首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two fluorescent heme degradation compounds are detected during autoxidation of oxyhemoglobin. These fluorescent compounds are similar to fluorescent compounds formed when hydrogen peroxide reacts with hemoglobin [E. Nagababu and J. M. Rifkind, Biochem. Biophys. Res. Commun. 247, 592-596 (1998)]. Low levels of heme degradation in the presence of superoxide and catalase are attributed to a reaction involving the superoxide produced during autoxidation. The inhibition of most of the degradation by catalase suggests that the hydrogen peroxide generated during autoxidation of oxyhemoglobin produces heme degradation by the same mechanism as the direct addition of hydrogen peroxide to hemoglobin. The formation of the fluorescent degradation products was inhibited by the peroxidase substrate, ABTS, which reduces ferrylhemoglobin to methemoglobin, indicating that ferrylhemoglobin is produced during the autoxidation of hemoglobin. It is the transient formation of this highly reactive Fe(IV) hemoglobin, which is responsible for most of the heme degradation during autoxidation.  相似文献   

2.
The extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted of subunits containing heme groups, monomers and trimers, and nonheme structures, called linkers, and the whole protein has a minimum molecular mass near 3.1 × 106 Da. This and other proteins of the same family are useful model systems for developing blood substitutes due to their extracellular nature, large size, and resistance to oxidation. HbGp samples were studied by dynamic light scattering (DLS). In the pH range 6.0-8.0, HbGp is stable and has a monodisperse size distribution with a z-average hydrodynamic diameter (Dh) of 27 ± 1 nm. A more alkaline pH induced an irreversible dissociation process, resulting in a smaller Dh of 10 ± 1 nm. The decrease in Dh suggests a complete hemoglobin dissociation. Gel filtration chromatography was used to show unequivocally the oligomeric dissociation observed at alkaline pH. At pH 9.0, the dissociation kinetics is slow, taking a minimum of 24 h to be completed. Dissociation rate constants progressively increase at higher pH, becoming, at pH 10.5, not detectable by DLS. Protein temperature stability was also pH-dependent. Melting curves for HbGp showed oligomeric dissociation and protein denaturation as a function of pH. Dissociation temperatures were lower at higher pH. Kinetic studies were also performed using ultraviolet-visible absorption at the Soret band. Optical absorption monitors the hemoglobin autoxidation while DLS gives information regarding particle size changes in the process of protein dissociation. Absorption was analyzed at different pH values in the range 9.0-9.8 and at two temperatures, 25°C and 38°C. At 25°C, for pH 9.0 and 9.3, the kinetics monitored by ultraviolet-visible absorption presents a monoexponential behavior, whereas for pH 9.6 and 9.8, a biexponential behavior was observed, consistent with heme heterogeneity at more alkaline pH. The kinetics at 38°C is faster than that at 25°C and is biexponential in the whole pH range. DLS dissociation rates are faster than the autoxidation dissociation rates at 25°C. Autoxidation and dissociation processes are intimately related, so that oligomeric protein dissociation promotes the increase of autoxidation rate and vice versa. The effect of dissociation is to change the kinetic character of the autoxidation of hemes from monoexponential to biexponential, whereas the reverse change is not as effective. This work shows that DLS can be used to follow, quantitatively and in real time, the kinetics of changes in the oligomerization of biologic complex supramolecular systems. Such information is relevant for the development of mimetic systems to be used as blood substitutes.  相似文献   

3.
The effects of two ionic surfactants on the oligomeric structure of the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) in the oxy - form have been studied through the use of several spectroscopic techniques such as electronic optical absorption, fluorescence emission, light scattering, and circular dichroism. The use of anionic sodium dodecyl sulphate (SDS) and cationic cethyltrimethyl ammonium chloride (CTAC) has allowed to differentiate the effects of opposite headgroup charges on the oligomeric structure dissociation and hemoglobin autoxidation. At pH 7.0, both surfactants induce the protein dissociation and a significant oxidation. Spectral changes occur at very low CTAC concentrations suggesting a significant electrostatic contribution to the protein-surfactant interaction. At low protein concentration, 0.08 mg/ml, some light scattering within a narrow CTAC concentration range occurs due to protein-surfactant precipitation. Light scattering experiments showed the dissociation of the oligomeric structure by SDS and CTAC, and the effect of precipitation induced by CTAC. At higher protein concentrations, 3.0 mg/ml, a precipitation was observed due to the intense charge neutralization upon formation of ion pair in the protein-surfactant precipitate. The spectral changes are spread over a much wider SDS concentration range, implying a smaller electrostatic contribution to the protein-surfactant interactions. The observed effects are consistent with the acid isoelectric point (pI) of this class of hemoglobins, which favors the intense interaction of HbGp with the cationic surfactant due to the existence of excess acid anionic residues at the protein surface. Protein secondary structure changes are significant for CTAC at low concentrations while they occur at significantly higher concentrations for SDS. In summary, the cationic surfactant seems to interact more strongly with the protein producing more dramatic spectral changes as compared to the anionic one. This is opposite as observed for several other hemoproteins. The surfactants at low concentrations produce the oligomeric dissociation, which facilitates the iron oxidation, an important factor modulating further oligomeric protein dissociation.  相似文献   

4.
Nonsymbiotic class 1 plant hemoglobins are induced under hypoxia. Structurally they are protein dimers consisting of two identical subunits, each containing heme iron in a weak hexacoordinate state. The weak hexacoordination of heme-iron binding to the distal histidine results in an extremely high avidity to oxygen, with a dissociation constant in the nanomolar range. This low dissociation constant is due to rapid oxygen binding resulting in protein conformational changes that slow dissociation from the heme site. Class 1 hemoglobins are characterized by an increased rate of Fe3(+) reduction which is likely mediated by cysteine residue. This cysteine can form a reversible covalent bond between two monomers as shown by mass spectrometry analysis and, in addition to its structural role, prevents the molecule from autoxidation. The structural properties of class 1 hemoglobins allow them to serve as soluble electron transport proteins in the enzymatic system scavenging nitric oxide produced in low oxygen via reduction of nitrite. During oxygenation of nitric oxide to nitrate, oxidized ferric hemoglobin is formed (methemoglobin), which can be reduced by an associated reductase. The identified candidate for this reduction is monodehydroascorbate reductase. It is suggested that hemoglobin functions as a terminal electron acceptor during the hypoxic turnover of nitrogen, the process aided by its extremely high affinity for oxygen.  相似文献   

5.
Annelid erythrocruorins are respiratory proteins with high cooperativity and low autoxidation rates. The giant extracellular hemoglobin of the earthworm, Glossoscolex paulistus (HbGp), has a molecular mass of 3.6 MDa. In this work, isothermal titration calorimetry (ITC), together with DLS and fluorescence emission have been used to investigate the interaction of SDS with the HbGp in the oxy‐form, at pH 7.0. Our ITC and DLS results show that addition of SDS induces oxy‐HbGp oligomeric dissociation, while a small amount of protein aggregation is observed only by DLS. Moreover, the oligomeric dissociation process is favored at lower protein concentrations. The temperature effect does not influence significantly the interaction of SDS with the hemoglobin, due to the similarities presented by the critical aggregation concentration (cac) and critical micelle concentration (cmc′) for the mixtures. The increase of oxy‐HbGp concentration leads to a slight variation of the cac values for the SDS‐oxy‐HbGp mixture, attributed mainly to the noncooperative electrostatic binding of surfactant to protein. However, the cmc′ values increase considerably, associated to a more cooperative hydrophobic binding. Complementary pyrene fluorescence emission studies show formation of pre‐micellar structures of the mixture already at lower SDS concentrations. This study opens the possibility of the evaluation of the surfactant effect on the hemoglobin stability by ITC, which is made for the first time with this extracellular hemoglobin. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1065–1076, 2014.  相似文献   

6.
The complex oligomeric assembly of the hemoglobin subunits may influence the autoxidation rate. To understand this relation, the rate of autoxidation was studied at pH 9.0, where the Glossoscolex paulistus Hemoglobin (GpHb) dissociates. At alkaline pH, this hemoglobin is dissociated into monomers, trimers and tetramers, allowing the study of the integral protein and monomer subunit autoxidation on independent experiments. The autoxidation rate was evaluated in the presence and absence of cyanide (CN(-)), a strong field ligand to the ferric ion. The oxidation kinetic was monitored using the UV-vis absorption at 415 nm, and resulted in: i) bi-exponential kinetics for the whole hemoglobin (indicating a fast and a slow oxidative process) and ii) mono-exponential for the monomer (indicating a single process). To understand the specific characteristics of each autoxidation process, Arrhenius plots allowed the determination of the activation energy. The experimental results indicate for the whole hemoglobin in the absence of CN(-) an activation energy of 150 +/- 10 kJ mol(-1) for the fast and the slow processes. Under the same conditions the monomer displayed an activation energy of 160 +/- 10 kJ mol(-1), very close to the value obtained for the integral protein. The pseudo-second order rate constant for the whole protein autoxidation by CN(-) showed two different behaviors characterized by a rate constant k(CN1)' = 0.11 +/- 0.02 s(-1) mol(-1) L for CN(-) concentrations lower than 0.012 mol L(-1); and k(CN1)" = 0.76 +/- 0.04 s(-1) mol(-1) L at higher concentrations for the fast process, while the slow process remain constant with k(CN2) = 0.033 +/- 0.002 s(-1) mol(-1) L. The monomer has a characteristic rate constant of 0.041 +/- 0.002 s(-1) mol(-1) L for all cyanide concentrations. Comparing the results for the slow process of the whole hemoglobin and the oxidation of the monomer, it is possible to infer that the slow process has a strong contribution of the monomer in the whole hemoglobin kinetic. Moreover, as disulfide linkers sustain the trimer assembly, cooperativity may explain the higher kinetic constant for this subunit.  相似文献   

7.
The effects of two ionic surfactants on the oligomeric structure of the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) in the oxy - form have been studied through the use of several spectroscopic techniques such as electronic optical absorption, fluorescence emission, light scattering, and circular dichroism. The use of anionic sodium dodecyl sulphate (SDS) and cationic cethyltrimethyl ammonium chloride (CTAC) has allowed to differentiate the effects of opposite headgroup charges on the oligomeric structure dissociation and hemoglobin autoxidation. At pH 7.0, both surfactants induce the protein dissociation and a significant oxidation. Spectral changes occur at very low CTAC concentrations suggesting a significant electrostatic contribution to the protein–surfactant interaction. At low protein concentration, 0.08 mg/ml, some light scattering within a narrow CTAC concentration range occurs due to protein–surfactant precipitation. Light scattering experiments showed the dissociation of the oligomeric structure by SDS and CTAC, and the effect of precipitation induced by CTAC. At higher protein concentrations, 3.0 mg/ml, a precipitation was observed due to the intense charge neutralization upon formation of ion pair in the protein–surfactant precipitate. The spectral changes are spread over a much wider SDS concentration range, implying a smaller electrostatic contribution to the protein–surfactant interactions. The observed effects are consistent with the acid isoelectric point (pI) of this class of hemoglobins, which favors the intense interaction of HbGp with the cationic surfactant due to the existence of excess acid anionic residues at the protein surface. Protein secondary structure changes are significant for CTAC at low concentrations while they occur at significantly higher concentrations for SDS. In summary, the cationic surfactant seems to interact more strongly with the protein producing more dramatic spectral changes as compared to the anionic one. This is opposite as observed for several other hemoproteins. The surfactants at low concentrations produce the oligomeric dissociation, which facilitates the iron oxidation, an important factor modulating further oligomeric protein dissociation.  相似文献   

8.
Bis(3,5-dibromosalicyl) fumarate was used to crosslink hemoglobin both in the oxy and deoxy states. This double headed diaspirin was known to crosslink oxy Hb A selectively between Lys 82 beta 1 and Lys 82 beta 2 (Walder, J. A., et al. (1979) Biochemistry 18, 4265) and deoxy Hb A between Lys 99 alpha 1 and Lys 99 alpha 2 (Chatterjee R. Y., et al. (1986) J. Biol. Chem. 261, 9929). The autoxidation at 37 degrees C of oxy alpha 99 crosslinked hemoglobin was found to be 1.8 times as fast as that of Hb A while that of the oxy beta 82 crosslinked hemoglobin was only 1.2 times as fast. After 5 hours the formation of methemoglobin in the alpha crosslinked Hb A is 21.3% compared to 10.8% in beta crosslinked Hb A and 6.4% in Hb A. These results may effect the proposed use of alpha 99 crosslinked hemoglobin as a blood substitute by demonstrating the need for protection from autoxidation during storage.  相似文献   

9.
Ligand binding studies were made with hemoglobin (Hb) isolated from trematode species Gastrothylax crumenifer (Gc), Paramphistomum epiclitum (Pe), Explanatum explanatum (Ee), parasitic worms of water buffalo Bubalus bubalis, and Isoparorchis hypselobagri (Ih) parasitic in the catfish Wallago attu. The kinetics of oxygen and carbon monoxide binding show very fast association rates. Whereas oxygen can be displaced on a millisecond time scale from human Hb at 25 degrees C, the dissociation of oxygen from trematode Hb may require a few seconds to over 20 s (for Hb Pe). Carbon monoxide dissociation is faster, however, than for other monomeric hemoglobins or myoglobins. Trematode hemoglobins also show a reduced rate of autoxidation; the oxy form is not readily oxidized by potassium ferricyanide, indicating that only the deoxy form reacts rapidly with this oxidizing agent. Unlike most vertebrate Hbs, the trematodes have a tyrosine residue at position E7 instead of the usual distal histidine. As for Hb Ascaris, which also displays a high oxygen affinity, the trematodes have a tyrosine in position B10; two H-bonds to the oxygen molecule are thought to be responsible for the very high oxygen affinity. The trematode hemoglobins display a combination of high association rates and very low dissociation rates, resulting in some of the highest oxygen affinities ever observed.  相似文献   

10.
The effect of allosteric effectors, such as inositol hexakisphosphate and/or bezafibrate, has been investigated on the unliganded human adult hemoglobin both spectroscopically (employing electronic absorption, circular dichroism, resonance Raman, and x-ray absorption near-edge spectroscopies) and functionally (following the kinetics of the first CO binding step up to a final 4% ligand saturation degree). All data indicate that the unliganded T-state is not perturbed by the interaction with either one or both effectors, suggesting that their functional influence is only exerted when a ligand molecule is bound to the heme. This is confirmed by the observation that CO dissociation from partially liganded hemoglobin ( 相似文献   

11.
The processes of reversible oxygen binding and nonreversible autoxidation of human hemoglobin were studied. The activation energy of the oxygen binding, as determined by the temperature dependence of the P50 parameter, was 26 +/- 4 kJ/mol, the activation energy of the autoxidation, as determined by the temperature dependence of the apparent rate constant of autoxidation, was 120 +/- 15 kJ/mol. Pyridoxal phosphate decreased the oxygen affinity of hemoglobin, slightly diminished the cooperativity of the oxygenation process and unaffected the activation energy of the oxygen binding. Pyridoxal phosphate slightly reduced the Bohr coefficient value from 0.70 to 0.65. Pyridoxal phosphate, but not pyridoxal, raised the apparent rate constant of autoxidation reaction. The rate of autoxidation significantly increased as the pH value of the medium decreased, reflecting, probably, protonation of the distal histidine of the hemoglobin. The activation energy of autoxidation was independent of pH. Aliphatic alcohols also increased the rate of the autoxidation process, probably, either by stabilization of the hemoglobin T-state, or by direct nucleophilic displacement of the oxygen molecule.  相似文献   

12.
The role of hemoglobin solutions as oxygen carriers in biotechnology are numerous, such as in the oxygen supply to biocatalysts or in the preparation of blood substitutes. However, the major barrier to the successful use of hemoglobin in biological and medical engineering is the autoxidation of heme iron during preparation, storage, and utilization. Fifty-six solvents, chosen among the group of Parker's classification, were studied with regard to the autoxidation kinetics of oxyhemoglobin under nondenaturant conditions. Among these solvents 27 present a concentration range in which the autoxidation rates were reduced compared to autoxidation in water. Three groups of solvent have been observed: one exhibiting only a destabilizing effect regardless of the solvent proportion, a second showing a strong stabilizing effect (k(H2O)/k(solvent) greater than 20) and a third showing a low stabilization (k(H2O)/k(solvent) less than 20). The most effective stabilizing solvents were glycerol, glycols, and alcohols. The effect of hydroorganic solvents could be explained by taking into account the globin solvation by water molecules. The solvents that enhance the structure of the water and form few hydrophobic interactions with globin prevent oxyhemoglobin autoxidation.  相似文献   

13.
The effects of cations and glycerol on the dissociation induced by pressure and on the reassembly of Glossoscolex paulistus hemoglobin were examined by light scattering, gel filtration, and electron microscopy. Calcium stabilized the quaternary structure of the hemoglobin against pressure dissociation. In the presence of 50 mM Ca2+, the half-dissociation pressure (p 1/2) increased by 400 bar, which corresponds to an average stabilization of -0.62 kcal/mol of dissociating subunit. Calcium also promoted a large increase in the yield of recovery of fully assembled hemoglobin at the expense of the partially dissociated (one-twelfth subunit) and fully dissociated forms. Glycerol protected the hemoglobin from pressure dissociation, increasing the half-dissociation pressure (p 1/2) and promoted an increase in the yield of recovery of fully assembled hemoglobin by about 40%. Addition of calcium after return to atmospheric pressure increased recovery of the fully associated form only in a long time scale (many days). The existence of time-dependent changes in the conformation of the dissociated subunits is suggested to explain the partial association to one-twelfth subaggregates (drifted forms) that lack the ability to reassemble to native hemoglobin. The promotion of reassembly by nonprotein factors (calcium and glycerol) is suggested to occur by preventing the formation of wrong intermediate forms (drifted one-twelfth subunits).  相似文献   

14.
15.
Human hemoglobin (Hb) conjugated to benzene tetracarboxylate substituted dextran produces a polymeric Hb (Dex-BTC-Hb) with similar oxygen affinity to that of red blood cells (P(50)=28-29 mm Hg). Under physiological conditions, the oxygen affinity (P(50)) of Dex-BTC-Hb is 26 mm Hg, while that of native purified human HbA(0) is 14 mm Hg, but it exhibits a slight reduction in cooperativity (n(50)), Bohr effect, and lacks sensitivity to inositol hexaphosphate (IHP), when compared to HbA(0). Oxygen-binding kinetics, measured by rapid mixing stopped-flow method showed comparable oxygen dissociation and association rates for both HbA(0) and Dex-BTC-Hb. The rate constant for NO-mediated oxidation of the oxy form of Dex-BTC-Hb, which is governed by NO entry to the heme pocket, was reduced to half of the value obtained for HbA(0). Moreover, Dex-BTC-Hb is only slightly more sensitive to oxidative reactions than HbA(0), as shown by about 2-fold increase in autoxidation, and slightly higher H(2)O(2) reaction and heme degradation rates. Dextran-BTC-based modification of Hb produced an oxygen-carrying compound with increased oxygen release rates, decreased oxygen affinity and reduced nitric oxide scavenging, desirable properties for a viable blood substitute. However, the reduction in the allosteric function of this protein and the lack of apparent quaternary T-->R transition may hinder its physiological role as an oxygen transporter.  相似文献   

16.
The rate and mechanism of autoxidation of soluble ferrocytochrome b5, prepared from liver microsomal suspensions, appear to reflect an intrinsic property of membrane-bound cytochrome b5. The first-order rate constant for autoxidation of trypsin-cleaved ferrocytochrome b5, prepared by reduction with dithionite, was 2.00 X 10(-3) +/- 0.19 X 10(-3) S-1 (mean +/- S.E.M., n =8) when measured at 30 degrees C in 10 mM-phosphate buffer, pH 7.4. At 37 degrees C in aerated 10 mM-phosphate buffer (pH 7.4)/0.15 M-KCl, the rate constant was 5.6 X 10(-3) S-1. The autoxidation reaction was faster at lower pH values and at high ionic strengths. Unlike ferromyoglobin, the autoxidation reaction of which is maximal at low O2 concentrations, autoxidation of ferrocytochrome b5 showed a simple O2-dependence with an apparent Km for O2 of 2.28 X 10(-4) M (approx. 20kPa or 150mmHg)9 During autoxidation, 0.25 mol of O2 was consumed per mol of cytochrome oxidized. Cyanide, nucleophilic anions, EDTA and catalase each had little or no effect on autoxidation rates. Adrenaline significantly enhanced autoxidation rates, causing a tenfold increase at 0.6 mM. Ferrocytochrome b5 reduced an excess of cytochrome c in a biphasic manner. An initial rapid phase, independent of O2 concentration, was unaffected by superoxide dismutase. A subsequent slower phase, which continued for up to 60 min, was retarded at low O2 concentrations and inhibited by 65% by superoxide dismutase at a concentration of 3 mug/ml. It is concluded that autoxidation is responsible for a significant proportion of electron flow between cytochrome b5 and O2 in liver endoplasmic membranes, this reaction being capable of generating superoxide anions. A biological role for the reaction is discussed.  相似文献   

17.
The dissociation of the extracellular hemoglobin of Tubifex tubifex at alkaline and acid pH, and its reassociation upon return to neutral pH, was investigated using gel filtration, ultracentrifugation, and polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS-PAGE). Tubifex hemoglobin dissociated at pH above 8 and below 6; both dissociations appeared to be equilibrium processes. The extent of dissociation increased as the pH moved away from neutrality; although dissociation was virtually complete at pH 11, its extent at acid pH did not exceed 50–60% at pH 4. Ca(II), Mg(II), and Sr(II) cations over the range 1–100 mm decreased the extent of the dissociation only at alkaline pH. The visible absorption spectrum of the oxyhemoglobin remained unaltered in the pH range 4–9. At more extreme pH, it changed with time, altering irreversibly to that of the aquo ferri form. Gel filtration of the hemoglobin at both extremes of pH showed that it dissociated into two heme-containing fragments; one consisting of subunit 1 (Mr ~ 17,000) and the other containing subunits 2, 3, and 4 of the hemoglobin (Mr ~ 60,000). Upon return to neutral pH, the dissociated fragment reassociated to the extent of 50 to 80% to whole hemoglobin molecules. The reassociation decreased with increase in alkaline pH, and with decrease in acid pH to which the hemoglobin had been exposed; it increased in the presence of Ca(II), Sr(II), and Mg(II) only subsequent to dissociation at alkaline pH. The SDS-PAGE patterns, gel-filtration elution volumes, and α-helical contents, determined from circular dichroism at 222 nm, of the reassociated whole molecules were identical to those of the native hemoglobin.  相似文献   

18.
Hu T  Li D  Manjula BN  Acharya SA 《Biochemistry》2008,47(41):10981-10990
The PEGylated hemoglobin (Hb) has been evaluated as a potential blood substitute. In an attempt to understand the autoxidation of the PEGylated Hb, we have studied the autoxidation of the PEGylated Hb site-specifically modified at Cys-93(beta) or at Val-1(beta). PEGylation of Hb at Cys-93(beta) perturbed the heme environment and increased the autoxidation rate of Hb, which is at a higher level than that caused by PEGylation at Val-1(beta). The perturbation of the heme environment of Hb is attributed to the maleimide modification at Cys-93(beta) and not due to conjugation of the PEG chains. However, the PEG chains enhance the autoxidation and the H 2O 2 mediated oxidation of Hb. Accordingly, the PEG chains are assumed to increase the water molecules in the hydration layer of Hb and enhance the autoxidation by promoting the nucleophilic attack of heme. The autoxidation rate of the PEGylated Hb does not show an inverse correlation with the oxygen affinity. The H 2O 2 mediated structural loss and the heme loss of Hb are increased by maleimide modification at Cys-93(beta) and further decreased by conjugation of the PEG chains. The autoxidation of the PEGylated Hbs is attenuated significantly in the plasma, possibly due to the presence of the antioxidant species in the plasma. This result is consistent with the recent suggestion that there is no direct correlation between the in vitro and in vivo autoxidation of the PEGylated Hb. Therefore, the pattern of PEGylation can be manipulated for the design of the PEGylated Hb with minimal autoxidation.  相似文献   

19.
Glutaraldehyde is widely used for the cross-linking of hemoglobin for blood substitute research or for technological purposes. The effects of this reagent on the biochemical properties of hemoglobin were correlated with M?ssbauer data. Human hemoglobin was cross-linked by glutaraldehyde as soluble polymers and insoluble particles. Effects of cross-linking on oxygen affinity, oxidation-reduction potential, autoxidation kinetics, and thermal stability were studied. Stability of cross-linked hemoglobin was specifically studied by M?ssbauer spectroscopy. Oxygen affinity is increased, redox potential is decreased, autoxidation rates are increased, and stability towards thermal denaturation is increased. The regeneration of partially denatured hemoglobin by glutaraldehyde cross-linking is shown. Effects of cross-linking on biochemical properties are explained by the hypothesis of the opening of the heme pocket on the distal-histidine side and the concomitant charge transfer from the iron to the oxygen.  相似文献   

20.
Glutaraldehyde is a widely used reagent for hemoglobin cross-linking in blood substitutes research. However, hemoglobin polymerization by glutaraldehyde involves modifications of its functional properties, such as oxygen affinity, redox potentials, and autoxidation kinetics. The aim of this article is to investigate, by electron paramagnetic resonance and Mossbauer spectroscopies, the changes that occur in the iron environment after glutaraldehyde cross-linking. Spectrometric studies were performed with native hemoglobin and hemoglobin cross-linked as soluble and insoluble polymers. Spectrometry data comparison with glutaraldehyde-modified hemoglobin functional properties allows to interpret from a structural point of view that glutaraldehyde action occurs as a decrease of the O--N(F8His) distance, an increase of the Fe--N(F8His) bond length, and the decrease of the distal-side steric hindrance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号