首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using radioligand binding assays and post-mortem normal human brain tissue, we obtained equilibrium dissociation constants (K(d)s) for nine new antipsychotic drugs (iloperidone, melperone, olanzapine, ORG 5222, quetiapine, risperidone, sertindole, ziprasidone, and zotepine), one metabolite of a new drug (9-OH-risperidone), and three older antipsychotics (clozapine, haloperidol, and pimozide) at nine different receptors (alpha1-adrenergic, alpha2-adrenergic, dopamine D2, histamine H1, muscarinic, and serotonin 5-HT1A, 5-HT1D, 5-HT2A, and 5-HT2C receptors). Iloperidone was the most potent drug at the two adrenergic receptors. ORG 5222 was the most potent drug at dopamine D2 and 5-HT2c receptors, while ziprasidone was the most potent compound at three serotonergic receptors (5-HT1A, 5-HT1D, and 5-HT2A). At the remaining two receptors, olanzapine was the most potent drug at the histamine H1 receptor (Kd=0.087 nM); clozapine at the muscarinic receptor (Kd=9 nM). Certain therapeutic and adverse effects, as well as certain drug interactions can be predicted from a drug's potency for blocking a specific receptor. These data can provide guidelines for the clinician in the choice of antipsychotic drug.  相似文献   

2.
The effects of a repeated treatment with antipsychotic drugs, clozapine and haloperidol, on the modulation of network activity ex vivo by 5-HT receptors were examined in rat frontal cortical slices using extracellular recording. Rats were treated for 21 days with clozapine (30 mg/kg p.o.), or haloperidol (1 mg/kg p.o.). Spontaneous bursting activity was induced in slices prepared 3 days after the last drug administration by perfusion with a medium devoid of Mg(2+) ions and with added picrotoxin (30 mM). The application of 2-3 microM 8-OH-DPAT, acting through 5-HT(1A) receptors, resulted in a reversible decrease of bursting frequency. In the presence of 1 microM DOI, the 5-HT(2) agonist, or 5 microM zacopride, the 5-HT(4) agonist, bursting frequency increased. Chronic clozapine treatment resulted in an attenuation of the effect of the activation of 5-HT(2) receptors, while the effects related to 5-HT(1A) and 5-HT(4) receptor activation were unchanged. Treatment with haloperiol did not influence the reactivity to the activation of any of the three 5-HT receptor subtypes. These data are consistent with earlier findings demonstrating a selective downregulation of 5-HT(2A) receptors by clozapine and indicate that chronic clozapine selectively attenuates the 5-HT-mediated excitation in neuronal circuitry of the frontal cortex while leaving the 5-HT-mediated inhibition intact.  相似文献   

3.
Dean B  Hussain T  Scarr E  Pavey G  Copolov DL 《Life sciences》2001,69(11):1257-1268
In situ radioligand binding and quantitative autoradiography have been used to measure the density of striatal D1-like, D2-like, and GABAA receptors in rats treated with haloperidol at 0.01 or 0.1 mg/kg/ day or chlorpromazine, olanzapine or clozapine at 0.1 or 1.0 mg/kg/day for 1, 3 or 7 months. [3H]SCH23390 binding to D1-like receptors was not changed by any drug treatments. There were significant increases in [3H]nemonapride binding to D2-like receptors at different time points due to treatment with haloperidol, chlorpromazine and olanzapine. By contrast, treatment with clozapine and olanzapine caused a time-dependent decrease in [3H]muscimol binding to the GABAA receptor. These data suggest that treatment with atypical antipsychotic drugs, but not typical antipsychotic drugs, affect striatal GABAergic neurons. In addition, it would appear that clozapine might be unique in that it does not increase dopamine-D2 like receptor density at doses which would be predicted to have antipsychotic effects in humans. The extent to which such changes are involved in the therapeutic effects of drugs such as olanzapine and clozapine remains to be determined.  相似文献   

4.
The prefrontal cortex (PFC) is involved in the pathophysiology of schizophrenia. PFC neuronal activity is modulated by monoaminergic receptors for which antipsychotic drugs display moderate-high affinity, such as 5-HT(2A) and alpha(1)-adrenoceptors. Conversely, PFC pyramidal neurons project to and modulate the activity of raphe serotonergic neurons and serotonin (5-HT) release. Under the working hypothesis that atypical antipsychotic drugs may partly exert their action in PFC, we assessed their action on the in vivo 5-HT release evoked by increasing glutamatergic transmission in rat medial PFC (mPFC). This was achieved by applying S-AMPA in mPFC (reverse dialysis) or by disinhibiting thalamic excitatory afferents to mPFC with bicuculline. The application of haloperidol, chlorpromazine, clozapine and olanzapine in mPFC by reverse dialysis (but not reboxetine or diazepam) reversed the S-AMPA-evoked local 5-HT release. Likewise, the local (in mPFC) or systemic administration of these antipsychotic drugs reversed the increased prefrontal 5-HT release produced by thalamic disinhibition. These effects were shared by the 5-HT(2A) receptor antagonist M100907 and the alpha(1)-adrenoceptor antagonist prazosin. However, raclopride (DA D2 antagonist) had very modest effects. These results suggest that, besides their action in limbic striatum, antipsychotic drugs may attenuate glutamatergic transmission in PFC, possibly by interacting with 5-HT(2A) and/or alpha(1)-adrenoceptors.  相似文献   

5.
采用放射性配基结合分析法,对大鼠大脑皮质的5-HT受体作了检定,并观察了老年大鼠(36月龄)大脑皮质中该受体的变化。证实大鼠大脑皮质存在着丰富的、高亲和力和单一结合位点的5-HT受体。老年大鼠大脑皮质中5-HT受体的数目较成年大鼠(3月龄)明显减少,但亲和力无改变。应用荧光分光技术测定了成年和老年大鼠脑干和大脑皮质5-HT含量,证实老年大鼠上述两个脑区的5-HT含量均有降低。本研究的结果提示,老年大鼠中枢5-HT系统的功能减低,这一变化可能与老年期的一些表现如睡眠障碍、体温低、记忆力减退和易患精神疾病等有关。  相似文献   

6.
Total 5-HT binding sites and 5-HT1A receptor density was measured in brain regions of rats treated with imipramine (5 mg/kg body wt), desipramine (10 mg/kg body wt) and clomipramine (10 mg/kg body wt), for 40 days, using [3H]5-HT and [3H]8-OH-DPAT, respectively. It was observed that chronic exposure to tricyclic antidepressants (TCAs) results in significant downregulation of total [3H]5-HT binding sites in cortex (42–76%) and hippocampus (35–67%). The 5-HT1A receptor density was, however, decreased significantly (32–60%) only in cortex with all the three drugs. Interestingly, in hippocampus imipramine treatment increased the 5-HT1A receptor density (14%). The affinity of [3H]8-OH-DPAT was increased only with imipramine treatment both in cortex and hippocampus. The affinity of [3H]5-HT to 5-HT binding sites in cortex was increased with imipramine treatment and decreased with desipramine and clomipramine treatment. 5-HT sensitive adenylyl cyclase (AC) activity was significantly increased in cortex with imipramine (72%) and clomipramine (17%) treatment, whereas in hippocampus only imipramine treatment significantly increased AC activity (50%). In conclusion, chronic treatment with TCAs results in downregulation of cortical 5-HT1A receptors along with concomitant increase in 5-HT stimulated AC activity suggesting the involvement of cortical 5-HT1A receptors in the mechanism of action of TCAs.  相似文献   

7.
Dopamine D4-like binding sites are abundant in human cerebral cortex as detected by [3H]nemonapride. The extremely low density of D4 mRNA in human cerebral cortex is inconsistent with the high amount of D4-like binding sites. To investigate the nature of the D4-like receptors, [3H]nemonapride binding sites in the nonhuman primate cerebral cortex were characterized. Although [3H]nemonapride binding sites were D4-like, displaceable by clozapine but not raclopride, [3H]nemonapride binding was not displaced by selective D4 antagonists but was displaced by the selective 5-HT2A antagonist MDL100907. Using [3H]ketanserin as a 5-HT2A ligand, nemonapride showed high affinity for monkey (Ki = 10.4 nM) and cloned human (Ki = 9.4 nM) 5-HT2A receptors, while its affinity for rat receptors was lower (Ki = 140 nM). The present study demonstrates that cerebral cortical D4-like binding sites labeled by [3H]nemonapride in nonhuman primates consist of a very small portion of D4, but a substantial portion of 5-HT2A receptors. The unexpectedly high affinity of nemonapride for primate 5-HT2A receptor suggests reconsidering previous data from other studies using [3H]nemonapride, particularly those on D4-like receptors.  相似文献   

8.
Atypical antipsychotic drugs (APDs), all of which are relatively more potent as serotonin (5-HT)(2A) than dopamine D(2) antagonists, may improve negative symptoms and cognitive dysfunction in schizophrenia, in part, via increasing cortical dopamine release. 5-HT(1A) agonism has been also suggested to contribute to the ability to increase cortical dopamine release. The present study tested the hypothesis that clozapine, olanzapine, risperidone, and perhaps other atypical APDs, increase dopamine release in rat medial prefrontal cortex (mPFC) via 5-HT(1A) receptor activation, as a result of the blockade of 5-HT(2A) and D(2) receptors. M100907 (0.1 mg/kg), a 5-HT(2A) antagonist, significantly increased the ability of both S:(-)-sulpiride (10 mg/kg), a D(2) antagonist devoid of 5-HT(1A) affinity, and R:(+)-8-OH-DPAT (0.05 mg/kg), a 5-HT(1A) agonist, to increase mPFC dopamine release. These effects of M100907 were abolished by WAY100635 (0.05 mg/kg), a 5-HT(1A) antagonist, which by itself has no effect on mPFC dopamine release. WAY100635 (0.2 mg/kg) also reversed the ability of clozapine (20 mg/kg), olanzapine (1 mg/kg), risperidone (1 mg/kg), and the R:(+)-8-OH-DPAT (0.2 mg/kg) to increase mPFC dopamine release. Clozapine is a direct acting 5-HT(1A) partial agonist, whereas olanzapine and risperidone are not. These results suggest that the atypical APDs via 5-HT(2A) and D(2) receptor blockade, regardless of intrinsic 5-HT(1A) affinity, may promote the ability of 5-HT(1A) receptor stimulation to increase mPFC DA release, and provide additional evidence that coadministration of 5-HT(2A) antagonists and typical APDs, which are D(2) antagonists, may facilitate 5-HT(1A) agonist activity.  相似文献   

9.
Characterization of temperature-sensitive [3H]serotonin (5-HT) binding sites (1 and 4 nM Kd sites) revealed complex inhibition by neuroleptics and serotonin antagonists. There was no simple correlation with affinities for S1 and S2 receptors. In vivo pretreatment (48 h before) with mianserin did not alter Bmax or Kd for the 1 nM Kd [3H]5-HT site, although [3H]ketanserin (S2) densities were decreased by 50%. This suggested that possible S2 components of [3H]5-HT binding must be negligeable, even though ketanserin competed with high affinity (IC50 = 3 nM) for a portion of the 1 nM Kd [3H]5-HT site. Low concentrations of mianserin inhibited the 1 nM Kd [3H]5-HT site in a non-competitive manner, as shown by a decrease in Bmax with no change in Kd after in vitro incubation. The complex inhibition data may therefore represent indirect interactions through another site.  相似文献   

10.
D M Helmeste  S W Tang 《Life sciences》1983,33(25):2527-2533
The antidepressants mianserin and amoxapine, and the neuroleptic loxapine caused significant decreases in the number of rat frontal cortex S2-serotonergic receptors after a single acute injection. The affinity of serotonin for this site was also decreased after acute mianserin. Daily injections of loxapine and amoxapine for 2, 7 or 28 days resulted in decreased receptor density but no change in Kd. Down-regulation of S2 sites by mianserin was not dependent on endogenous serotonin stores or occupation of the S2 recognition site since chronic PCPA or acute ketanserin preadministration did not affect the mianserin-induced decreases. The results suggest that mianserin may be acting on other sites which it does not share in common with other S2-antagonists such as ketanserin.  相似文献   

11.
The effect of chronic administration (0.4% for 30 days) of lithium carbonate (Li2CO3) on 5-HT1 receptor-linked second messenger system was studied in regions of rat brain. We observed that chronic treatment of Li2CO3, significantly decreased the density of [3H]5-HT binding sites in cortex (62%), hippocampus (64%) and striatum (65%), compared to the control levels. The affinity of [3H]5-HT to 5-HT1 binding sites was significantly decreased in all the regions. A significant decrease in the density of high affinity 5-HT1A receptor sites was observed in cortex (81%) and hippocampus (42%), without change in the affinity of [3H]8-OH-DPAT for 5-HT1A sites in these regions. 5-HT-stimulated, but not basal, adenylyl cyclase activity was significantly increased in all the regions after Li treatment. The present study concludes that the increase in the 5-HT-stimulated adenylyl cyclase activity might be attributed to the functional downregulation of 5-HT1 receptors, as these are negatively coupled to adenylyl cyclase, suggesting the involvement of 5-HT1 receptor mediated response in the therapeutic efficacy of lithium.  相似文献   

12.
Total 5-HT binding sites and 5-HT1A receptor density was measured in brain regions of rats treated with imipramine (5 mg/kg body wt), desipramine (10 mg/kg body wt) and clomipramine (10 mg/kg body wt), for 40 days, using [3H]5-HT and [3H]8-OH-DPAT, respectively. It was observed that chronic exposure to tricyclic antidepressants (TCAs) results in significant downregulation of total [3H]5-HT binding sites in cortex (42–76%) and hippocampus (35–67%). The 5-HT1A receptor density was, however, decreased significantly (32–60%) only in cortex with all the three drugs. Interestingly, in hippocampus imipramine treatment increased the 5-HT1A receptor density (14%). The affinity of [3H]8-OH-DPAT was increased only with imipramine treatment both in cortex and hippocampus. The affinity of [3H]5-HT to 5-HT binding sites in cortex was increased with imipramine treatment and decreased with desipramine and clomipramine treatment. 5-HT sensitive adenylyl cyclase (AC) activity was significantly increased in cortex with imipramine (72%) and clomipramine (17%) treatment, whereas in hippocampus only imipramine treatment significantly increased AC activity (50%). In conclusion, chronic treatment with TCAs results in downregulation of cortical 5-HT1A receptors along with concomitant increase in 5-HT stimulated AC activity suggesting the involvement of cortical 5-HT1A receptors in the mechanism of action of TCAs.  相似文献   

13.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   

14.
R C Arora  H Y Meltzer 《Life sciences》1989,44(11):725-734
3H-Lysergic acid diethylamide (3H-LSD) binding, a putative measure of 5-HT2 receptor binding, was studied in the blood platelets of 29 depressed patients and 24 normal controls. The Bmax (maximum number of 3H-LSD binding sites) in the blood platelets of depressed patients was significantly greater than that of normal volunteers. This increase in Bmax was due to an increase in female depressed patients only. Bmax was significantly lower in female compared to male normal controls but there was no difference between male and female depressed patients. There was also no difference in Kd (an inverse measure of affinity of 3H-LSD binding to its sites) between normal controls and depressed patients. The correlations between Bmax of 3H-LSD binding and the Bmax of the 3H-imipramine binding site or the Vmax of 5-HT uptake sites were not significant. The role of serotonergic processes in the psychobiology of depression is discussed.  相似文献   

15.
Subhash  M. N.  Srinivas  B. N.  Vinod  K. Y.  Jagadeesh  S. 《Neurochemical research》1998,23(10):1321-1326
Inactivation of 5-HT1A and [3H]5-HT binding sites by N-Ethoxycarbonyl-2-ethoxy-1, 2-dihydro-quinoline (EEDQ) was studied in regions of rat brain. After exposure to EEDQ (4 mg/kg body wt.) for 7 days, it is observed that the density of 5-HT1 receptor sites was decreased by nearly 20% in both cortex and hippocampus. The decrease, however, in 5-HT1A sites was more significant (70%) in both the regions. The affinity of [3H]5-HT to 5-HT1 sites was decreased significantly in both cortex and hippocampus after exposure to EEDQ, without affecting the Kd of 5-HT1A sites. Displacement studies suggested that EEDQ has high affinity to 5-HT1 sites with a Ki of 42.9 ± 2.4 nM. After exposure neither basal nor 5-HT stimulated adenylyl cyclase activity was changed in cortex. The results of this study suggest that EEDQ decreases the density of 5-HT1 and 5-HT1A receptor sites but does not cause functional downregulation of these sites in rat brain.  相似文献   

16.
A series of 3-aminoethyl-1-tetralones, conformationally constrained higher homologues of haloperidol (standard for typical antipsychotic profile), have been obtained by a four-step route from valerolactone. Their binding affinities at dopamine D(2) and serotonin 5-HT2A and 5-HT2C receptors were determined, showing in some cases an atypical antipsychotic profile.  相似文献   

17.
A Biegon  A Weizman  L Karp  A Ram  S Tiano  M Wolff 《Life sciences》1987,41(22):2485-2492
Several methods of platelet membrane preparation and binding conditions were screened in order to optimize the labeling of serotonergic 5-HT2 receptors on previously frozen human platelet membranes with tritiated ketanserin. Under optimal conditions, 5-HT2 receptors in normal subjects (5 males, 7 females, age range 21 to 71) have a Kd of 1.5 +/- 0.2 nM and a Bmax of 33.9 +/- 5.3 fmole/mg protein. In a group of patients with major depressive disorder exactly matched for age and sex with the normal control group, we find a significant increase in receptor density, to 66.8 +/- 11.4 fmole/mg, with no significant change in the affinity (2.3 +/- 0.5 nM). Four weeks of treatment with antidepressant drugs result in a significant decrease of Bmax, down to control levels (29.4 +/- 3.9). Thus, ketanserin can be used to monitor changes in platelet serotonin 5-HT2 receptors which may be a relevant marker for the state of depression.  相似文献   

18.
5-Hydroxytryptamine 2A (5-HT2A) receptors, a major site of action of clozapine and other atypical antipsychotic medications, are, paradoxically, internalized in vitro and in vivo by antagonists and agonists. The mechanisms responsible for this paradoxical regulation of 5-HT2A receptors are unknown. In this study, the arrestin and dynamin dependences of agonist- and antagonist-mediated internalization were investigated in live cells using green fluorescent protein (GFP)-tagged 5-HT2A receptors (SR2-GFP). Preliminary experiments indicated that GFP tagging of 5-HT2A receptors had no effect on either the binding affinities of several ligands or agonist efficacy. Likewise, both the native receptor and SR2-GFP were internalized via endosomes in vitro. Experiments with a dynamin dominant-negative mutant (dynamin K44A) demonstrated that both agonist- and antagonist-induced internalization were dynamin-dependent. By contrast, both the agonist- and antagonist-induced internalization of SR2-GFP were insensitive to three different arrestin (Arr) dominant-negative mutants (Arr-2 V53D, Arr-2-(319-418), and Arr-3-(284-409)). Interestingly, 5-HT2A receptor activation by agonists, but not antagonists, induced greater Arr-3 than Arr-2 translocation to the plasma membrane. Importantly, the agonist-induced internalization of 5-HT2A receptors was accompanied by differential sorting of Arr-2, Arr-3, and 5-HT2A receptors into distinct plasma membrane and intracellular compartments. The agonist-induced redistribution of Arr-2 and Arr-3 into intracellular vesicles and plasma membrane compartments distinct from those involved in 5-HT2A receptor internalization implies novel roles for Arr-2 and Arr-3 independent of 5-HT2A receptor internalization and desensitization.  相似文献   

19.
In addition to antidepressant drugs, some neuroleptic (NL) drugs reduce serotonin2 (5-HT2) receptor binding sites after chronic administration. The present study was undertaken to characterize further this property of NL drugs. Scatchard analysis of [3H]spiperone binding in rat cerebral cortex revealed that 21-day treatment with chlorpromazine (CPZ), cis-flupenthixol, and thioridazine reduced 5-HT2 radioligand binding density by 60, 27, and 18%, respectively. The more selective dopamine-D2 antagonists haloperidol and sulpiride were totally ineffective in this regard. No reduction in 5-HT2 ligand binding sites occurred after 1 day of treatment with CPZ but 3-days of treatment was effective and this reduction persisted, although diminished, for at least 72 h after the last injection. cis-Flupenthixol and d-butaclamol were also effective after 3 days of treatment but trans-flupenthixol and l-butaclamol were not, indicating stereo-specificity of the response mechanism. Female rats showed the same response to CPZ as did male rats. Central 5,7-dihydroxytryptamine-induced lesions of 5-HT neurons demonstrated that intact 5-HT neurons were not required for the reduction of 5-HT2 receptor ligand binding by CPZ. Since CPZ has high affinity for many receptors, including alpha 1, histamine1, and muscarinic receptors, the role of these effects in producing 5-HT2 receptor down-regulation was considered by studying the effects of prazosin, atropine, and pyrilamine administration on 5-HT2 radioligand binding. Results indicate that no one of these actions appears to account for the down-regulation of 5-HT2 receptors by CPZ. Several of these effects, in combination, or some unique mechanism, may be involved.  相似文献   

20.
Because the dopamine D3 receptor is primarily expressed in regions of the limbic system of brain, it was proposed that it may represent a target for antipsychotic drugs that is free of extrapyramidal side effects. An ex vivo receptor binding technique employing [3H]7-OH-DPAT was used to evaluate in vivo occupancy of dopamine D3 receptors in the rat nucleus accumbens by selective D3 agonist 7-OH-DPAT (7-hydroxy-dipropylaminotetralin) and various antipsychotic drugs. With an ID50 value of 0.07 mg/kg, the selective D3 agonist (+)-7-OH-DPAT had the most potent inhibitory effect on ex vivo binding of [3H]7-OH-DPAT among all drugs tested. Clinical doses of phenothiazine drugs, such as chlorpromazine and levomepromazine, induce binding to D3 receptors in vivo, while atypical antipsychotic drugs, such as clozapine, pimozide, and sulpiride, are very weak in inhibiting ex vivo binding of [3H]7-OH-DPAT, indicating that the role of D3 receptors as targets of antipsychotic drugs free of extrapyramidal side effects may not be important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号