anchored to the heterodimer formed by the D1 and D2 proteins. The secondary plastoquinone acceptor QB binds on D1 in a loop connecting the fourth and fifth helices (the QB pocket). Several D1 mutants, mutated in the QB binding region, have been studied over the past ten years.In the present report, our results on nine D1 mutants of Synechocystis PCC 6714 and 6803 are analyzed. When oxygen evolution is modified, it can be due to a change in the electron transfer kinetics at the level of the acceptor side of PS II and also in some specific mutants to a long ranging effect on the donor side of PS II. The different properties of the mutants enable us to propose a classification in three categories. Our results can fit in a model in which misses are substantially determined by the fraction of centers which have QA - before each flash due to the reversibility of the electron transfer reactions. This idea is not new but was more thoroughly studied in a recent paper by Shinkarev and Wraight (1993). However, we will show in the discussion that some doubts remain as to the true origin of misses and double hits.Abbreviations BQ p-benzoquinone - Chl chlorophyll - D1 and D2 proteins of the core of PS II - DCMU 3-(3,4-dichlorophenyl)-1,1 dimethyl urea - OEC oxygen evolving complex - P680 chlorophyll center of PS II acting as the primary donor - PS II Photosystem II - QA and QB primary and secondary quinone electron acceptor - TL thermoluminescence  相似文献   

10.
《BBA》1985,809(3):379-387
The oscillations of the ZV and A thermoluminescence bands were investigated in spinach chloroplasts which had been dark-adapted for various time periods and subjected to a series of flashes at +2°C before continuous illumination at various low temperatures. When excited with continuous light below −65°C, the ZV band exhibited period-4 oscillation, with maxima on preflashes 0, 4 and 8. Above −65°C, the oscillation pattern depended greatly on the dark-adaptation period of the chloroplasts. In preilluminated samples (15 s light followed by 3 min dark), when the QB pool is half oxidized, the oscillation of the thermoluminescence intensity measured at −50°C was similar to that observed below −65°C. However, after the thorough dark-adaptation of the chloroplasts (6 h), when the major fraction of the QB pool is assumed to be oxidized, a binary oscillation appeared in the oscillation pattern, with maxima at odd flash numbers. Below −65°C, period-2 oscillation of the ZV band could not be induced by the dark-adaptation of the chloroplasts, suggesting an inhibition of electron exchange between QA and QB. Upon excitation of the chloroplasts with continuous light at −30°C, the A band oscillated with a periodicity of 4 with maxima at preflash numbers 2 and 6. At pH 7.5, the period-4 oscillation was converted into a period-2 oscillation by thorough dark-adaptation of the chloroplasts (24 h). Model calculations of the oscillatory patterns suggest that the period-4 oscillations of the ZV and A bands are determined by the concentrations [S0] + [S1] and [S2] + [S3], respectively, which are present after the preflashes prior to the low-temperature continuous illumination. The period-2 oscillations in the amplitudes of the ZV and A bands reflect the changes occurring in the redox state of the QB pool in a sequence of flashes. The possible relationship between the characteristics of the ZV and A bands and the temperature-dependence of the S state transitions was investigated. Comparison of the amplitudal changes of the B (S2QB and S3QB recombination) and Q (S2QA recombination) thermoluminescence bands as a function of the excitation temperature suggests that the S2 → S3 and S3 → S4 transitions are blocked at about −65 and −40°C, respectively. It is also concluded that the thermoluminescence intensity emitted by the reaction center is about twice as high in the S3 state as in the S2 state.  相似文献   

11.
The light-induced oxidation of the accessory donor tyrosine-D (YD) has been studied by measurements of the EPR Signal IIslow at room temperature in the autotrophically and photoheterotrophically cultivated alga Chlamydobotrys stellata. After illumination and dark adaptation, YD Signal IIslow was observed only in autotrophic algae, i.e. under conditions of a linear photosynthetic electron transfer from water to NADP+. The addition of artificial electron acceptors phenyl-p-benzoquinone (PPQ) or dichloro-p-benzoquinone (DCQ) to the autotrophic cells caused an almost negligible increase of this signal. When photosynthetic electron flow and oxygen evolution were diminished by removal of the carbon source CO2 and addition of acetate (photoheterotrophy), a pronounced YD Signal IIslow was seen only in presence of DCQ or PPQ. Several possibilities are discussed to explain the absence of YD Signal IIslow in photoheterotrophic Chl. stellata such as the existence of a cyclic PS II electron flow very effectively reducing P680 and thereby preventing the possibility of YD oxidation. Artificial electron acceptors withdraw electrons from this cycle thus keeping the primary quinone acceptor, QA, oxidized and thereby diminishing the reduction of P680 + by cyclic PSII. This leads to the appearance of the YD Signal IIslow also in the photoheterotrophically grown algae.Abbreviations A-band- thermoluminescence band associated with S2QA - charge recombination - DCQ- 2,5-dichlorobenzoquinone - D2- structure protein of Photosystem II - EPR- electron paramagnetic resonance - OEC- oxygen evolving complex - PPQ- phenyl-p-benzoquinone - PS II- Photosystem II - P680- reaction center of Photosystem II - Q-band- thermoluminescence band associated with S2QA - charge recombination - Si- oxidation levels of the OEC - YD- tyrosine-D accessory donor to P680 - YZ- tyrosine-Z electron donor to P680 Dedicated to Prof. Dr E. Schnepf/Heidelberg.  相似文献   

12.
Recent chlorophyll‐a fluorescence yield measurements, using single‐turnover saturating flashes (STSFs), have revealed the involvement of a rate‐limiting step in the reactions following the charge separation induced by the first flash. As also shown here, in diuron‐inhibited PSII core complexes isolated from Thermosynechococcus vulcanus the fluorescence maximum could only be reached by a train of STSFs. In order to elucidate the origin of the fluorescence yield increments in STSF series, we performed transient absorption measurements at 819 nm, reflecting the photooxidation and re‐reduction kinetics of the primary electron donor P680. Upon single flash excitation of the dark‐adapted sample, the decay kinetics could be described with lifetimes of 17 ns (~50%) and 167 ns (~30%), and a longer‐lived component (~20%). This kinetics are attributed to re‐reduction of P680?+ by the donor side of PSII. In contrast, upon second‐flash (with Δt between 5 μs and 100 ms) or repetitive excitation, the 819 nm absorption changes decayed with lifetimes of about 2 ns (~60%) and 10 ns (~30%), attributed to recombination of the primary radical pair P680?+Pheo?–, and a small longer‐lived component (~10%). These data confirm that only the first STSF is capable of generating stable charge separation – leading to the reduction of QA; and thus, the fluorescence yield increments elicited by the consecutive flashes must have a different physical origin. Our double‐flash experiments indicate that the rate‐limiting steps, detected by chlorophyll‐a fluorescence, are not correlated with the turnover of P680.  相似文献   

13.
Loss by recombination of the charge separated state P680+QA limits the performance of Photosystem II (PS II) as a photochemical energy converter. Time constants reported in literature for this process are mostly either near 0.17 ms or near 1.4 ms. The shorter time is found in plant PS II when reduction of P680+ by the secondary electron donor Tyrosine Z cannot occur because YZ is already oxidized. The 1.4 ms recombination is seen in YZ-less mutants of the cyanobacterium Synechocystis. However, the rate of P680+QA recombination that actually competes with the stabilization of the charge separation has not been previously reported. We have measured the kinetics of the flash-induced fluorescence yield changes in the microsecond time domain in Tris-washed spinach chloroplasts. In this way the kinetics and yield of P680+ reduction by YZ were obtained, and the rate of the competing P680+QA recombination could be evaluated. The recombination time was less than 0.5 ms; the best-fitting time constant was 0.1 ms. The presence of YZox slightly decreased the efficiency of excitation trapping but did not seem to accelerate P680+QA recombination. The two P680+QA lifetimes in the literature probably reflect a significant difference between plant and cyanobacterial PS II.  相似文献   

14.
The protein-pigment complex of photosystem 2 (PS2) localized in the thylakoid membranes of higher plants, algae, and cyanobacteria is the main source of oxygen on Earth. The light-induced functioning of PS2 is directly linked to electron and proton transfer across the membrane, which results in the formation of transmembrane electric potential difference (ΔΨ). The major contribution to ΔΨ of the PS2 reaction center is due to charge separation between the primary chlorophyll donor P680 and the quinone acceptor QA, accompanied by re-reduction of P 680 + by the redox-active tyrosine residue YZ. The processes associated with the uptake and release of protons on the acceptor and donor sides of the enzyme, respectively, are also coupled with ΔΨ generation. The objective of this work was to describe the mechanisms of ΔΨ generation associated with the S-state transitions of the water-oxidizing complex in intact PS2 complex and in PS2 preparation depleted of Mn4Ca cluster in the presence of artificial electron donors. The findings elucidate the mechanisms of electrogenic reactions on the PS2 donor side and may be a basis for development of an effective solar energy conversion system.  相似文献   

15.
16.
A light-driven reaction model for the Ca2+-depleted Photosystem (PS) II is proposed to explain the split signal observed in electron paramagnetic resonance (EPR) spectra based on a comparison of EPR assignments with recent x-ray structural data. The split signal has a splitting linewidth of 160 G at around g = 2 and is seen upon illumination of the Ca2+-depleted PS II in the S2 state associated with complete or partial disappearance of the S2 state multiline signal. Another g=2 broad ESR signal with a 110 G linewidth was produced by 245 K illumination for a short period in the Ca2+-depleted PS II in S1 state. At the same time a normal YZ· radical signal was also efficiently trapped. The g=2 broad signal is attributed to an intermediate S1X· state in equilibrium with the trapped YZ· radical. Comparison with x-ray structural data suggests that one of the split signals (doublet signal) is attributable to interaction between His 190 and the YZ· radical, and other signals is attributable to interaction between His 337 and the manganese cluster, providing further clues as to the mechanism of water oxidation in photosynthetic oxygen evolution.  相似文献   

17.
Photosystem II (PS II) contains two redox-active tyrosine residues on the donor side at symmetrical positions to the primary donor, P680. TyrZ, part of the water-oxidizing complex, is a preferential fast electron donor while TyrD is a slow auxiliary donor to P680 +. We used PS II membranes from spinach which were depleted of the water oxidation complex (Mn-depleted PS II) to study electron donation from both tyrosines by time-resolved EPR spectroscopy under visible and far-red continuous light and laser flash illumination. Our results show that under both illumination regimes, oxidation of TyrD occurs via equilibrium with TyrZ ? at pH 4.7 and 6.3. At pH 8.5 direct TyrD oxidation by P680 + occurs in the majority of the PS II centers. Under continuous far-red light illumination these reactions were less effective but still possible. Different photochemical steps were considered to explain the far-red light-induced electron donation from tyrosines and localization of the primary electron hole (P680 +) on the ChlD1 in Mn-depleted PS II after the far-red light-induced charge separation at room temperature is suggested.  相似文献   

18.
《FEBS letters》1986,203(2):215-219
The re-reduction course of P-680+, the photooxidized PS II primary donor, was measured as a function of excitation number in Cl-depleted PS II membranes. After the 1st and 2nd excitations the signal amplitude of P-680+ is small, indicating a submicrosecond reduction of P-680+ by Z, the secondary donor of PS II. After the 3rd excitation, however, a larger P-680+ signal with a 40–50 μs half-life is observed. The slow decay of this signal is attributed to a back-reaction with a reduced acceptor in the presence of the Z+S2 state on the donor side. The state Z+S2 has a lifetime longer than 300 ms and its formation was found to depend on the presence of the abnormal S2 state created by the 1st excitation. The P-680 data and thermoluminescence measurements show that the S-state advancement beyond S2 is blocked in the absence of Cl and that the Cl-free abnormal S2 state has a lifetime about 10-times longer than the normal S2 state.  相似文献   

19.
The long-lived, light-induced radical YD of the Tyr161 residue in the D2 protein of Photosystem II (PSII) is known to magnetically interact with the CaMn4 cluster, situated ∼ 30 Å away. In this study we report a transient step-change increase in YD EPR intensity upon the application of a single laser flash to S1 state-synchronised PSII-enriched membranes from spinach. This transient effect was observed at room temperature and high applied microwave power (100 mW) in samples containing PpBQ, as well as those containing DCMU. The subsequent decay lifetimes were found to differ depending on the additive used. We propose that this flash-induced signal increase was caused by enhanced spin relaxation of YD by the OEC in the S2 state, as a consequence of the single laser flash turnover. The post-flash decay reflected S2 → S1 back-turnover, as confirmed by their correlations with independent measurements of S2 multiline EPR signal and flash-induced variable fluorescence decay kinetics under corresponding experimental conditions. This flash-induced effect opens up the possibility to study the kinetic behaviour of S-state transitions at room temperature using YD as a probe.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号