首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To establish correlation between structural properties (charge, composition, and conformation) and membrane penetration capability, the interaction of epitope peptide-carrier constructs with phospholipid model membranes was studied. For this we have conjugated a linear epitope peptide, (110)FWRGDLVFDFQV(121) (110-121), from VP3 capside protein of the Hepatitis A virus with polylysine-based branched polypeptides with different chemical characteristics. The epitope peptide elongated by one Cys residue at the N-terminal [C(110-121)] was attached to poly[Lys-(DL-Ala(m)()-X(i)())] (i < 1, m approximately 3), where x = ?(AK), Ser (SAK), or Glu (EAK) by the amide-thiol heterobifunctional reagent, 3-(2-pyridyldithio)propionic acid N-hydroxy-succinimide ester. The interaction of these polymer-[C(110-121)] conjugates with phospholipid monolayers and bilayers was studied using DPPC and DPPC/PG (95/5 mol/mol) mixture. Changes in the fluidity of liposomes induced by these conjugates were detected by using two fluorescent probes 1,6-diphenyl-1,3, 5-hexatriene (DPH) and sodium anilino naphthalene sulfonate (ANS). The binding of conjugates to the model membranes was compared and the contribution of the polymer component to these interactions were evaluated. We found that conjugates with polyanionic/EAK-[C(110-121)] or polycationic/SAK-[C(110-121)], AK-[C(110-121)]/character were capable to form monomolecular layers at the air/water interface with structure dependent stability in the following order: EAK-[C(110-121)] > SAK-[C(110-121)] > AK-[C(110-121)]. Data obtained from penetration studies into phospholipid monolayers indicated that conjugate insertion is more pronounced for EAK-[C(110-121)] than for AK-[C(110-121)] or SAK-[C(110-121)]. Changes in the fluorescence intensity and in polarization of fluorescent probes either at the polar surface (ANS) or within the hydrophobic core (DPH) of the DPPC/PG liposomes suggested that all three conjugates interact with the outer surface of the bilayer. Marked penetration was documented by a significant increase of the transition temperature only with the polyanionic compound/EAK-[C(110-121)]. Taken together, we found that the binding/penetration of conjugates to phospholipid model membranes is dependent on the charge properties of the constructs. Considering that the orientation and number of VP3 epitope peptides attached to branched polypeptides were almost identical, we can conclude that the structural characteristics (amino acid composition, charge, and surface activity) of the carrier have a pronounced effect on the conjugate-phospholipid membrane interaction. These observations suggest that the selection of polymer carrier for epitope attachment might significantly influence the membrane activity of the conjugate and provide guidelines for adequate presentation of immunogenic peptides to the cells.  相似文献   

2.
The interaction of methionine and leucine enkephalin with phosphatidylserine and phosphatidylcholine was studied by optical spectroscopy techniques. The data reported indicate that with both peptides the binding is controlled by ionic parameters. They also indicate that the differences in the binding behavior of the two peptides induced by changing these parameters are minor. Non-ionic interactions are also important in the binding phenomena, but the above observations hold in this case as well. Finally, the tridimensional structure of both enkephalins appears to be modified in the presence of phospholipids. Moreover, the changes induced by these lipids appear to differ from one peptide to the other.  相似文献   

3.
Symmetrical features were observed in the amino acid sequences of some biologically active peptides. It is suggested that this approximate symmetry is reflected in the conformations of the peptides at their respective biological receptors, and has arisen by natural selection as both peptides and receptors evolved to optimise their mutual fit. It follows that the binding site for each peptide at its receptor would share the same symmetry element. This would arise if the peptide binds to two symmetrically related similar or identical submits in the receptor.  相似文献   

4.
Immunocytochemical studies habe shown that many peptides which profoundly affect the endocrine and exocrine functions of the pancreas are localized to neurons. In the cat, such peptidergic nerves appear to innervate ganglia, islets and blood vessels of the pancreas, whereas their contributions to exocrine cells are minor. Our studies suggest that pancreatic ganglia represent one major site of action of the peptides and that, in addition, nerves containing the vasoactive intestinal polypeptide and gastrin/CCK-related peptides profoundly affect pancreatic blood flow and insulin secretion, respectively.  相似文献   

5.
Plant cells interact during development through diverse mechanisms that range from genetically encoded signals to physical stresses. Pollen self-incompatibility is the best understood cell interaction in plants. Analysis of genes that appear to be involved in specific developmental signals, such as liguleless1 from maize and GLABROUS1 from Arabidopsis, will provide clues as to the nature of cell interactions in plant development. Recent data suggest that intercellular connections may be more similar in plants and animals than previously thought.  相似文献   

6.
G H Paine  H A Scheraga 《Biopolymers》1985,24(8):1391-1436
A new methodology for theoretically predicting the native, three-dimensional structure of a polypeptide is presented. Based on equilibrium statistical mechanics, an algorithm has been designed to determine the probable conformation of a polypeptide by calculating conditional free-energy maps for each residue of the macromolecule. The conditional free-energy map of each residue is computed from a set of probability integrals, obtained by summing over the interaction energies of all pairs of nonbonded atoms of the whole molecule. By locating the region(s) of lowest free energy for each map, the probable conformation for each residue can be identified. The native structure of the polypeptide is assumed to be the combination of the probable conformations of the individual residues. All multidimensional probability integrals are evaluated by an adaptive Monte Carlo algorithm (SMAPPS —Statistical-Mechanical Algorithm for Predicting Protein Structure). The Monte Carlo algorithm searches the entire conformational space, adjusting itself automatically to concentrate its sampling in regions where the magnitude of the integrand is largest (“importance sampling”). No assumptions are made about the native conformation. The only prior knowledge necessary for the prediction of the native conformation is the amino acid sequence of the polypeptide. To test the effectiveness of the algorithm, SMAPPS was applied to the prediction of the native conformation of the backbone of Met-enkephalin, a pentapeptide. In the calculations, only the backbone dihedral angles (? and ψ) were allowed to vary; all side-chain (χ) and peptide-bond (ω) dihedral angles were kept fixed at the values corresponding to the alleged global minimum energy previously determined by direct energy minimization. For each conformation generated randomly by the Monte Carlo algorithm, the total conformational energy of the polypeptide was obtained from established empirical potential energy functions. Solvent effects were not included in the computations. With this initial application of SMAPPS , three distinct low-free-energy β-bend structures of Met-enkephalin were found. In particular, one of the structures has a conformation remarkably similar to the one associated with the previously alleged global minimum energy. The two additional structures of the pentapeptide have conformational energies lower than the previously computed low-energy structure. However, the Monte Carlo results are in agreement with an improved energy-minimization procedure. These initial results on the backbone structure of Met-enkephalin indicate that an equilibrium statistical-mechanical procedure, coupled with an adaptive Monte Carlo algorithm, can overcome many of the problems associated with the standard methods of direct energy minimization.  相似文献   

7.
G H Paine  H A Scheraga 《Biopolymers》1986,25(8):1547-1563
The average conformation of Met-enkephalin was determined by using an adaptive, importance-sampling Monte Carlo algorithm (SMAPPS—Statistical Mechanical Algorithm for Predicting Protein Structure). In the calculation, only the backbone dihedral angles (? and ψ) were allowed to vary; i.e., all side-chain (χ) and peptide-bond (ω) dihedral angles were kept fixed at the values corresponding to a low-energy structure of the pentapeptide. The total conformational energy for each randomly generated structure of the polypeptide was obtained by summing over the interaction energies of all pairs of nonbonded atoms of the whole molecule. The interaction energies were computed by the program ECEPP/2 (Empirical Conformational Energy Program for Peptides). Solvent effects were not included in the computation. The calculation was repeated until a total of 10 independent average conformations were established. The regions of conformational space occupied by the average structures were compared with the regions of low conditional free energy obtained by SMAPPS in the first paper of this series. Such a comparison provides an analysis of the capacity of SMAPPS to adjust the Monte Carlo search to regions of highest probability. The results demonstrate that the ability of SMAPPS to focus the Monte Carlo search is excellent. Finally, the 10 independent average conformations and the mean of the 10 average structures were utilized as the initial conformations for a direct energy minimization of the pentapeptide. Of the 11 final energy-minimized structures, three of the conformations were found to be equivalent to the conformation of lowest energy determined previously. In addition, all but two of the remaining energy-minimized structures were found to correspond to one of the two other conformations of high probability obtained in the first paper of this series. These results indicate that a set of independent average conformations can provide a rational, unbiased choice for the initial conformation, to be used in a direct energy minimization of a polypeptide. The final energy-minimized structures consequently constitute a set of low-energy conformations, which include the global energy minimum.  相似文献   

8.
Daunomycin has been attached to various structurally related synthetic branched polypeptides with a polylysine backbone, using its acid-labile cis-aconityl derivative (cAD). Due to the importance of the side-chain structure in alpha-helix formation and immunological and pharmacological properties of branched polypeptides, we have investigated the conformation, biodistribution, and in vitro cytotoxicity of cAD-carrier conjugates with polypeptides containing amino acid residues of different identity and/or configuration at the side-chain end (XAK type) or at the position next to the polylysine backbone (AXK type), where X = Leu, D-Leu, Pro, Glu, or D-Glu. According to CD studies, polycationic conjugates with hydrophobic Leu in the side chains could assume a highly ordered conformation, while amphoteric conjugates containing Glu proved to be unordered in PBS. The reduction of in vitro cytotoxic activity of cAD by conjugation to carriers and the biodistribution profile of the conjugates were found to be dependent predominantly on the charge properties and on the side-chain sequence of the carrier polypeptide. It was demonstrated that by proper combination of structural elements of the carrier molecule, it is feasible to construct a cAD-branched polypeptide conjugate with significantly prolonged blood survival and with no reduction in in vitro cytotoxicity of the drug.  相似文献   

9.
We introduce three assays for analyzing ligand-receptor interactions based on the specific conjugation of ligands to SNAP-tag fusion proteins. Conjugation of ligands to different SNAP-tag fusions permits the validation of suspected interactions in cell extracts and fixed cells as well as the establishment of high-throughput assays. The different assays allow the analysis of strong and weak interactions. Conversion of ligands into SNAP-tag substrates thus provides access to a powerful toolbox for the analysis of their interactions with proteins.  相似文献   

10.
Morphologic probes of polypeptide hormone receptor interactions   总被引:1,自引:0,他引:1  
Polypeptide hormones, growth factors, and a variety of other naturally occurring ligands bind specifically to receptors on the cell surface. At physiologic temperatures these ligands are internalized by cells and associate intracellularly with lysosomes. Receptor-mediated internalization provides a simple mechanism that may act to couple receptor-mediated hormone degradation with receptor-medicated receptor regulation.  相似文献   

11.
G H Paine  H A Scheraga 《Biopolymers》1987,26(7):1125-1162
The program SMAPPS (Statistical-Mechanical Algorithm for Predicting Protein Structure) was originally designed to determine the probable and average backbone (?, ψ) conformations of a polypeptide by the application of equilibrium statistical mechanics in conjunction with an adaptive importance sampling Monte Carlo procedure. In the present paper, the algorithm has been extended to include the variation of all side-chain (χ) and peptide-bond (ω) dihedral angles of a polypeptide during the Monte Carlo search of the conformational space. To test the effectiveness of the generalized algorithm, SMAPPS was used to calculate the probable and average conformations of Met-enkephalin for which all dihedral angles of the pentapeptide were allowed to vary. The total conformational energy for each randomly generated structure of Met-enkephalin was obtained by summing over the interaction energies of all pairs of nonbonded atoms of the whole molecule. The interaction energies were computed by the program ECEPP /2 (Empirical Conformational Energy Program for Peptides). Solvent effects were not included in the computation. The results of the Monte Carlo calculation of the structure of Met-enkephalin indicate that the thermodynamically preferred conformation of the pentapeptide contains a γ-turn involving the three residues Gly2-Gly3-Phe4. The γ-turn conformation, however, does not correspond to the structure of lowest conformational energy. Rather, the global minimum-energy conformation, recently determined by a new optimization technique developed in this laboratory, contains a type II′ β-bend that is formed by the interaction of the four residues Gly2-Gly3-Phe4-Met5. A similar minimum-energy conformation is found by the SMAPPS procedure. The thermodynamically preferred γ-turn structure has a conformational energy of 4.93 kcal/mole higher than the β-bend structure of lowest energy but, because of the inclusion of entropy in the SMAPPS procedure, it is estimated to be ~ 9 kcal/mole lower in free energy. The calculation of the average conformation of Met-enkephalin was repeated until a total of ten independent average conformations were established. As far as the phenylalanine residue of the pentapeptide is concerned, the results of the ten independent average conformations were all found to lie in the region of conformational space corresponding to the γ-turn. These results further support the conclusion that the γturn conformation is thermodynamically favored.  相似文献   

12.
The effects of pH on the polarization of fluorescence of dyes dissolved in media of high viscosity or conjugated to polypeptides that undergo no structural transitions indicate that DNS is useful for studying pH-dependent molecular transition over the range pH 2.5–14, whereas fluorescein is useful only over the range pH 6–8. Heating and cooling in aqueous solutions cause no change in the polarization of fluorescein or of DNS; therefore, the dyes themselves do not introduce artifacts into heating studies of the dye conjugates. The interaction between fluorescein or DNS and the molecule to which it is conjugated varies and thus may affect the measurements made with the conjugates: the rotational relaxation times of polylysine, of a copolymer of glutamic acid and lysine, and of lysozyme are approximately twice as long when measured with DNS-conjugates as when measured with fluorescein-conjugates. The explanation for this observation is postulated to lie in the tighter binding between fluorescein and the molecule to which it is conjugated, presumably around the point of its covalent attachment, which makes it a better indicator of the behavior of the rotational kinetic unit of the polypeptide chain. The stronger binding of fluorescein is inferred from two lines of evidence: (1) the fluorescent intensity and ultraviolet spectra of a fluorescein–polylysine conjugate are less susceptible to changes in solvent than those of the DNS conjugate, and (2) the net charge of the polypeptide affects the ionization of fluorescein much less than it affects the ionization of DNS. Additional evidence from previous studies corroborates this conclusion. Thus, it is important to establish the relationship between the fluorescent dye and the molecule to which it is conjugated before using the fluorescence data to calculate rotational relaxation times and other molecular parameters.  相似文献   

13.
The role of isoleucyl-, valyl-, and leucyl-tRNA synthetases in attenuation of the ilvEDA operon was examined. The results indicate that the activities of isoleucyl- and valyl-tRNA synthetases are necessary to maintain attenuation of the ilvEDA operon. Leucyl-tRNA synthetase activity is nonessential for attenuation. These studies imply that uncharged tRNAIle and tRNAVal each may cause deattenuation.  相似文献   

14.
Deguelin, a rotenoid, has emerged as an attractive pharmacophore for chemoprevention showing in vivo activity in several xenografts. Recently, several lines of evidence have suggested its mode of action may involve inhibition of HSP90, however binding in a different mode than known pharmacophores. To further probe the target of deguelin and related rotenoids, several biotin conjugates were prepared. None of the conjugates showed significant affinity for HSP90, however two conjugates showed a strong cellular co-localization with mitochondria, consistent with binding to mitochondrial complex 1. Contrarily to rotenone, deguelin and tephrosin were not found to inhibit tubulin polymerization demonstrating a dramatic pharmacological difference between these closely related rotenoids.  相似文献   

15.
The major antifreeze polypeptide (AFP) from winter flounder (37 amino acid residues) is a single alpha-helix. Aspartic acid and arginine are found, respectively, at the amino and carboxyl-termini. These charged amino acids are ideally located for stabilizing the alpha-helical conformation of this AFP by means of charge-dipole interaction (Shoemaker, K. R., Kim, P.S., York, E.J., Stewart, J. M., and Baldwin, R. L. (1987) Nature 326, 563-567). In order to understand these and other molecular interactions that maintain the AFP structure, we have carried out the chemical synthesis of AFP analogs and evaluated their conformations by circular dichroism spectroscopy. We synthesized the entire AFP molecule (37-mer) and six COOH-terminal peptide fragments (36-, 33-, 27-, 26-, 16-, and 15-mers). Peptides containing acidic NH2-terminal residues displayed greater helix formation and thermal stability compared to those peptides of similar size, but with neutral NH2-terminal residues. Helix formation was maximum above pH 9.2. The peptide conformations also displayed a pH-dependent sensitivity to changes in ionic strength. Helix formation was reduced in the presence of acetonitrile. We conclude that the AFP helix is most likely stabilized by: charge-dipole interactions between charged terminal amino acids and the helix dipole, a charge interaction between Lys18 and Glu22 (either a salt bridge or a hydrogen bond), and hydrophobic interactions.  相似文献   

16.
17.
Cell/adsorbent interactions in expanded bed adsorption of proteins   总被引:6,自引:0,他引:6  
Expanded bed adsorption (EBA) is an integrated technology for the primary recovery of proteins from unclarified feedstock. A method is presented which allows a qualitative and quantitative understanding of the main mechanisms governing the interaction of biomass with fluidised resins. A pulse response technique was used to determine the adsorption of various cell types (yeast, Gram positive and Gram negative bacteria, mammalian cells and yeast homogenate) to a range of commercially available matrices for EBA. Cells and cell debris were found to interact with the ligands of agarose based resins mainly by electrostatic forces. From the adsorbents investigated the anion exchange matrix showed the most severe interactions, while cation exchange and affinity adsorbents appeared to be less affected. Within the range of biologic systems under study E. coli cells had the lowest tendency of binding to all matrices while hybridoma cells attached to all the adsorbents except the protein A affinity matrix. The method presented may be employed for screening of suitable biomass/adsorbent combinations, which yield a robust and reliable initial capture step by expanded bed adsorption from unclarified feedstock.  相似文献   

18.
Biological activities are reported for two different types of analogues of methionine enkephalin. Cyclic analogues, bridged between the amino- and carboxy- terminals of the parent peptide, are inactive. In contrast, significant levels of activity are displayed by linear isosterically modified analogues in which the Tyr1-Gly2 peptide bond is replaced by either -CH2NH- or -CH2CH2-. Similar replacements of the Gly2-Gly3 peptide bond yield compounds with much reduced potency. These modifications serve as useful probes of the receptor conformation. Based on these findings, a model is proposed for interaction between enkephalin and its receptor.  相似文献   

19.
A total of 291 diabetics were studied to see whether an asthmatic reaction was associated with facial flushing induced by chlorpropamide and alcohol. Of these patients, 191 reported facial flushing, of whom 12 reported breathlessness as well. Of these 12, five also described wheezing, and respiratory function tests showed them to have asthma. Three of these five patients underwent further tests, which showed that the asthmatic reaction could be prevented by giving disodium cromoglycate and the specific opiate antagonist naloxone. One patient developed wheezing when given an enkephalin analogue with opiate-like activity. Asthma induced by chlorpropamide and alcohol was concluded to be mediated by endogenous peptides with opiate-like activity such as enkephalin.  相似文献   

20.
Tolerance to peripheral body antigens involves multiple mechanisms, namely T-cell-mediated suppression of potentially autoimmune cells. Recent in vivo and in vitro evidence indicates that regulatory T cells suppress the response of effector T cells by a mechanism that requires the simultaneous conjugation of regulatory and effector T cells with the same antigen-presenting cell (APC). Despite this strong requirement, it is not yet clear what happens while both cells are conjugated. Several hypotheses are discussed in the literature. Suppression may result from simple competition of regulatory and effector cells for activation resources on the APC; regulatory T cells may deliver an inhibitory signal to effector T cells in the same conjugate; or effector T cells may acquire the regulatory phenotype during their interaction with regulatory T cells. The present article tries to further our understanding of T-cell-mediated suppression, and to narrow-down the number of candidate mechanisms. We propose the first general formalism describing the formation of multicellular conjugates of T cells and APCs. Using this formalism we derive three particular models, representing alternative mechanisms of T-cell-mediated suppression. For each model, we make phase plane and bifurcation analysis, and identify their pros and cons in terms of the relationship with the large body of experimental observations on T-cell-mediated suppression. We argue that accounting for the quantitative details of adoptive transfers of tolerance requires models with bistable regimes in which either regulatory cells or effectors cells dominate the steady state. From this analysis, we conclude that the most plausible mechanism of T-cell-mediated suppression requires that regulatory T cells actively inhibit the growth of effector T cells, and that the maintenance of the population of regulatory T cells is dependent on the effector T cells. The regulatory T cell population may depend on a growth factor produced by effector T cells and/or on a continuous differentiation of effector cells to the regulatory phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号