首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A kinetic scheme of the prostacyclin-thromboxane system has been evolved on the basis of the authors experimental data and the results described elsewhere. The kinetic behavior of the model has been analysed with the aid of computer technology by varying the following parameters: phospholipase activities, free arachidonic acid exchange rates between platelets and endothelium, PGH-synthetase biosynthesis rates, velocities of arachidonic acid pathways other than the cyclooxygenase ones. It has been demonstrated that the biological system is capable of sustaining prostacyclin and thromboxane concentrations at steady fixed levels within a wide range of kinetic parameters.  相似文献   

2.
The dynamic replies of the multienzyme system of blood prostanoid synthesis to the introduction of an irreversible inhibitor of prostaglandin H synthetase (PGH synthetase) have been analysed by using kinetic modelling. The alterations of arachidonic acid and PGH synthetase concentrations in platelets and endothelium and the concentrations of thromboxane and prostacyclin have been demonstrated. Particularities of kinetic behaviour of the system probably providing the therapeutic effect of non-steroidal anti-inflammatory drugs have been shown. Namely, the kinetic wave of free arachidonic acid and prostacyclin concentration with respect to thromboxane concentration appears after introduction of the drugs.  相似文献   

3.
Developing a kinetic strategy to examine rates of lipid metabolic pathways can help to elucidate the roles that lipids play in tissue function and structure in health and disease. This review summarizes such a strategy, and shows how it has been applied to quantify different kinetic aspects of brain lipid metabolism in animals and humans. Methods involve injecting intravenously a radioactive or heavy isotope labeled substrate that will be incorporated into a lipid metabolic pathway, and using chemical analytical and/or imaging procedures (e.g., quantitative autoradiography or positron emission tomography) to determine tracer distribution in brain regions and their lipid compartments as a function of time. From the measurements, fluxes, turnover rates, half-lives and ATP consumption rates can be calculated, and incorporation rates can be imaged. Experimental changes in these kinetic parameters can help to identify changes in the expression of regulatory enzymes, and thus aid in drug targeting. Cases that are discussed are arachidonic acid turnover and imaging of neuroreceptor-initiated phospholipase A2 activation, ether phospholipid biosynthesis, and kinetics of the phosphatidylinositol cycle.  相似文献   

4.
5.
Prostaglandins released from isolated ventilated and perfused rat lungs were measured by a simple modification of the Vane technique using the rat stomach fundus as a continuous bioassay tissue. Exogenously supplied arachidonic acid was converted mainly to PGF2alpha which was determined by bioassay. A novel method for mixing a stream of inhibitors with the perfusate was used to determine PGF2alpha in the presence of substrate amounts of arachidonic acid. Using this system the apparent Km for PGF2alpha production with arachidonic acid as the substrate was found to be 1.90 X 10(-4)M, while the Ki for aspirin was found to 2.47 X 10(-4)M. These kinetic parameters are close to those reported for cell free systems and subcellular fractions suggesting that both substrate and inhibitor have ready access to the site of prostaglandin synthesis. The method appears to be generally useful to determine the effect of drugs and environment factors on the release of prostaglandins by the lung.  相似文献   

6.
Prostaglandins released from isolated, ventilated and perfused rat lungs were measured by a simple modification of the Vane technique using the rat stomach fundus as a continuous bioassay tissue. Exogenously supplied arachidonic acid was converted mainly to PGF2 which was determined by bioassay. A novel method for mixing a stream of inhibitors with the perfusate was used to determine PGF2 in the presence of substrate amounts of arachidonic acid. Using this system the apparent Km for PGF2 production with arachidonic acid as the substrate was found to be 1.90 × 10−4M, while the Ki for aspirin was found to be 2.47 × 10−4M. These kinetic parameters are close to those reported for cell free systems and subcellular fractions suggesting that both substrate and inhibitor have ready access to the site of prostaglandin synthesis. The method appears to be generally useful to determine the effect of drugs and environmental factors on the release of prostaglandins by the lung.  相似文献   

7.
The reaction of soybean lipoxygenase-1 with linoleic acid has been extensively studied and displays very large kinetic isotope effects. In this work, substrate and solvent kinetic isotope effects as well as the viscosity dependence of the oxidation of arachidonic acid were investigated. The hydrogen atom abstraction step was rate-determining at all temperatures, but was partially masked by a viscosity-dependent step at ambient temperatures. The observed KIEs on k(cat) were large ( approximately 100 at 25 degrees C).  相似文献   

8.
Mitochondrial uncoupling protein 3 (UCP(3))-mediated uncoupling has been postulated to depend on several factors, including superoxides, free fatty acids (FFAs), and fatty acid hydroperoxides and/or their derivatives. We investigated whether there is an interrelation between endogenous mitochondrial superoxides and fatty acids in inducing skeletal muscle mitochondrial uncoupling, and we speculated on the possible involvement of UCP(3) in this process. In the absence of FFAs, no differences in proton-leak kinetic were detected between succinate-energized mitochondria respiring in the absence or presence of rotenone, despite a large difference in complex I superoxide production. The addition of either arachidic acid or arachidonic acid induced an increase in proton-leak kinetic, with arachidonic acid having the more marked effect. The uncoupling effect of arachidic acid was independent of the presence of GDP, rotenone and vitamin E, while that of arachidonic acid was dependent on these factors. These data demonstrate that FFA and O(2-) play interrelated roles in inducing mitochondrial uncoupling, and we hypothesize that a likely formation of mitochondrial fatty acid hydroperoxides is a key event in the arachidonic acid-induced GDP-dependent inhibition of mitochondrial uncoupling.  相似文献   

9.
Prostaglandins released from isolated, ventilated and perfused rat lungs were measured by a simple modification of the Vane technique using the rat stomach fundus as a continuous bioassay tissue. Exogeneously supplied arachidonic acid was converted mainly to PGF which was determined by bioassay. A novel method for mixing a stream of inhibitors with the perfusate was used to determine PGF in the presence of substrate amounts of arachidonic acid. Using this system the apparent Km for PGF production with arachidonic acid as the substrate was found to be 1.90 × 10−4M, while the Ki for aspirin was found to be 2.47 × 10−4M. These kinetic parameters are close to those reported for cell free systems and subcellular fractions suggesting that both substrate and inhibitor have ready access to the site of prostaglandin synthesis. The method appears to be generally useful to determine the effect of drugs and environmental factors on the release of prostaglandins by the lung.  相似文献   

10.
Prostaglandin-H-synthase is a bifunctional enzyme catalyzing conversion of arachidonic acid into prostaglandin H2 as a result of cyclooxygenase and peroxidase reactions. The dependence of the rate of the cyclooxygenase reaction on oxygen concentration in the absence and in the presence of electron donor was determined. A two-dimensional kinetic scheme accounting for independent proceeding and mutual influence of the cyclooxygenase and peroxidase reactions and also for hierarchy of the rates of these reactions was used as a model. In the context of this model, it was shown that there are irreversible stages in the mechanism of the cyclooxygenase reaction between points of substrate donation (between donation of arachidonic acid and the first oxygen molecule and also between donation of two oxygen molecules).  相似文献   

11.
The mechanism by which arachidonic acid activates soluble guanylate cyclase purified from bovine lung is partially elucidated. Unlike enzyme activation by nitric oxide (NO), which required the presence of enzyme-bound heme, enzyme activation by arachidonic acid was inhibited by heme. Human but not bovine serum albumin in the presence of NaF abolished activation of heme-containing guanylate cyclase by NO and nitroso compounds, whereas enzyme activation by arachidonic acid was markedly enhanced. Addition of heme to enzyme reaction mixtures restored enzyme activation by NO but inhibited enzyme activation by arachidonic acid. Whereas heme-containing guanylate cyclase was activated only 4- to 5-fold by arachidonic or linoleic acid, both heme-deficient and albumin-treated heme-containing enzymes were activated over 20-fold. Spectrophotometric analysis showed that human serum albumin promoted the reversible dissociation of heme from guanylate cyclase. Arachidonic acid appeared to bind to the hydrophobic heme-binding site on guanylate cyclase but the mechanism of enzyme activation was dissimilar to that for NO or protoporphyrin IX. Enzyme activation by arachidonic acid was insensitive to Methylene blue or KCN, was inhibited competitively by metalloporphyrins, and was abolished by lipoxygenase. Whereas NO and protoporphyrin IX lowered the apparent Km and Ki for MgGTP and uncomplexed Mg2+, arachidonic and linoleic acids failed to alter these kinetic parameters. Thus, human serum albumin can promote the reversible dissociation of heme from soluble guanylate cyclase and thereby abolish enzyme activation by NO but markedly enhance activation by polyunsaturated fatty acids. Arachidonic acid activates soluble guanylate cyclase by heme-independent mechanisms that are dissimilar to the mechanism of enzyme activation caused by protoporphyrin IX.  相似文献   

12.
It has been generally considered that highly specific liberation of arachidonic acid is induced upon the stimulation of the platelets, although the molecular mechanism of the regulation of its action has not been well understood. An aim of the present study is to clarify the role of phospholipase A2 in the arachidonic acid metabolism within human platelets. Phosphatidylcholine or phosphatidylethanolamine with arachidonate at the sn-2 position of glycerol was cleaved efficiently by phospholipase A2 activity in homogenates as well as in the cytoplasmic fraction of human platelets, leading to the selective liberation of free arachidonate, whereas phospholipids with linoleate were hardly hydrolyzed under the same conditions. Double-reciprocal plots of kinetic data further strengthened the conclusion that human platelet phospholipase A2 showed high selectivity for arachidonoyl residue. This enzyme may play a crucial role in the intracellular metabolism of the arachidonate of phospholipids.  相似文献   

13.
花生四烯酸作为一种重要的多价不饱和脂肪酸,因其具有多种生理功能而被认为是潜在的食品添加剂和药物。近年来,利用高山被孢霉合成花生四烯酸已成为研究热点。前期相关研究主要集中在菌种选育及发酵调控方面。随着研究的不断深入,关于高山被孢霉合成花生四烯酸的代谢途径的研究取得了较大进展。以下简要概述前期工作进展,着重论述花生四烯酸合成途径的关键酶及其高山被孢霉的遗传改造的研究情况,包括生物合成花生四烯酸代谢途径、关键酶及其应用、高山被孢霉的遗传操作系统的构建以及遗传改造的应用,并对其研究前景进行了展望。  相似文献   

14.
The biotransformation of arachidonic acid by rat liver microsomes from both control animals and animals pretreated with known inducers of cytochrome P-450 isoenzymes has been studied using a combination of reversed- and normal-phase high-performance liquid chromatography and combined gas chromatography—electron-impact mass spectrometry. The metabolite profiles observed were found to be dependent upon the inducing agent. Five metabolites were identified, namely 16-, 17-, 18-, 19- and 20-hydroxylated arachidonic acids. Of these the 16- and 17-isomers have not been reported as products of arachidonic acid metabolism by any biological system and the 18-isomer has not been reported as a product of liver metabolism.  相似文献   

15.
Schistosoma mansoni fatty acid binding protein (Sm14) was crystallized with bound oleic acid (OLA) and arachidonic acid (ACD), and their structures were solved at 1.85 and 2.4 A resolution, respectively. Sm14 is a vaccine target for schistosomiasis, the second most prevalent parasitic disease in humans. The parasite is unable to synthesize fatty acids depending on the host for these nutrients. Moreover, arachidonic acid (ACD) is required to synthesize prostaglandins employed by schistosomes to evade the host's immune defenses. In the complex, the hydrocarbon tail of bound OLA assumes two conformations, whereas ACD adopts a unique hairpin-looped structure. ACD establishes more specific interactions with the protein, among which the most important is a pi-cation bond between Arg78 and the double bond at C8. Comparison with homologous fatty acid binding proteins suggests that the binding site of Sm14 is optimized to fit ACD. To test the functional implications of our structural data, the affinity of Sm14 for 1,8-anilinonaphthalenesulfonic acid (ANS) has been measured; moreover the binding constants of six different fatty acids were determined from their ability to displace ANS. OLA and ACD exhibited the highest affinities. To determine the rates of fatty acid binding and dissociation we carried out stopped flow kinetic experiments monitoring displacement by (and of) ANS. The binding rate constant of ligands is controlled by a slow pH dependent conformational change, which we propose to have physiological relevance.  相似文献   

16.
In animal cells arachidonic acid is metabolized via the 5-, 12- and 15-lipoxygenase pathways. The kinetic mechanism of action of plant (soya) and animal (reticulocyte) 15-lipoxygenases is now well established. 5-Lipoxygenase possesses, in all probability, the most complex mechanism of activity regulation. At present several effectors of neutrophil 5-lipoxygenase, both cytosolic and membrane-bound ones, have been identified. The molecular and kinetic mechanisms of action of the enzyme are still open to question. A kinetic scheme of regulation of synthesis of arachidonic acid 5-lipoxygenase metabolites which does not exclude the presence of two binding sites on the enzyme molecule, is proposed. Within the framework of this kinetic scheme the enzyme activator complex may be the active form of the enzyme. There is evidence that the curve for the time dependence of 5-HETE accumulation in neutrophils stimulated by the Ca2+ ionophore A23187 has a maximum, while the corresponding curve for the LTB4 accumulation is a curve with saturation. It was shown that an increase in the concentration of exogenous arachidonate induces the synthesis of 5-HETE, whereas the concentration of LTB4 remains practically unchanged. The results of mathematical analysis of the above kinetic scheme and a comparison of experimental and calculated values suggest that the reaction effector, Ca2+, plays a crucial regulatory role in the observed kinetic dependencies reflecting the formation of two sequential products of 5-lipoxygenase oxidation of arachidonate. In this way Ca2+ strongly influences the first step of the reaction, i.e., 5-HETE formation; its effect on the second reaction step (5-HETE conversion into LTA4) is far less apparent.  相似文献   

17.
P Meers  K Hong  D Papahadjopoulos 《Biochemistry》1988,27(18):6784-6794
The effect of free fatty acids on the cation-induced fusion of large unilamellar vesicles (liposomes) was investigated by using fluorescent assays which monitor the mixing of aqueous contents of liposomes. Overall fusion was modeled as a two-step process involving aggregation of vesicles followed by actual fusion. Different experimental conditions were used which favored either aggregation or fusion as the rate-limiting step in the overall process. When phosphatidylserine liposomes were induced to fuse by 4 mM Ca2+ plus 5 mM Mg2+, preincubation with arachidonic acid showed a dramatically increased overall rate of fusion compared to the same liposomes not treated with fatty acid. When fusion was induced by 3 mM Ca2+, arachidonic acid had little effect. These results were interpreted in terms of the action of arachidonic acid only at the fusion step per se and not the aggregation step. Therefore, the enhancement of the overall fusion rate would be observed solely under conditions where the actual fusion of liposomes was rate limiting (Ca/Mg) rather than the aggregation of liposomes (Ca alone). When other liposome systems were tested, the effect of arachidonic acid was observed only under fusion rate-limiting conditions. Arachidonic acid was found to act synergistically with promoters of liposomal aggregation, such as Mg2+, spermine, and synexin, to enhance the overall rate of liposome fusion, as would be expected from action at separate kinetic steps. The dependence of the fusion rates on arachidonic acid concentration demonstrated an apparently cooperative effect. The structure of the fatty acid is of critical importance in determining its effects, as shown by the fact that 16-doxylstearic acid always increased the rate of fusion while 5-doxylstearic acid always decreased the rate of fusion under all conditions tested. A number of different fatty acids, including oleic acid, elaidic acid, 16-doxylstearic acid, myristic acid, and stearic acid, were effective at increasing the fusion rate to varying extents. In general, unsaturated fatty acids were more effective than saturated ones, either due to partitioning into the membrane or because of structural requirements for promotion of fusion.  相似文献   

18.
19.
Formation of glucosides of the bile acids chenodeoxycholic, ursodeoxycholic, deoxycholic and hyodeoxycholic acids has been detected in microsomes from human liver, kidney and intestinal mucosa. Hepatic and extrahepatic bile acid glucosyltransferase activities were characterized with respect to kinetic parameters and other catalytic properties. Whereas no marked organ-specific differences in the affinities of individual bile acids toward hepatic and extrahepatic glucosyltransferases were observed, microsomes from extrahepatic sources showed twice to 5-times the maximal rates of bile acid glucosidation estimated with microsomes from liver. In addition to bile acid glucoside formation, microsomes from human liver, kidney and intestinal mucosa catalyzed the synthesis of dolichyl phosphoglucose acting as natural glucosyl donor in bile acid glucosidation.  相似文献   

20.
Rat erythrocyte phosphatidylethanolamine (PE) consists of 60% alkenylacyl, 5% alkylacyl and 35% diacyl types. The fatty acid at the 2-position of these types is mainly composed of arachidonic acid. When intact rat erythrocytes were incubated with exogenous arachidonic acid, about 90% of the arachidonic acid incorporated into the PE fraction was found in the 2-position of the diacyl type. The rates of incorporation of arachidonic acid into alkenylacyl-, alkylacyl- and diacylPE were 78, 134 and 1360 pmol/h per mumol of the corresponding PE, respectively. The substrate specificities of endogenous phospholipase A2 and acyl-CoA:lysophospholipid acyltransferase were observed. DiacylPE was hydrolysed rapidly by endogenous phospholipase A2, while alkenylacyl- and alkylacylPE were poor substrates for the enzyme. The selective transfer of arachidonic acid into the 2-position of 1-acyl-lysoPE was observed. 1-Alkenyl- and 1-alkyl-lysoPE were also poor substrates for acyl-CoA:lysophospholipid acyltransferase. The acyltransferase activities with the lysoPE analogues were higher than the phospholipase A2 activities with PE analogues. These results suggest that the different incorporation rates of arachidonic acid into alkenylacyl-, alkylacyl- and diacylPE are based on the substrate specificity of endogenous phospholipase A2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号