首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Culture of human cells with human interferon alpha and beta (IFNA and IFNB) results in increased resistance of the cells to cell killing by X rays. To identify candidate genes responsible for the IFN-induced X-ray resistance, we searched for genes whose expression levels are increased in human RSa cells treated with IFNA, using an mRNA differential display method and Northern blotting analysis. RSa cells, which showed increased survival (assayed by colony formation) after X irradiation when they were treated with IFNA prior to irradiation, showed increased expression levels of LEU13 (IFITM1) mRNA after IFNA treatment alone. In contrast, IF(r) and F-IF(r) cells, both of which are derived from RSa cells, showed increased X-ray resistance and high constitutive LEU13 mRNA expression levels compared to the parental RSa cells. Furthermore, the IFNA-induced resistance of RSa cells to killing by X rays was suppressed by antisense oligonucleotides for LEU13 mRNA. LEU13, a leukocyte surface protein, was previously reported to mediate the actions of IFN such as inhibition of cell proliferation. The present results suggest a novel role of LEU13 different from that in the inhibition of cell proliferation, involved in IFNA-induced refractoriness of RSa cells to X rays.  相似文献   

2.
In a primary MLR, predominant stimulators in spleen cells are adherent cells and not B cells, although B cells are one of the cell types expressing a large amount of Ia molecules. Our previous experiments showed that T cells treated with neuraminidase (Nase) responded to an allogeneic Ia on B cells. In our experiments, the relationship between the responsiveness to the allogeneic Ia molecules on B cells and Nase activity of T cells was examined. The results showed that T cells increased in Nase activity with the acquisition of the reactivity to Ia on B cells. T cells from normal mice increased in Nase activity after the incubation for 3 days or more in MLR, and these T cells responded to allogeneic Ia on B cells. However, T cells from mice genetically deficient in Nase responded poorly to the Ia on allogeneic B cells even after the incubation in MLR for 3 days. T cells incubated for 3 days in MLR decreased in electrophoretic mobility, indicating the decrease of net negative charge of the cells, and increased in their binding of peanut agglutinin which has been reported to bind to galactosyl residues exposed on T cell surface by removing sialic acids. These results suggest that Nase in T cells was activated by the cultivation in MLR for 3 days, and sialic acids of some molecules on T cell surface were removed by the enzyme and, in turn, T cells acquired the responsiveness to allogeneic B cells in a secondary MLR. Thus, Nase was suggested to play a regulatory role in the recognition of Ia molecules in T cells.  相似文献   

3.
4.
Our recent study showed that quiescent G0 cells are more resistant to ionizing radiation than G1 cells; however, the underlying mechanism for this increased radioresistance is unknown. Based on the relatively lower DNA damage induced in G0 cells, we hypothesize that these cells are exposed to less oxidative stress during exposure. As a catalytic subunit of NADPH oxidase, Ras-related C3 botulinum toxin substrate 2 (RAC2) may be involved in the cellular response to ionizing radiation. Here, we show that RAC2 was expressed at low levels in G0 cells but increased substantially in G1 cells. Relative to G1 cells, the total antioxidant capacity in G0 phase cells increased upon exposure to X-ray radiation, whereas the intracellular concentration of ROS and malondialdehyde increased only slightly. The induction of DNA single- and double-stranded breaks in G1 cells by X-ray radiation was inhibited by knockdown of RAC2. P38 MAPK interaction with RAC2 resulted in a decrease of functional RAC2. Increased phosphorylation of P38 MAPK in G0 cells also increased cellular radioresistance; however, excessive production of ROS caused P38 MAPK dephosphorylation. P38 MAPK, phosphorylated P38 MAPK, and RAC2 regulated in mutual feedback and negative feedback regulatory pathways, resulting in the radioresistance of G0 cells.  相似文献   

5.
6.
The binding of Line 10 hepatoma cells to normal syngeneic guinea pig macrophages is increased when the tumor cells are treated with neuraminidase and galactose oxidase (NAGO) before they are added to the macrophage monolayers. The effect is abolished by exposure of the NAGO-treated tumor cells to sodium borohydride. Line 1 hepatoma cells treated with NAGO or with sodium periodate are killed to a greater extent than untreated tumor cells. This effect can also be reversed by sodium borohydride. Further, periodate-treated macrophages become cytotoxic for unmodified tumor cells. These results demonstrate that increased tumor cell killing occurs when artificial contacts (presumably via Schiff bases) are established between normal macrophages and tumor cells. They are consistent with the hypothesis that close cell to cell contact is necessary for macrophage-mediated cytotoxicity.  相似文献   

7.
When the red cells from patients with sickle cell anemia (S-S) were kept in the disk shape by incubation in O2, they maintained cell sodium in the steady state for at least 10 hours. The sodium flux in such cells at 37°C. was 6.0 ± 1.5 m.eq./ (liters RBC) x (hours). When S-S cells were sickled by incubation in N2, sodium outflux increased two- to threefold, while influx increased four- to fivefold and the cells gained net sodium. A small but undetermined fraction of the sodium in disk and sickle shaped S-S cells exchanges at one or more rates which are substantially slower than those calculated here from the initial rate of transfer of tracer from cells to the medium. The penetration of tracer Cs into normal and both disk and sickled S-S cells was markedly inhibited by increasing the K concentration in the medium, indicating that Cs and K compete for an entrance pathway in all three cell types. The ratio of the inward rate constant for tracer Cs to that for K42 in normal and disk-shaped S-S cells increased only slightly when the K concentration in the medium was increased, indicating that almost all the Cs entered such cells in competition with K. Sickling accelerated the entrance of tracer cesium into S-S cells. Furthermore, the rate constant ratio increased with increasing external K concentration in sickled cells, suggesting the simultaneous presence of a non-competitive route for cesium influx in this cell type. The results are interpreted to support the view that sickling (a) accelerates inward transport of K and Cs and outward transport of Na by a non-diffusion, assumed carrier, process and (b) opens pathways for the diffusion of all three ions.  相似文献   

8.
Hutchinson-Gilford progeria syndrome (HGPS), reportedly a model for normal aging, is a genetic disorder in children marked by dramatic signs suggestive for premature aging. It is usually caused by de novo mutations in the nuclear envelope protein lamin A. Lamins are essential to maintaining nuclear integrity, and loss of lamin A/C results in increased cellular sensitivity to mechanical strain and defective mechanotransduction signaling. Since increased mechanical sensitivity in vascular cells could contribute to loss of smooth muscle cells and the development of arteriosclerosis--the leading cause of death in HGPS patients--we investigated the effect of mechanical stress on cells from HGPS patients. We found that skin fibroblasts from HGPS patients developed progressively stiffer nuclei with increasing passage number. Importantly, fibroblasts from HGPS patients had decreased viability and increased apoptosis under repetitive mechanical strain, as well as attenuated wound healing, and these defects preceded changes in nuclear stiffness. Treating fibroblasts with farnesyltransferase inhibitors restored nuclear stiffness in HGPS cells and accelerated the wound healing response in HGPS and healthy control cells by increasing the directional persistence of migrating cells. However, farnesyltransferase inhibitors did not improve cellular sensitivity to mechanical strain. These data suggest that increased mechanical sensitivity in HGPS cells is unrelated to changes in nuclear stiffness and that increased biomechanical sensitivity could provide a potential mechanism for the progressive loss of vascular smooth muscle cells under physiological strain in HGPS patients.  相似文献   

9.
10.
Rat hepatoma cells that have undergone stepwise selection in increasing concentrations of pyrazofurin have coordinately increased levels of both orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine-5'-phosphate decarboxylase (EC 4.1.1.23) activity. These two activities catalyze the conversion of orotic acid to UMP in de novo pyrimidine biosynthesis. Cells selected in 50 microM pyrazofurin have over 40 times the wild type level for both activities. A single polypeptide of approximately 55,000 daltons is increased in the resistant cells in amounts corresponding to the increase in the two activities. Resistant cell lines that are grown for extended periods in the absence of pyrazofurin are unstable, losing their elevated levels of both enzyme activities and the increased specific protein. Antibody prepared against a purified protein containing both enzyme activities binds specifically to this increased protein. These results corroborate other evidence indicating the two enzyme activities are contained within a single polypeptide called UMP synthase. Poly(A+) mRNA isolated from wild type and resistant lines was analyzed by in vitro translation for production of UMP synthase protein. Immunoprecipitation of the translation products shows the resistant cells have a 17-fold increase in translatable mRNA activity coding for UMP synthase. The synthase accounts for 0.24% of the total in vitro translation products synthesized with poly(A+) mRNA from the pyrazofurin-resistant cells as opposed to 0.014% with wild type mRNA. A cloned UMP synthase cDNA sequence hybridizes strongly to a 1.8-kilobase mRNA in the resistant cells. This mRNA is only barely detectable in equivalent preparations from wild type cells. Quantitation of the mRNA by dot hybridization techniques indicates a 16-fold increase in UMP synthase mRNA in the resistant cells. Although this increase in mRNA for UMP synthase could explain most of the increased protein, it is not sufficient to totally account for the 40-fold increase in UMP synthase.  相似文献   

11.
Fcgamma receptors are important mediators of the binding of IgG to and induction of phagocytosis in neutrophils. COS-1 cells provide a potentially useful model for studying these receptors because transfection with the FcgammaRIIA renders these cells phagocytic. During FcgammaRIIA-mediated phagocytosis in COS-1 cells, endogenous ceramide levels increased 52% by 20 min (p < 0.01). Phospholipase D activity increased by 62% (p < 0.01). Correspondingly, the phagocytic index increased by 3.7-fold by 20 min. Two inhibitors of ceramide formation were used to assess the consequences of reduced ceramide generation. l-Cycloserine, an inhibitor that blocks serine palmitoyltransferase activity, lowered both sphingosine and ceramide levels. Under these conditions, the phagocytic index increased 100% in the presence of 2 mm l-cycloserine. The formation of ceramide resulting from the N-acylation of dihydrosphingosine or sphingosine by ceramide synthase is inhibited by the fungal toxin fumonisin B(1). When cells were treated with 5-50 microm fumonisin B(1), the cellular level of ceramide decreased in a concentration-dependent manner, while simultaneously the phagocytic index increased by 52%. Concomitantly, three indirect measures of FcgammaRIIA activity were altered with the fall in ceramide levels. Syk phosphorylation, phospholipase D activity, and mitogen-activated protein (MAP) kinase phosphorylation were increased at 30 min. When Syk phosphorylation was blocked with piceatannol and cells were similarly challenged, phosphatidylinositol 3-kinase activation was blocked, but no changes in either ceramide accumulation or MAP kinase activation were observed. Ceramide formation and MAP kinase activation are therefore not dependent on Syk kinase activity in this system. These results indicate that COS-1 cells provide a useful model for the recapitulation of sphingolipid signaling in the study of phagocytosis. Ceramide formed by de novo synthesis may represent an important mechanism in the regulation of phagocytosis.  相似文献   

12.
Persistence of effector cytotoxic T lymphocytes (CTLs) during an immunological response is critical for successfully controlling a viral infection or tumor growth. Various cytokines are known to play an important part in regulating the immune response. The IL-2 family of cytokines that includes IL-2 and IL-15 are known to function as growth and survival factors for antigen-experienced T cells. IL-2 and IL-15 possess similar properties, including the ability to induce T cell proliferation. Whereas long-term IL-2 exposure has been shown to promote apoptosis and limit CD8(+) memory T cell survival and proliferation, it is widely believed that IL-15 can inhibit apoptosis and helps maintain a memory CD8(+) T-cell population. However, mechanisms for superior outcomes for IL-15 as compared to IL-2 are still under investigation. Our data shows that human T cells cultured in the presence of IL-15 exhibit increased expression of anti-oxidant molecules glutathione reductase (GSR), thioredoxin reductase 1 (TXNDR1), peroxiredoxin (PRDX) and superoxide dismutase (SOD). An increased expression of cell-surface thiols, intracellular glutathione, and thioredoxins was also noted in IL-15 cultured T cells. Additionally, IL-15 cultured T cells showed an increase in cytolytic effector molecules. Apart from increased level of Granzyme A and Granzyme B, IL-15 cultured T cells exhibited increased accumulation of reactive oxygen (ROS) and reactive nitrogen species (RNS) as compared to IL-2 cultured T cells. Overall, this study suggests that T cells cultured in IL-15 show increased persistence not only due to levels of anti-apoptotic proteins, but also due to increased anti-oxidant levels, which is complimented by increased cytolytic effector functions.  相似文献   

13.
14.
A major goal for the treatment of patients with systemic lupus erythematosus with cytotoxic therapies is the induction of long-term remission. There is, however, a paucity of information concerning the effects of these therapies on the reconstituting B cell repertoire. Since there is recent evidence suggesting that B cell lymphopenia might attenuate negative selection of autoreactive B cells, we elected to investigate the effects of cyclophosphamide on the selection of the re-emerging B cell repertoire in wild type mice and transgenic mice that express the H chain of an anti-DNA antibody. The reconstituting B cell repertoire in wild type mice contained an increased frequency of DNA-reactive B cells; in heavy chain transgenic mice, the reconstituting repertoire was characterized by an increased frequency of mature, high affinity DNA-reactive B cells and the mice expressed increased levels of serum anti-DNA antibodies. This coincided with a significant increase in serum levels of BAFF. Treatment of transgene-expressing mice with a BAFF blocking agent or with DNase to reduce exposure to autoantigen limited the expansion of high affinity DNA-reactive B cells during B cell reconstitution. These studies suggest that during B cell reconstitution, not only is negative selection of high affinity DNA-reactive B cells impaired by increased BAFF, but also that B cells escaping negative selection are positively selected by autoantigen. There are significant implications for therapy.  相似文献   

15.
16.
It is shown that -irradiation has remote consequences for mammalian cells cultivated in vitro. Many generations in the progeny of cells surviving acute and chronic irradiation at high and low doses are characterized by a number of abnormalities, including delayed cell death, the formation of micronuclei and giant cells, an increased frequency of sister chromatid exchanges, a reduced potential for repair, the loss of adaptive response, and increased radiosensitivity. These phenomena are regarded as manifestations of genomic instability induced by ionizing radiation.  相似文献   

17.
The response and subsequent recovery of mouse haemopoietic progenitor cells (spleen colony forming cells and agar colony forming cells) has been studied following two cytotoxic agents. Busulphan was administered to normal mice and vinblastine to mice where the progenitor cell proliferation rate had been increased by a period of continuous γ-irradiation. With both these agents there is a difference between the response of the spleen colony forming cells and the agar colony forming cells during the first five days. They then recover together, but much more slowly after busulphan than after vinblastine even though their proliferation rate is increased. The rate of progenitor cell recovery after busulphan is increased if the progenitor cells are depleted further by vinblastine. However, methotrexate, which severely depletes the peripheral blood count and bone marrow cellularity but not the progenitor cells, has no effect on the recovery following busulphan. These results suggest that following cytotoxic agents the agar colony forming cells (“committed” stem cells) are not self-maintaining but are dependent on a supply of cells from the pluripotential spleen colony forming cells. In addition it appears that the depletion of the progenitor cells of the bone marrow and not the depletion of the maturing cells, provides a stimulus for stem cell recovery.  相似文献   

18.
N-Methyl-N-nitrosourea (MNU) increased the induction of mutations to 8-azaguanine resistance in Chinese hamster cells in a dose-dependent manner. Mutations were only observed with toxic concentrations of MNU. Since a plot of the fraction of cells surviving alkylation against the extent of methylation of DNA exhibited a shoulder it followed that there was a threshold level of DNA reaction which did not lead to mutations possibly due to efficient repair of DNA damage. Post-alkylation incubation in medium containing caffeine decreased cell survival while at the same time it increased the induced mutation frequency. Mutation frequency was increased whether caffeine was present for 48 h or for a further 12 days in the presence of the selective agent 8-azaguanine. MNU caused chromatid aberrations in Chinese hamster cells and these reached a value of 15% of the treated cells by 48 h after methylation. Post-alkylation incubation in caffeine increased the percentage of cells showing chromosomal damage to a maximum of 86% of treated cells by 40 h after alkylation. A large proportion of cells exhibited completely fragmented or shattered chromosomes. The proportion of cells showing the presence of micronuclei also dramatically increased following incubation of methylated cells in caffeine. These results are discussed in terms of the possibility that damage to DNA is responsible for the lethal, mutagenic and cytological effects of MNU in Chinese hamster cells, and that there is a caffeine sensitive step(s) in the repair of the DNA damage which is responsible for these effects.  相似文献   

19.
Proteasomes have been shown to be involved in the regulation of melanin biosynthesis in melanoma cells. Here we report on the correlation between proteasome subunits and Tyrosinase (Tyr) activity in different cell phenotypes, and thereby regulation of melanin biosynthesis in B16F10 mouse melanoma cells. Our results indicated that the quantity of proteasome subunit p27 is higher and that of the enzyme Tyr and its activity are lower in amelanotic melanoma cells, while the reverse is true in melanotic melanoma cells. Proteasome subunit p27, compared to another subunit p31, shows increased co-localization with Tyr and Tyrosinase related protein 1 (Trp1) in amelanotic cells to a greater extent than that in melanotic cells. On exposure to cycloheximide, increased Tyr degradation was seen in amelanotic cells, as indicated by increased co-localization of p27 and Tyr. Further, exposure of amelanotic melanoma cells with proteasome-specific inhibitor MG132 resulted in an increased Tyr activity, increased levels of Tyr and Trp1, leading to increased melanin synthesis. These results therefore suggest that proteasomes, particularly p27 subunit, are directly involved in the regulation of melanin biosynthesis in mouse melanoma cells.  相似文献   

20.
Although selenium compounds have been extensively studied as chemopreventative agents for prostate cancer, little is known about the potential use of selenium compounds for chemotherapy. We have shown that selenite inhibits cell growth and induces apoptosis in androgen-dependent LAPC-4 prostate cancer cells. LAPC-4 cells were more sensitive to selenite-induced apoptosis than primary cultures of normal prostate cells. Selenite-induced apoptosis in LAPC-4 cells correlated with a decrease in the Bcl-2:Bax expression ratio. Selenite-induced oxidative stress and apoptosis are dependent upon its reaction with reduced GSH. LAPC-4 cells treated with selenite showed decreased levels of total GSH and increased concentrations of GSSG. Thus, selenite altered the intracellular redox status toward an oxidative state by decreasing the ratio of GSH:GSSG. Because increased levels of Bcl-2 and GSH are associated with radioresistance, we examined the ability of selenite to sensitize prostate cancer cells to gamma-irradiation. Both LAPC-4 and androgen-independent DU 145 cells pretreated with selenite showed increased sensitivity to gamma-irradiation as measured by clonogenic survival assays. Importantly, selenite-induced radiosensitization was observed in combination with a clinically relevant dose of 2 Gy. These data suggest that altering the redox environment of prostate cancer cells with selenite increases the apoptotic potential and sensitizes them to radiation-induced cell killing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号