首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oocyte activation at fertilization is brought about by the testis-specific phospholipase C zeta (PLCZ), owing to its ability to induce oscillations in intracellular Ca(2+) concentration ([Ca(2+)](i)). Whereas this is a highly conserved mechanism among mammals, important species-specific differences in PLCZ sequence, activity, and expression have been reported. Thus, the objectives of this research were to clone and characterize the intracellular Ca(2+)-releasing activity and expression of equine PLCZ in sperm and testis. Molecular cloning of equine PLCZ yielded a 1914-bp sequence that translated into a protein of the appropriate size (~73 kDa), as detected with an anti-PLCZ-specific antibody. Microinjection of 1 μg/μl of equine PLCZ cRNA supported [Ca(2+)](i) oscillations in murine oocytes that were of a higher relative frequency than those generated by an equivalent concentration of murine Plcz cRNA. Immunofluorescence revealed expression of PLCZ over the acrosome, equatorial segment, and head-midpiece junction; unexpectedly, PLCZ also localized to the principal piece of the flagellum in all epididymal, uncapacitated, and capacitated sperm. Immunostaining over the acrosome was abrogated after induction of acrosomal exocytosis. Moreover, injection of either sperm heads or tails into mouse oocytes showed that PLCZ in both fractions is catalytically active. Immunohistochemistry on equine testis revealed expression as early as the round spermatid stage, and injection of these cells supported [Ca(2+)](i) oscillations in oocytes. In summary, we report that equine PLCZ displays higher intrinsic intracellular Ca(2+)-releasing activity than murine PLCZ and that catalytically active protein is expressed in round spermatids as well as the sperm flagellum, emphasizing important species-specific differences. Moreover, some of these results may suggest potential novel roles for PLCZ in sperm physiology.  相似文献   

2.
Fertilization-induced Ca(2+) oscillations in mouse eggs cease at the time of pronuclear formation when maturation-promoting factor (MPF) is inactivated, but the Ca(2+) oscillations are ceaseless if eggs are arrested at metaphase by colcemid, which maintains the activity of MPF. To determine the possible role of MPF in regulation of cytoplasmic Ca(2+) excitability, roscovitine, a specific inhibitor of p34(cdc2)/cyclin B kinase, was used to inactivate MPF, and its effect on fertilization-induced Ca(2+) oscillations was investigated. Our results showed that roscovitine at >/= 50 microM suppressed fertilization-induced Ca(2+) oscillations in normal and colcemid-treated metaphase II (MII) eggs after the first 1-2 Ca(2+) spikes. Roscovitine inhibition of fertilization-induced Ca(2+) oscillations could be reversed by extensive washing of the eggs. Histone H1 kinase activity in colcemid-treated MII eggs was similarly inhibited by roscovitine, which suggested that the cessation of fertilization-induced Ca(2+) oscillations is due to the inactivation of MPF. Thimerosal-induced Ca(2+) oscillations in Ca(2+)-, Mg(2+)-free medium was also suppressed by roscovitine, suggesting a general inhibitory effect of roscovitine on Ca(2+) oscillations. The inhibition may be achieved by disruption of Ca(2+) release and refilling of the calcium store. Thapsigargin, an inhibitor of the endoplasmic reticulum Ca-ATPase, induced significantly less Ca(2+) release in roscovitine-treated eggs than in the non-drug-treated eggs. Taken together, our results suggest that MPF plays an important role in regulation of the cytoplasmic Ca(2+) excitability in mouse eggs.  相似文献   

3.
Phospholipase C-zeta (PLCzeta), a strong candidate of the egg-activating sperm factor, causes intracellular Ca2+ oscillations and egg activation, and is subsequently accumulated into the pronucleus (PN), when expressed in mouse eggs by injection of RNA encoding PLCzeta. Changes in the localization of expressed PLCzeta were investigated by tagging with a fluorescent protein. PLCzeta began to translocate into the PN formed at 5-6 h after RNA injection and increased there. Observation in the same embryo revealed that PLCzeta in the PN dispersed to the cytoplasm upon nuclear envelope breakdown and translocated again into the nucleus after cleavage. The dynamics was found in the second mitosis as well. When RNA was injected into fertilization-originated 1-cell embryos or blastomere(s) of 2-8-cell embryos, the nuclear localization of expressed PLCzeta was recognized in every embryo up to blastocyst. Thus, PLCzeta exhibited alternative cytoplasm/nucleus localization during development. This supports the view that the sperm factor could control cell cycle-dependent generation of Ca2+ oscillations in early embryogenesis.  相似文献   

4.
Cyclin B1, the regulatory component of M phase-promoting factor (MPF), is degraded during the metaphase-anaphase transition in an anaphase-promoting complex/cyclosome (APC/C)-dependent process. MPF activity is stable in eggs, and a sperm-triggered Ca(2+) signal is needed to promote cyclin degradation. In frogs, a single Ca(2+) spike promotes cell cycle resumption, but, in mammals, the Ca(2+) signal is more complex, consisting of a series of spikes that stop several hours after sperm fusion. Using dual imaging in mouse eggs, we have examined how the Ca(2+) signal generates cyclin B1 destruction using destructible and nondestructible GFP-tagged constructs. APC/C activity was present in unfertilized eggs, giving cyclin B1 a half-life of 1.15 +/- 0.28 hr. However, APC/C-dependent cyclin degradation was elevated 6-fold when sperm raised cytosolic Ca(2+) levels above 600 nM. This activation was transitory since cyclin B1 levels recovered between Ca(2+) spikes. For continued cyclin degradation at basal Ca(2+) levels, multiple spikes were needed. APC/C-mediated degradation was observed until eggs had completed meiosis with the formation of pronuclei, and, at this time, Ca(2+) spikes stopped. Therefore, the physiological need for a repetitive Ca(2+) signal in mammals is to ensure long-term cyclin destruction during a protracted exit from meiosis.  相似文献   

5.
Sperm-specific phospholipase C zeta (PLC zeta) is known to induce intracellular Ca(2+) oscillations and egg activation when expressed in mouse eggs by injection of RNA encoding PLC zeta. We investigated the expression level and spatial distribution of PLC zeta in the egg in real time and in relation to the initiation and termination of Ca(2+) oscillations by monitoring fluorescence of a yellow fluorescent protein 'Venus' fused with PLC zeta. Ca(2+) oscillations similar to those at fertilization were induced at 40-50 min after RNA injection, when expressed PLC zeta reached 10-40 x 10(-15) g in the egg. PLC zeta-Venus increased up to 3 h and attained a steady level at 4-5 h. Interestingly, PLC zeta-Venus is accumulated to the pronucleus (PN) formed at 5-6 h and continuously increased there. Ca(2+) oscillations stopped in most eggs before initiation of the accumulation. A variant of PLC zeta that lacks three EF hand domains was much less effective in induction of Ca(2+) oscillations and little accumulated in the pronucleus, indicating a critical role of those domains. The ability of the accumulation to the pronucleus qualifies PLC zeta for a strong candidate of the Ca(2+) oscillation-inducing sperm factor, which is introduced into the ooplasm upon sperm-egg fusion and concentrated to the pronucleus after inducing egg activation.  相似文献   

6.
Sperm-specific phospholipase C-zeta (PLCzeta) causes intracellular Ca(2+) oscillations and thereby egg activation and is accumulated into the formed pronucleus (PN) when expressed in mouse eggs by injection of cRNA encoding PLCzeta, which consists of four EF-hand domains (EF1-EF4) in the N terminus, X and Y catalytic domains, and C-terminal C2 domain. Those activities were analyzed by expressing PLCzeta mutants tagged with fluorescent protein Venus by injection of cRNA into unfertilized eggs or 1-cell embryos after fertilization. Nuclear localization signal (NLS) existed at 374-381 in the X/Y linker region. Nuclear translocation was lost by replacement of Arg(376), Lys(377), Arg(378), Lys(379), or Lys(381) with glutamate, whereas Ca(2+) oscillations were conserved. Nuclear targeting was also absent for point mutation of Lys(299) and/or Lys(301) in the C terminus of X domain, or Trp(13), Phe(14), or Val(18) in the N terminus of EF1. Ca(2+) oscillation-inducing activity was lost by the former mutation and was remarkably inhibited by the latter. A short sequence 374-383 fused with Venus showed active translocation into the nucleus of COS-7 cells, but 296-309 or 1-19 did not. Despite the presence of these special regions, both activities were deprived by deletion of not only EF1 but also EF2-4 or C2 domain. Thus, PLCzeta is driven into the nucleus primarily by the aid of NLS and putative regulatory sites, but coordinated three-dimensional structure, possibly formed by a folding in the X/Y linker and close EF/C2 contact as in PLCdelta1, seems to be required not only for enzymatic activity but also for nuclear translocation ability.  相似文献   

7.
Animal-vegetal axis patterning mechanisms in the early sea urchin embryo   总被引:2,自引:0,他引:2  
During mouse fertilization the spermatozoon induces a series of low-frequency long-lasting Ca(2+) oscillations. It is generally accepted that these oscillations are due to Ca(2+) release through the inositol 1,4,5-trisphosphate (InsP(3)) receptor. However, InsP(3) microinjection does not mimic sperm-induced Ca(2+) oscillations, leading to the suggestion that the spermatozoon causes Ca(2+) release by sensitizing the InsP(3) receptor to basal levels of InsP(3). This contradicts recent evidence that the spermatozoon triggers Ca(2+) oscillations by introducing a phospholipase C or else an activator of phospholipase C. Here we show for the first time that sperm-induced Ca(2+) oscillations may be mimicked by the photolysis of caged InsP(3) in both mouse metaphase II eggs and germinal vesicle stage oocytes. Eggs, and also oocytes that had displayed spontaneous Ca(2+) oscillations, gave long-lasting Ca(2+) oscillations when fertilized or when caged InsP(3) was photolyzed. In contrast, oocytes that had shown no spontaneous Ca(2+) oscillations did not generate many oscillations when fertilized or following photolysis of caged InsP(3). Fertilization in eggs was most closely mimicked when InsP(3) was uncaged at relatively low amounts for extended periods. Here we observed an initial Ca(2+) transient with superimposed spikes, followed by a series of single transients with a low frequency; all characteristics of the Ca(2+) changes at fertilization. We therefore show that InsP(3) can mimic the distinctive pattern of Ca(2+) release in mammalian eggs at fertilization. It is proposed that a sperm Ca(2+)-releasing factor operates by generating a continuous small amount of InsP(3) over an extended period of time, consistent with the evidence for the involvement of a phospholipase C.  相似文献   

8.
Our aim was to investigate if human oocytes, like mouse oocytes, exhibit spontaneous Ca(2+) oscillations and nuclear translocation of PLC-beta1 prior to germinal vesicle breakdown (GVBD), and to correlate these events with the evolution of chromatin configuration as a landmark for the meiosis resumption kinetics. Human germinal vesicle (GV) oocytes were either loaded with Fluo-3 probe to record Ca(2+) signals or fixed for subsequent fluorescent labeling of both chromatin and PLC-beta1, and immunogold labeling of PLC-beta1. Here for the first time, we show that human oocytes at the GV-stage exhibit spontaneous Ca(2+) oscillations. Interestingly, only oocytes with a large diameter and characterized by a compact chromatin surrounding the nucleolus of the GV could reveal these kind of oscillations. We also observed a translocation of PLC-beta1 from the cytoplasm towards the nucleus during in vitro maturation of human oocytes. Spontaneous calcium oscillations and nuclear translocation of PLC-beta1 may reflect some degree of oocyte maturity. The impact of our results may be very helpful to understand and resolve many enigmatic problems usually encountered during the in vitro meiotic maturation of human GV oocytes.  相似文献   

9.
There is evidence showing that at fertilization the sperm introduces into egg cytoplasm a protein-based cytosolic factor, which serves as the physiological trigger for inducing Ca(2+) oscillations in mammalian eggs. Here we show that sperm of nonmammalian vertebrates also contain a cytosolic protein factor that can induce Ca(2+) oscillations when introduced into mammalian eggs. We have observed that cytosolic extracts derived from Xenopus or chicken sperm could induce mouse eggs to undergo Ca(2+) oscillations similar to those induced by bovine sperm extracts. The factor responsible for inducing Ca(2+) oscillations was of high molecular weight and heat- or proteinase K-labile. We show that 0.5 chicken sperm-equivalents or 1-2 Xenopus sperm-equivalents of the extracts had enough activity to trigger Ca(2+) oscillations in mouse eggs. Our findings illustrate that although Xenopus, chicken, and mammals are evolutionarily divergent species, the function of the sperm protein factor in triggering Ca(2+) oscillations in mammalian eggs appears not to be species specific in vertebrates.  相似文献   

10.
Fertilization-induced Ca(2+)spiking in mouse zygotes ceases at the end of pre-G1 as pronuclei (PN) form. In the present studies we found that there was no consistent temporal relationship between PN formation and cessation of spiking. We also show that nucleate and anucleate fragments of zygotes, obtained by bisection of fertilized eggs prior to PN formation, both ceased spiking at times that did not depend on the presence of the PN. We, therefore, concluded that formation of the PN does not cause spiking cessation. The possibility that cessation of the fertilization-induced Ca(2+)spiking may be mediated by a redox sensitive mechanism affecting the sensitivity of Ca(2+)release from internal stores is proposed. At first mitosis, a small proportion of zygotes show low amplitude calcium spikes prior to pronuclear envelope breakdown (PNEBD), whereas all zygotes spiked at this time in the presence of high extracellular Ca(2+)and dithiothreitol. Nucleated zygotic fragments also spiked before PNEBD whereas anucleated ones rarely did. Exit from G2 was required for this spiking to be observed in nucleated zygotes or fragments. Arrest in M-phase resulted in the appearance of a prolonged series of small amplitude spikes. It is concluded that the spiking at mitosis is cell cycle regulated and may differ qualitatively in its control from that at fertilization.  相似文献   

11.
Sperm-specific phospholipase Czeta (PLCzeta) is known to induce intracellular Ca(2+) oscillations and subsequent early embryonic development when expressed in mouse eggs by injection of RNA encoding PLCzeta (Saunders, C. M., Larman, M. G., Parrington, J., Cox, L. J., Royse, J., Blayney, L. M., Swann, K., and Lai, F. A. (2002) Development 129, 3533-3544). The present study addressed characteristics of purified mouse PLCzeta protein that was synthesized using the baculovirus/Sf9 cell expression system. Microinjection of recombinant PLCzeta protein into mouse eggs induced serial Ca(2+) spikes quite similar to those produced by the injection of sperm extract, probably because of repetitive Ca(2+) release from the endoplasmic reticulum caused by continuously produced inositol 1,4,5-trisphosphate. Recombinant PLCdelta1 also induced Ca(2+) oscillations, but a 20-fold higher concentration was required compared with PLCzeta. In the enzymatic assay of phosphatidylinositol 4,5-bisphosphate hydrolyzing activity in vitro at various calcium ion concentrations ([Ca(2+)]), PLCzeta exhibited a significant activity at [Ca(2+)] as low as 10 nm and had 70% maximal activity at 100 nm [Ca(2+)] that is usually the basal intracellular calcium ion concentration level of cells. On the other hand, the activity of PLCdelta1 increased at a [Ca(2+)] between 1 and 30 microm. EC(50) was 52 nm for PLCzeta and 5.7 microm for PLCdelta1. Thus, PLCzeta has an approximately 100-fold higher Ca(2+) sensitivity than PLCdelta1. The ability of purified PLCzeta protein to induce Ca(2+) oscillations qualifies PLCzeta as a proper candidate of the mammalian egg-activating sperm factor. Furthermore, such a high Ca(2+) sensitivity of PLC activity as PLCzeta that can be active in cells at the resting state is thought to be an appropriate characteristic of the sperm factor, which is introduced into the ooplasm upon sperm-egg fusion, triggers Ca(2+) release first, and maintains Ca(2+) oscillations.  相似文献   

12.
There is evidence showing that the sperm-induced Ca(2+) oscillations in mammalian eggs at fertilization are triggered by a sperm-derived protein factor. It was established recently that the activity of the putative sperm protein in causing Ca(2+) oscillations in mammalian eggs is not species-specific in vertebrates (1, 16). Here we report that cytosolic soluble extracts derived from flowering plant sperms in Brassica campestris can also induce fertilization-like Ca(2+) oscillations when microinjected into mouse eggs. The factor responsible for inducing Ca(2+) oscillations in the plant sperm was sperm-specific and heat- or trypsin-labile. Eight to ten sperm equivalents of the plant sperm extracts had enough activity to trigger Ca(2+) oscillations in mouse eggs. Our study suggests that, although plant and mammal are evolutionary divergent species, the activity of the putative sperm protein factor in triggering Ca(2+) signaling in mammalian eggs is not specific to the animal kingdom.  相似文献   

13.
14.
In mammals, the sperm triggers a series of cytosolic Ca(2+) oscillations that continue for approximately 4 hours, stopping close to the time of pronucleus formation. Ca(2+) transients are also seen in fertilized embryos during the first mitotic division. The mechanism that controls this pattern of sperm-induced Ca(2+) signalling is not known. Previous studies suggest two possible mechanisms: first, regulation of Ca(2+) oscillations by M-phase kinases; and second, regulation by the presence or absence of an intact nucleus. We describe experiments in mouse oocytes that differentiate between these mechanisms. We find that Ca(2+) oscillations continue after Cdk1-cyclin B1 activity falls at the time of polar body extrusion and after MAP kinase has been inhibited with UO126. This suggests that M-phase kinases are not necessary for continued Ca(2+) oscillations. A role for pronucleus formation in regulating Ca(2+) signalling is demonstrated in experiments where pronucleus formation is inhibited by microinjection of a lectin, WGA, without affecting the normal inactivation of the M-phase kinases. In oocytes with no pronuclei but with low M-phase kinase activity, sperm-induced Ca(2+) oscillations persist for nearly 10 hours. Furthermore, a dominant negative importin beta that inhibits nuclear transport, also prevents pronucleus formation and causes Ca(2+) oscillations that continue for nearly 12 hours. During mitosis, fluorescent tracers that mark nuclear envelope breakdown and the subsequent reformation of nuclei in the newly formed two-cell embryo establish that Ca(2+) oscillations are generated only in the absence of a patent nuclear membrane. We conclude by suggesting a model where nuclear sequestration and release of a Ca(2+)-releasing activity contributes to the temporal organization of Ca(2+) transients in meiosis and mitosis in mice.  相似文献   

15.
Sperm-egg interaction was investigated in mouse eggs freed from the zona pellucida and injected with Clostridium difficile toxin B, the inhibitor of Rho family small G proteins. Toxin B reduced in a dose-dependent manner the percentage of eggs associated with sperm fusion on the surface or sperm nucleus decondensation in the ooplasm, examined by injection of a DNA-staining dye into the egg and transfer of the dye to the fused sperm head after recording intracellular Ca(2+) responses for 100 min postinsemination. The mean number of decondensed sperm nuclei per egg was remarkably decreased by approximately 1 microg/ml toxin B in the ooplasm. This was because spermatozoa were arrested at the fusion state without developing to sperm incorporation and tended to lose cytoplasmic continuity to the egg. The fusion-arrested spermatozoa caused transient small Ca(2+) oscillations in most of eggs, while an injected spermatozoon produced repetitive large Ca(2+) spikes unaffected by toxin B. A decrease in the rate of fused spermatozoa and decondensed sperm nuclei was also caused by 20-40 microM cytochalasin D, the inhibitor of actin polymerization. Immunostaining of Rho proteins showed that Rac1 and RhoB are present in the cortical ooplasm, but Cdc42 is absent. Actin filaments in the cortex appeared to be reduced in toxin B-injected eggs. This study suggests that Rho protein(s) regulating actin-based cytoskeletal reorganization is involved in the process leading to sperm incorporation.  相似文献   

16.
At fertilization in mammals, the sperm activates the egg by inducing a series of oscillations in the intracellular free Ca(2+) concentration. There is evidence showing that this oscillatory event is triggered by a sperm-derived protein factor which diffuses into egg cytoplasm after gamete membrane fusion. At present the identity of this factor and its precise mechanism of action is unknown. Here, we studied the specificity of action of the sperm factor in triggering Ca(2+) oscillations in mammalian eggs. In doing so, we examined the patterns of Ca(2+) signaling in mouse eggs, zygotes, parthenogenetic eggs and maturing oocytes following the stimulation of bovine sperm extracts which contain the sperm factor. It is observed that the sperm factor could induce Ca(2+) oscillations in metaphase eggs, maturing oocytes and parthenogenetically activated eggs but not in the zygotes. We present evidence that Ca(2+) oscillations induced by the sperm factor require a maternal machinery. This machinery functions only once in mammalian oocytes and eggs, and is inactivated by sperm-derived components but not by parthenogenetic activation. In addition, it is found that neither InsP(3) receptor sensitivity to InsP(3) nor Ca(2+) pool size are the determinants that cause the fertilized egg to lose its ability to generate sperm-factor-induced Ca(2+) oscillations at metaphase. In conclusion, our study suggests that the orderly sequence of Ca(2+) oscillations in mammalian eggs at fertilization is critically dependent upon the presence of a functional maternal machinery that determines whether the sperm-factor-induced Ca(2+) oscillations can persist.  相似文献   

17.
BACKGROUND: Many targets of calcium signaling pathways are activated or inhibited by binding the Ca(2+)-liganded form of calmodulin (Ca(2+)-CaM). Here, we test the hypothesis that local Ca(2+)-CaM-regulated signaling processes can be selectively activated by local intracellular differences in free Ca(2+)-CaM concentration. RESULTS: Energy-transfer confocal microscopy of a fluorescent biosensor was used to measure the difference in the concentration of free Ca(2+)-CaM between nucleus and cytoplasm. Strikingly, short receptor-induced calcium spikes produced transient increases in free Ca(2+)-CaM concentration that were of markedly higher amplitude in the cytosol than in the nucleus. In contrast, prolonged increases in calcium led to equalization of the nuclear and cytosolic free Ca(2+)-CaM concentrations over a period of minutes. Photobleaching recovery and translocation measurements with fluorescently labeled CaM showed that equalization is likely to be the result of a diffusion-mediated net translocation of CaM into the nucleus. The driving force for equalization is a higher Ca(2+)-CaM-buffering capacity in the nucleus compared with the cytosol, as the direction of the free Ca(2+)-CaM concentration gradient and of CaM translocation could be reversed by expressing a Ca(2+)-CaM-binding protein at high concentration in the cytosol. CONCLUSIONS: Subcellular differences in the distribution of Ca(2+)-CaM-binding proteins can produce gradients of free Ca(2+)-CaM concentration that result in a net translocation of CaM. This provides a mechanism for dynamically regulating local free Ca(2+)-CaM concentrations, and thus the local activity of Ca(2+)-CaM targets. Free Ca(2+)-CaM signals in the nucleus remain low during brief or low-frequency calcium spikes, whereas high-frequency spikes or persistent increases in calcium cause translocation of CaM from the cytoplasm to the nucleus, resulting in similar concentrations of nuclear and cytosolic free Ca(2+)-CaM.  相似文献   

18.
Mammalian eggs and embryos rely upon mitochondrial ATP production to survive and proceed through preimplantation development. Ca(2+) oscillations at fertilization have been shown to cause a reduction of mitochondrial NAD+ and flavoproteins, suggesting they might also cause changes in cytosolic ATP levels. Here, we have monitored intracellular Ca(2+) and ATP levels in fertilizing mouse eggs by imaging the fluorescence of a Ca(2+) dye and luminescence of firefly luciferase. At fertilization an initial increase in ATP levels occurs with the first Ca(2+) transient, with a second increase occurring about 1 h later. The increase in cytosolic ATP was estimated to be from a prefertilization concentration of 1.9 mM to a peak value of 3 mM. ATP levels returned to prefertilization values as the Ca(2+) oscillations terminated. An increase in ATP also occurred with other stimuli that increase Ca(2+) and it was blocked when Ca(2+) oscillations were inhibited by BAPTA injection. Additionally, an ATP increase was not seen when eggs were activated by cycloheximide, which does not cause a Ca(2+) increase. These data suggest that mammalian fertilization is associated with a sudden but transient increase in cytosolic ATP and that Ca(2+) oscillations are both necessary and sufficient to cause this increase in ATP levels.  相似文献   

19.
BACKGROUND: Glutamate-induced Ca2+ oscillations and waves coordinate astrocyte signaling responses, which in turn regulate neuronal excitability. Recent studies have suggested that the generation of these Ca2+ oscillations requires a negative feedback that involves the activation of conventional protein kinase C (cPKC). Here, we use total internal reflection fluorescence (TIRF) microscopy to investigate if and how periodic plasma membrane translocation of cPKC is used to generate Ca2+ oscillations and waves. RESULTS: Glutamate stimulation of astrocytes triggered highly localized GFP-PKCgamma plasma membrane translocation events, induced rapid oscillations in GFP-PKCgamma translocation, and generated GFP-PKCgamma translocation waves that propagated across and between cells. These translocation responses were primarily mediated by the Ca2+-sensitive C2 domains of PKCgamma and were driven by localized Ca2+ spikes, by oscillations in Ca2+ concentration, and by propagating Ca(2+) waves, respectively. Interestingly, GFP-conjugated C1 domains from PKCgamma or PKCdelta that have been shown to bind diacylglycerol (DAG) also oscillated between the cytosol and the plasma membrane after glutamate stimulation, suggesting that PKC is repetitively activated by combined oscillating increases in Ca(2+) and DAG concentrations. The expression of C1 domains, which increases the DAG buffering capacity and thereby delays changes in DAG concentrations, led to a marked prolongation of Ca(2+) spikes, suggesting that PKC activation is involved in terminating individual Ca(2+) spikes and waves and in defining the time period between Ca(2+) spikes. CONCLUSIONS: Our study suggests that cPKCs have a negative feedback role on Ca(2+) oscillations and waves that is mediated by their repetitive activation by oscillating DAG and Ca(2+) concentrations. Periodic translocation and activation of cPKC can be a rapid and markedly localized signaling event that can limit the duration of individual Ca(2+) spikes and waves and can define the Ca(2+) spike and wave frequencies.  相似文献   

20.
Sperm entry in mammalian eggs initiates oscillations in the concentration of free calcium ([Ca(2+)](i)). In mouse eggs, oscillations start at metaphase II (MII) and conclude as the zygotes progress into interphase and commence pronuclear (PN) formation. The inositol 1,4,5-trisphosphate receptor (IP(3)R-1), which underlies the oscillations, undergoes degradation during this transition, suggesting that one or more of the eggs' Ca(2+)-releasing machinery components may be regulated in a cell cycle-dependent manner, thereby coordinating [Ca(2+)](i) responses with the cell cycle. To ascertain the site(s) of interaction, we initiated oscillations at different stages of the cell cycle in zygotes with different IP(3)R-1 mass. In addition to sperm, we used two other agonists: porcine sperm factor (pSF), which stimulates production of IP(3), and adenophostin A, a non-hydrolyzable analogue of IP(3). None of the agonists tested induced oscillations at interphase, suggesting that neither decreased IP(3)R-1 mass nor lack of production or excessive IP(3) degradation can account for the insensitivity to IP(3) at this stage. Moreover, the releasable Ca(2+) content of the stores did not change by interphase, but it did decrease by first mitosis. More importantly, experiments revealed that IP(3)R-1 sensitivity and possibly IP(3) binding were altered at interphase, and our data demonstrate stage-specific IP(3)R-1 phosphorylation by M-phase kinases. Accordingly, increasing the activity of M-phase kinases restored the oscillatory-permissive state in zygotes. We therefore propose that the restriction of oscillations in mouse zygotes to the metaphase stage may be coordinated at the level of IP(3)R-1 and that this involves cell cycle stage-specific receptor phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号