首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kriukiene E 《FEBS letters》2006,580(26):6115-6122
A two-domain structure of the Type IIS restriction endonuclease MnlI has been identified by limited proteolysis. An N-terminal domain of the enzyme mediates the sequence-specific interaction with DNA, whereas a monomeric C-terminal domain resembles bacterial colicin nucleases in its requirement for alkaline earth as well as transition metal ions for double- and single-stranded DNA cleavage activities. The results indicate that the fusion of the non-specific HNH-type nuclease to the DNA binding domain had transformed MnlI into a Mg(2+)-, Ni(2+)-, Co(2+)-, Mn(2+)-, Zn(2+)-, Ca(2+)-dependent sequence-specific enzyme. Nevertheless, MnlI retains a residual single-stranded DNA cleavage activity controlled by its C-terminal colicin-like nuclease domain.  相似文献   

2.
Colicin E9 is a microbial toxin that kills bacteria through random degradation of chromosomal DNA. Within the active site of the cytotoxic endonuclease domain of colicin E9 (the E9 DNase) is a 32 amino acid motif found in the H-N-H group of homing endonucleases. Crystal structures of the E9 DNase have implicated several conserved residues of the H-N-H motif in the mechanism of DNA hydrolysis. We have used mutagenesis to test the involvement of these key residues in colicin toxicity, metal ion binding and catalysis. Our data show, for the first time, that the H-N-H motif is the site of DNA binding and that Mg2+-dependent cleavage of double-stranded DNA is responsible for bacterial cell death. We demonstrate that more active site residues are required for catalysis in the presence of Mg2+ ions than transition metals, consistent with the recent hypothesis that the E9 DNase hydrolyses DNA by two distinct, cation-dependent catalytic mechanisms. The roles of individual amino acids within the H-N-H motif are discussed in the context of the available structural information on this and related DNases and we address the possible mechanistic similarities between caspase-activated DNases, responsible for the degradation of chromatin in eukaryotic apoptosis, and H-N-H DNases.  相似文献   

3.
Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6nt from the target site to generate homogeneous, 5′, four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases.  相似文献   

4.
Type IIS restriction endonuclease Eco31I is a "short-distance cutter", which cleaves DNA strands close to its recognition sequence, 5'-GGTCTC(1/5). Previously, it has been proposed that related endonucleases recognizing a common sequence core GTCTC possess two active sites for cleavage of both strands in the DNA substrate. Here, we present bioinformatic identification and experimental evidence for a single nuclease active site. We identified a short region of homology between Eco31I and HNH nucleases, constructed a three-dimensional model of the putative catalytic domain and validated our predictions by random and site-specific mutagenesis. The restriction mechanism of Eco31I is suggested by analogy to the mechanisms of phage T4 endonuclease VII and homing endonuclease I-PpoI. We propose that residues D311 and N334 coordinate the cofactor. H312 acts as a general base-activating water molecule for the nucleophilic attack. K337 together with R340 and D345 are located in close proximity to the active center and are essential for correct folding of catalytic motif, while D345 together with R264 and D273 could be directly involved in DNA binding. We also predict that the Eco31I catalytic domain contains a putative Zn-binding site, which is essential for its structural integrity. Our results suggest that the HNH-like active site is involved in the cleavage of both strands in the DNA substrate. On the other hand, analysis of site-specific mutants in the region, previously suggested to harbor the second active site, revealed its irrelevance to the nuclease activity. Thus, our data argue against the earlier prediction and indicate the presence of a single conserved active site in type IIS restriction endonucleases that recognize common sequence core GTCTC.  相似文献   

5.
A new Type IIS restriction endonuclease was identified, partially purified and characterized from a Bacillus cereus subsp. fluorescens strain. The enzyme recognizes the nonpalindromic sequence ACGGC and cleaves at a distance from it. The cleavage appears to occur with a +/- 1 basepair uncertainty. Thus the cleavage and recognition site is as shown below: ACGGC(N)11-13 TGCCG(N)12-14.  相似文献   

6.
Homing endonucleases typically contain one of four conserved catalytic motifs, and other elements that confer tight DNA binding. I-CreII, which catalyzes homing of the Cr.psbA4 intron, is unusual in containing two potential catalytic motifs, H-N-H and GIY-YIG. Previously, we showed that cleavage by I-CreII leaves ends (2-nt 3′ overhangs) that are characteristic of GIY-YIG endonucleases, yet it has a relaxed metal requirement like H-N-H enzymes. Here we show that I-CreII can bind DNA without an added metal ion, and that it binds as a monomer, akin to GIY-YIG enzymes. Moreover, cleavage of supercoiled DNA, and estimates of strand-specific cleavage rates, suggest that I-CreII uses a sequential cleavage mechanism. Alanine substitution of a number of residues in the GIY-YIG motif, however, did not block cleavage activity, although DNA binding was substantially reduced in several variants. Substitution of conserved histidines in the H-N-H motif resulted in variants that did not promote DNA cleavage, but retained high-affinity DNA binding—thus identifying it as the catalytic motif. Unlike the non-specific H-N-H colicins, however; substitution of the conserved asparagine substantially reduced DNA binding (though not the ability to promote cleavage). These results indicate that, in I-CreII, two catalytic motifs have evolved to play important roles in specific DNA binding. The data also indicate that only the H-N-H motif has retained catalytic ability.  相似文献   

7.
Here we describe the discovery of a group I intron in the DNA polymerase gene of Bacillus thuringiensis phage Bastille. Although the intron insertion site is identical to that of the Bacillus subtilis phages SPO1 and SP82 introns, the Bastille intron differs from them substantially in primary and secondary structure. Like the SPO1 and SP82 introns, the Bastille intron encodes a nicking DNA endonuclease of the H-N-H family, I-BasI, with a cleavage site identical to that of the SPO1-encoded enzyme I-HmuI. Unlike I-HmuI, which nicks both intron-minus and intron-plus DNA, I-BasI cleaves only intron-minus alleles, which is a characteristic of typical homing endonucleases. Interestingly, the C-terminal portions of these H-N-H phage endonucleases contain a conserved sequence motif, the intron-encoded endonuclease repeat motif (IENR1) that also has been found in endonucleases of the GIY-YIG family, and which likely comprises a small DNA-binding module with a globular ββααβ fold, suggestive of module shuffling between different homing endonuclease families.  相似文献   

8.
Type IIS restriction endonuclease Eco31I harbors a single HNH active site and cleaves both DNA strands close to its recognition sequence, 5'-GGTCTC(1/5). A two-domain organization of Eco31I was determined by limited proteolysis. Analysis of proteolytic fragments revealed that the N-terminal domain of Eco31I is responsible for the specific DNA binding, while the C-terminal domain contains the HNH nuclease-like active site. Gel-shift and gel-filtration experiments revealed that a monomer of the N-terminal domain of Eco31I is able to bind a single copy of cognate DNA. However, in contrast to other studied type IIS enzymes, the isolated catalytic domain of Eco31I was inactive. Steady-state and transient kinetic analysis of Eco31I reactions was inconsistent with dimerization of Eco31I on DNA. Thus, we propose that Eco31I interacts with individual copies of its recognition sequence in its monomeric form and presumably remains a monomer as it cleaves both strands of double-stranded DNA. The domain organization and reaction mechanism established for Eco31I should be common for a group of evolutionary related type IIS restriction endonucleases Alw26I, BsaI, BsmAI, BsmBI and Esp3I that recognize DNA sequences bearing the common pentanucleotide 5'-GTCTC.  相似文献   

9.
Controversy surrounds the metal-dependent mechanism of H-N-H endonucleases, enzymes involved in a variety of biological functions, including intron homing and DNA repair. To address this issue we determined the crystal structures for complexes of the H-N-H motif containing bacterial toxin colicin E9 with Zn(2+), Zn(2+).DNA, and Mg(2+).DNA. The structures show that the rigid V-shaped architecture of the active site does not undergo any major conformational changes on binding to the minor groove of DNA and that the same interactions are made to the nucleic acid regardless of which metal ion is bound to the enzyme. The scissile phosphate contacts the single metal ion of the motif through distortion of the DNA brought about by the insertion of the Arg-96-Glu-100 salt bridge into the minor groove and a network of contacts to the DNA phosphate backbone that straddle the metal site. The Mg(2+)-bound structure reveals an unusual coordination scheme involving two H-N-H histidine residues, His-102 and His-127. The mechanism of DNA cleavage is likely related to that of other single metal ion-dependent endonucleases, such as I-PpoI and Vvn, although in these enzymes the single alkaline earth metal ion is coordinated by oxygen-bearing amino acids. The structures also provide a rationale as to why H-N-H endonucleases are inactive in the presence of Zn(2+) but active with other transition metal ions such as Ni(2+). This is because of coordination of the Zn(2+) ion through a third histidine, His-131. "Active" transition metal ions are those that bind more weakly to the H-N-H motif because of the disengagement of His-131, which we suggest allows a water molecule to complete the catalytic cycle.  相似文献   

10.
H-N-H is a motif found in the nuclease domain of a subfamily of bacteria toxins, including colicin E7, that are capable of cleaving DNA nonspecifically. This H-N-H motif has also been identified in a subfamily of homing endonucleases, which cleave DNA site specifically. To better understand the role of metal ions in the H-N-H motif during DNA hydrolysis, we crystallized the nuclease domain of colicin E7 (nuclease-ColE7) in complex with its inhibitor Im7 in two different crystal forms, and we resolved the structures of EDTA-treated, Zn(2+)-bound and Mn(2+)-bound complexes in the presence of phosphate ions at resolutions of 2.6 A to 2.0 A. This study offers the first determination of the structure of a metal-free and substrate-free enzyme in the H-N-H family. The H-N-H motif contains two antiparallel beta-strands linked to a C-terminal alpha-helix, with a divalent metal ion located in the center. Here we show that the metal-binding sites in the center of the H-N-H motif, for the EDTA-treated and Mg(2+)-soaked complex crystals, were occupied by water molecules, indicating that an alkaline earth metal ion does not reside in the same position as a transition metal ion in the H-N-H motif. However, a Zn(2+) or Mn(2+) ions were observed in the center of the H-N-H motif in cases of Zn(2+) or Mn(2+)-soaked crystals, as confirmed in anomalous difference maps. A phosphate ion was found to bridge between the divalent transition metal ion and His545. Based on these structures and structural comparisons with other nucleases, we suggest a functional role for the divalent transition metal ion in the H-N-H motif in stabilizing the phosphoanion in the transition state during hydrolysis.  相似文献   

11.
Type IIS restriction endonuclease BtsCI (GGATG 2/0) is a neoschizomer of FokI (GGATG 9/13) and cleaves closer to the recognition sequence. Although M.BtsCI shows 62% amino acid sequence identity to M.FokI, BtsCI and FokI restriction endonucleases do not share significant amino acid sequence similarity. BtsCI belongs to a group of Type IIS restriction endonucleases, BsmI, Mva1269I and BsrI, that carry two different catalytic sites in a single polypeptide. By inactivating one of the catalytic sites through mutagenesis, we have generated nicking variants of BtsCI that specifically nick the bottom-strand or the top-strand of the target site. By treating target DNA sequentially with the appropriate combinations of FokI and BtsCI nicking variants, we are able to generate long overhangs suitable for fluorescent labeling through end-filling or other techniques based on annealing of complementary DNA sequences.  相似文献   

12.
How restriction enzymes with their different specificities and mode of cleavage evolved has been a long standing question in evolutionary biology. We have recently shown that several Type II restriction endonucleases, namely SsoII (downward arrow CCNGG), PspGI (downward arrow CCWGG), Eco-RII (downward arrow CCWGG), NgoMIV (G downward arrow CCGGC), and Cfr10I (R downward arrow CCGGY), which recognize similar DNA sequences (as indicated, where the downward arrows denote cleavage position), share limited sequence similarity over an interrupted stretch of approximately 70 amino acid residues with MboI, a Type II restriction endonuclease from Moraxella bovis (Pingoud, V., Conzelmann, C., Kinzebach, S., Sudina, A., Metelev, V., Kubareva, E., Bujnicki, J. M., Lurz, R., Luder, G., Xu, S. Y., and Pingoud, A. (2003) J. Mol. Biol. 329, 913-929). Nevertheless, MboI has a dissimilar DNA specificity (downward arrow GATC) compared with these enzymes. In this study, we characterize MboI in detail to determine whether it utilizes a mechanism of DNA recognition similar to SsoII, PspGI, EcoRII, NgoMIV, and Cfr10I. Mutational analyses and photocross-linking experiments demonstrate that MboI exploits the stretch of approximately 70 amino acids for DNA recognition and cleavage. It is therefore likely that MboI shares a common evolutionary origin with SsoII, PspGI, EcoRII, NgoMIV, and Cfr10I. This is the first example of a relatively close evolutionary link between Type II restriction enzymes of widely different specificities.  相似文献   

13.
Molecular indexing of human genomic DNA   总被引:1,自引:1,他引:0  
Molecular indexing sorts DNA fragments into subsets for inter-sample comparisons. Type IIS or interrupted palindrome restriction endonucleases, which result in single-stranded ends not including the original recognition sequence of the enzyme, are used to produce the fragments. The ends can then be any sequence but will always be specific for a given fragment. Fragments with particular ends are selected by ligation to a corresponding indexing adapter. We describe iterative indexing, a new process that after an initial round of indexing uses a Type IIS restriction endonuclease to expose additional sequence for further indexing. New plasmids, pINDnn, were produced for novel use as indexing adapters. Together, the plasmids index all 16 possible dinucleotides. Their large size can be increased by dimerisation in vitro and allows the isolation of indexed material by size separation. Fragments produced from human genomic DNA by Type II restriction endonucleases were sorted using six bases in total to a possible enrichment of 1920-fold. By comparison with the public human sequence databases, fidelity of indexing was shown to be high and was tolerant of repetitive sequences. Genome-wide comparisons on a candidate or non-candidate basis are made possible by this approach.  相似文献   

14.
Type II restriction endonucleases cleave duplex DNA at nucleotide sequences displaying 2-fold symmetry. Our data show that Msp I cleaves single strand oligonucleotides, d(G-A-A-C-C-G-G-A-G-A) and d(T-C-T-C-C-G-G-T-T) at 4 degrees, 25 degrees, and 37 degrees C reaction temperatures. The rate of cleavage of d(G-A-A-C-C-G-G-A-G-A) is several-fold faster than that of d(T-C-T-C-C-G-G-T-T). Single strand phi X174 DNA is also, cleaved by Msp I endonuclease giving well defined fragments. 5'-Nucleotide analysis of the fragments generated from single strand and replicating form DNA suggest that cleavage occurs at the recognition sequence d(C-C-G-G). The data show that Msp I endonuclease cleaves single strand oligonucleotides and prefers a recognition sequence surrounded by purine nucleotides. A general model for endonuclease cleavage of single strand and duplex DNA is presented.  相似文献   

15.
The restriction endonuclease (REase) R.KpnI is an orthodox Type IIP enzyme, which binds to DNA in the absence of metal ions and cleaves the DNA sequence 5′-GGTAC^C-3′ in the presence of Mg2+ as shown generating 3′ four base overhangs. Bioinformatics analysis reveals that R.KpnI contains a ββα-Me-finger fold, which is characteristic of many HNH-superfamily endonucleases, including homing endonuclease I-HmuI, structure-specific T4 endonuclease VII, colicin E9, sequence non-specific Serratia nuclease and sequence-specific homing endonuclease I-PpoI. According to our homology model of R.KpnI, D148, H149 and Q175 correspond to the critical D, H and N or H residues of the HNH nucleases. Substitutions of these three conserved residues lead to the loss of the DNA cleavage activity by R.KpnI, confirming their importance. The mutant Q175E fails to bind DNA at the standard conditions, although the DNA binding and cleavage can be rescued at pH 6.0, indicating a role for Q175 in DNA binding and cleavage. Our study provides the first experimental evidence for a Type IIP REase that does not belong to the PD…D/EXK superfamily of nucleases, instead is a member of the HNH superfamily.  相似文献   

16.
We report the first stopped-flow fluorescence analysis of transition metal binding (Co(2+), Ni(2+), Cu(2+), and Zn(2+)) to the H-N-H endonuclease motif within colicin E9 (the E9 DNase). The H-N-H consensus forms the active site core of a number of endonuclease groups but is also structurally homologous to the so-called treble-clef motif, a ubiquitous zinc-binding motif found in a wide variety of metalloproteins. We find that all the transition metal ions tested bind via multistep mechanisms. Binding was further dissected for Ni(2+) and Zn(2+) ions through the use of E9 DNase single tryptophan mutants, which demonstrated that most steps reflect conformational rearrangements that occur after the bimolecular collision, many common to the two metals, while one appears specific to zinc. The kinetically derived equilibrium dissociation constants (K(d)) for transition metal binding to the E9 DNase agree with previously determined equilibrium measurements and so confirm the validity of the derived kinetic mechanisms. Zn(2+) binds tightest to the enzyme (K(d) approximately 10(-)(9) M) but does not support endonuclease activity, whereas the other metals (K(d) approximately 10(-)(6) M) are active in endonuclease assays implying that the additional step seen for Zn(2+) traps the enzyme in an inactive but high affinity state. Metal-induced conformational changes are likely to be a conserved feature of H-N-H/treble clef motif proteins since similar Zn(2+)-induced, multistep binding was observed for other colicin DNases. Moreover, they appear to be independent both of the conformational heterogeneity that is naturally present within the E9 DNase at equilibrium, as well as the conformational changes that accompany the binding of its cognate inhibitor protein Im9.  相似文献   

17.
A new class-IIS restriction endonuclease, Ksp632I, with novel sequence specificity has been discovered in a non-pathogenic species of Kluyvera. The presence of only a single site-specific activity in this Kluyvera sp. strain 632 enables Ksp632I to be isolated in highly purified form free of contaminating nucleases. Ksp632I recognition sites and cleavage positions were deduced using experimental and computer-assisted mapping and sequencing. The cleavage specificity corresponds to the sequence 5'-CTCTTCN decreases NNN-N-3' 3'-GAGAAGN-NNN increases N-5'. The enzyme recognizes an asymmetric hexanucleotide sequence and cleaves in the presence of Mg2+ ions specific phosphodiester bonds in both DNA strands, 1 and 4 nucleotides distal to the recognition sequence. The staggered cuts generate 5'-protruding ends with single-stranded 5'-phosphorylated trinucleotides. Several slow cleavage sites for Ksp632I were observed on lambda cI857Sam7 DNA. Ksp632I may complement other class-IIS enzymes in the universal restriction approach and may serve as a tool for generating defined unidirectional deletions or insertions.  相似文献   

18.
19.
We have determined the crystal structure of the PvuII endonuclease in the presence of Mg(2+). According to the structural data, divalent metal ion binding in the PvuII subunits is highly asymmetric. The PvuII-Mg(2+) complex has two distinct metal ion binding sites, one in each monomer. One site is formed by the catalytic residues Asp58 and Glu68, and has extensive similarities to a catalytically important site found in all structurally examined restriction endonucleases. The other binding site is located in the other monomer, in the immediate vicinity of the hydroxyl group of Tyr94; it has no analogy to metal ion binding sites found so far in restriction endonucleases. To assign the number of metal ions involved and to better understand the role of Mg(2+) binding to Tyr94 for the function of PvuII, we have exchanged Tyr94 by Phe and characterized the metal ion dependence of DNA cleavage of wild-type PvuII and the Y94F variant. Wild-type PvuII cleaves both strands of the DNA in a concerted reaction. Mg(2+) binding, as measured by the Mg(2+) dependence of DNA cleavage, occurs with a Hill coefficient of 4, meaning that at least two metal ions are bound to each subunit in a cooperative fashion upon formation of the active complex. Quenched-flow experiments show that DNA cleavage occurs about tenfold faster if Mg(2+) is pre-incubated with enzyme or DNA than if preformed enzyme-DNA complexes are mixed with Mg(2+). These results show that Mg(2+) cannot easily enter the active center of the preformed enzyme-DNA complex, but that for fast cleavage the metal ions must already be bound to the apoenzyme and carried with the enzyme into the enzyme-DNA complex. The Y94F variant, in contrast to wild-type PvuII, does not cleave DNA in a concerted manner and metal ion binding occurs with a Hill coefficient of 1. These results indicate that removal of the Mg(2+) binding site at Tyr94 completely disrupts the cooperativity in DNA cleavage. Moreover, in quenched-flow experiments Y94F cleaves DNA about ten times more slowly than wild-type PvuII, regardless of the order of mixing. From these results we conclude that wild-type PvuII cleaves DNA in a fast and concerted reaction, because the Mg(2+) required for catalysis are already bound at the enzyme, one of them at Tyr94. We suggest that this Mg(2+) is shifted to the active center during binding of a specific DNA substrate. These results, for the first time, shed light on the pathway by which metal ions as essential cofactors enter the catalytic center of restriction endonucleases.  相似文献   

20.
A restriction endonuclease obtained from Haemophilus gallinarum (hgaI) cleaves polyoma DNA at four specific sites. Using the EcoRI, HindIII, and HpaII endonuclease restriction sites as reference, the four HgaI cleavage sites were mapped at 0.02, 0.14, 0.27, and 0.48 fractional lengths, clockwise, from the single EcoRI cleavage site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号