首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
We have used an in vitro endosome fusion assay, recombinant ARF, synthetic peptides, and guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) to study the role of ARF during endocytosis. Previous work has shown that GTP gamma S stimulates in vitro endosome fusion in dilute cytosol (less than 0.5 mg/ml) but inhibits fusion in concentrated cytosol (greater than 1.0 mg/ml). Two peptides corresponding to the NH2-terminal 16 amino acids of human ARF1 and ARF4 blocked GTP gamma S stimulation of fusion in dilute cytosol and reversed GTP gamma S inhibition of fusion in concentrated cytosol. The addition of recombinant human ARF1 to endosomes in dilute or concentrated cytosol resulted in GTP gamma S-dependent inhibition of fusion. Only the myristoylated form of ARF inhibited fusion. The NH2-terminal ARF1 peptide reversed inhibition by recombinant ARF1. Preincubation experiments showed that endosomes could form an ARF-resistant intermediate during the fusion process. Western blot analysis revealed clathrin-coated vesicles extracted with detergent retained ARF. The results suggest that ARF is involved in both the stimulatory and inhibitory effects of GTP gamma S in dilute and concentrated cytosol, respectively. Furthermore, myristoylation, the NH2-terminal domain, and binding to GTP appear to be critical for ARF activity during an early prefusion step required for endocytosis.  相似文献   

2.
An in vitro endosome fusion assay using Dictyostelium discoideum is described. The method requires endocytosis of anti-dinitrophenol (DNP) IgG or DNP-derivitized beta-glucuronidase into two sets of cells. After homogenizing the cells, the vesicles were mixed, and fusion was measured by quantitating immune complex formation between DNP-beta-glucuronidase and anti-DNP IgG. Fusion was dependent upon ATP, temperature, pH, ionic strength, and cytosol and sensitive to detergent, dilution, trypsin, N-ethylmaleimide, and guanosine 5'-3-O-(thio)triphosphate. Although weak bases, ionophores, hadacidin, [ethylenebis(oxyethylenenitrilo)]tetraacetic acid, and caffeine inhibit endocytosis in vivo, these reagents had no affect on in vitro endosome fusion. Comparison of Dictyostelium with mammalian cells showed differences in the temperature, pH, and salt requirements for fusion, possibly reflecting differences in the life-styles of various cell types. Like mammalian cells, Dictyostelium required GTP-binding protein(s) and an N-ethylmaleimide-sensitive factor for endosome fusion. Thus, the mechanism driving endosome fusion may have been conserved throughout evolution. Electron microscopic studies confirmed in vitro endosome fusion and revealed endosomes were being engulfed by other endosomes, resulting in formation of multivesicular elements (i.e. autophagic vesicles). This system may be useful for characterizing mutations, evolution, and developmental regulation along the endocytic pathway.  相似文献   

3.
In vitro clustering and multiple fusion among macrophage endosomes   总被引:4,自引:0,他引:4  
Early steps of receptor-mediated endocytosis appear to require the fusion of endosomes with each other. Recently, these fusion events have been reconstituted in vitro using vesicle preparations from J774 macrophages which have internalized ligands via the mannose receptor (Diaz, R., Mayorga, L., and Stahl, P. (1988) J. Biol. Chem. 263, 6093-6100). The present studies indicate that endosomes first form clusters when incubated under fusogenic conditions. Aggregation state was determined by electron microscopy using vesicles containing ligand-coated colloidal gold of different sizes previously internalized via the mannose receptor. Aggregation required cytosol and ATP. Afterwards, the limiting membranes of the vesicles composing these aggregates undergo multiple fusion and bring about the formation of large diameter vesicles that maintained the same density as endosomes when analyzed by Percoll gradient sedimentation. These large diameter vesicles were no longer fusogenic in the fusion assay. Multiple fusion was determined morphologically by the co-localization of three different size colloidal gold vesicles inside endocytic vesicles and biochemically by the fusion-dependent formation of triple immune complexes between three endocytic ligands internalized by receptor-mediated endocytosis: anti-dinitrophenol mouse IgG and dinitrophenol-derivatized beta-glucuronidase, ligands for the mannose receptor, and aggregated rabbit anti-mouse IgG, a ligand for the macrophage Fc receptor.  相似文献   

4.
Phospholipid diversity: correlation with membrane-membrane fusion events   总被引:1,自引:0,他引:1  
The transport of various metabolically important substances along the endocytic and secretory pathways involves budding as well as fusion of vesicles with various intracellular compartments and plasma membrane. The membrane-membrane fusion events between various sub-compartments of the cell are believed to be mainly mediated by so-called "fusion proteins". This study shows that beside the proteins, lipid components of membrane may play an equally important role in fusion and budding processes. Inside out (ISO) as well as right side out (RSO) erythrocyte vesicles were evaluated for their fusogenic potential using conventional membrane fusion assay methods. Both fluorescence dequenching as well as content mixing assays revealed fusogenic potential of the erythrocyte vesicles. Among two types of vesicles, ISO were found to be more fusogenic as compared to the RSO vesicles. Interestingly, ISO retained nearly half of their fusogenic properties after removal of the proteins, suggesting the remarkable role of lipids in the fusion process. In another set of experiments, fusogenic properties of the liposomes (subtilosome), prepared from phospholipids isolated from Bacillus subtilis (a lower microbe) were compared with those of erythrocyte vesicles. We have also demonstrated that various types of vesicles upon interaction with macrophages deliver encapsulated materials to the cytosol of the cells. Membrane-membrane fusion was also followed by the study, in which a protein synthesis inhibitor ricin A (that does not cross plasma membrane), when encapsulated in the erythrocyte vesicles or subtilosomes was demonstrated to gain access to the cytosol.  相似文献   

5.
The transport of various metabolically important substances along the endocytic and secretory pathways involves budding as well as fusion of vesicles with various intracellular compartments and plasma membrane. The membrane-membrane fusion events between various sub-compartments of the cell are believed to be mainly mediated by so-called “fusion proteins”. This study shows that beside the proteins, lipid components of membrane may play an equally important role in fusion and budding processes. Inside out (ISO) as well as right side out (RSO) erythrocyte vesicles were evaluated for their fusogenic potential using conventional membrane fusion assay methods. Both fluorescence dequenching as well as content mixing assays revealed fusogenic potential of the erythrocyte vesicles. Among two types of vesicles, ISO were found to be more fusogenic as compared to the RSO vesicles. Interestingly, ISO retained nearly half of their fusogenic properties after removal of the proteins, suggesting the remarkable role of lipids in the fusion process. In another set of experiments, fusogenic properties of the liposomes (subtilosome), prepared from phospholipids isolated from Bacillus subtilis (a lower microbe) were compared with those of erythrocyte vesicles. We have also demonstrated that various types of vesicles upon interaction with macrophages deliver encapsulated materials to the cytosol of the cells. Membrane-membrane fusion was also followed by the study, in which a protein synthesis inhibitor ricin A (that does not cross plasma membrane), when encapsulated in the erythrocyte vesicles or subtilosomes was demonstrated to gain access to the cytosol.  相似文献   

6.
Annexin II is a major component of fusogenic endosomal vesicles   总被引:27,自引:9,他引:18       下载免费PDF全文
《The Journal of cell biology》1993,120(6):1357-1369
We have used an in vitro assay to follow the proteins transferred from a donor to an acceptor upon fusion of early endosomes. The acceptor was a purified early endosomal fraction immunoisolated on beads and the donor was a metabolically-labeled early endosomal fraction in suspension. In the assay, both fractions were mixed in the presence of unlabeled cytosol, and then the beads were retrieved and washed. The donor proteins transferred to the acceptor were identified by two- dimensional gel electrophoresis and autoradiography. Approximately 50 major proteins were transferred and this transfer fulfilled all criteria established for endosome fusion in vitro. However, only a small subset of proteins was efficiently transferred, if donor endosomes were briefly sonicated to generate small (0.1 micron diam) vesicles before the assay. These include two acidic membrane proteins, and three alkaline peripheral proteins exposed on the cytoplasmic face of the membrane. Partial sequencing and Western blotting indicated that one of the latter components is annexin II, a protein known to mediate membrane-membrane interactions. Immunogold labeling of cryosections confirmed that annexin II is present on early endosomes in vivo. These data demonstrate that annexin II, together with the other four proteins we have identified, is a major component of fusogenic endosomal vesicles, suggesting that these proteins are involved in the binding and/or fusion process.  相似文献   

7.
Abstract: The effect of the hydrolysis-resistant GTP analogs, guanosine 5'- O -(3-thiotriphosphate) (GTPγS) and guanylyl imidodiphosphate (GMPPNP), on norepinephrine (NE) secretion from digitonin-permeabilized rat pheochromocytoma cells, PC12, was examined. Although secretion in the presence of saturating Ca2+ (10 μ M ) was not affected by GTP7S or GMPPNP, secretion in the absence of Ca2+ was stimulated by these GTP analogs. Secretion induced by saturating concentrations of GTPγS or GMPPNP was approximately 80% of that induced by 10 μ M Ca2+. Half-maximum stimulation was induced by 30 μ M GTPγS or GMPPNP. Both Ca2+-stimulated and GTPγS-stimulated secretion were ATP dependent and inhibited by N -ethylmaleimide. The GTPγS-stimulated secretion of NE from permeabilized PC12 cells does not appear to result from either the release of Ca2+ or the activation of protein kinase C. Activation of protein kinase C by pretreatment of intact cells with 12- O -tetradecanoyl-phorbol 13-acetate caused a 50% increase in both Ca2+-stimulated and GTP7S-stimulated secretion. Cholera and pertussis toxins did not affect Ca2+-stimulated or GTPγS-stim-ulated NE secretion. Guanosine 5'- O -(2-thiodiphosphate) (GDPβS) and GTP inhibited GTPγS-stimulated secretion but not Ca2+-stimulated secretion. The inability of GDPβS to inhibit Ca2+-stimulated secretion indicates that the process affected by GTPγS is not an essential step in the Ca2+-stimulated pathway.  相似文献   

8.
Infection of mammalian cells with Semliki Forest virus requires the endocytosis of the virus, its delivery to prelysosomal endosomes, and fusion of the viral envelope with the endosome membrane. Previous studies have indicated that the low endosomal pH triggers a conformational change in the viral spike glycoproteins rendering them fusogenic. In this paper, we demonstrate an additional factor(s) which regulates virus fusion in endosomes. We found that Semliki Forest virus is unable to penetrate or infect baby hamster kidney (BHK-21) cells grown in medium containing reduced Na+ concentrations. Virus endocytosis and degradation are nearly normal, the virus is transported to endosomes where a characteristic low pH-induced loss of trypsin-sensitivity of the E1 spike glycoprotein occurs. Nevertheless, the viral envelope fails to fuse with the endosomal membrane and the viral RNA is not released into the cytosol. As judged by the uptake of the voltage-sensitive probe [3H]triphenylmethyl phosphonium we observed a close correlation between conditions which inhibit virus infection and which cause depolarization of the cells. We propose that in intact cells, the fusion of Semliki Forest virus with the endosome membrane depends not only on acidic endosomal pH, but also on the maintenance of the potential.  相似文献   

9.
Abstract: The human D4 dopamine receptor has been expressed in Sf9 insect cells where it appears to couple to endogenous G proteins. Increased guanine nucleotide exchange to G proteins is a reflection of receptor activation and can be followed using a [35S]GTPγS binding assay. By measuring D4 receptor stimulation of [35S]-GTPγS binding we have been able to characterize several dopaminergic compounds for their functional activity at this receptor. In Sf9 cells expressing the D4 receptor, dopamine, quinpirole, and dp -2-aminodihydroxy-1,2,3,4-tetrahydronaphthalene were all full agonists, whereas (−)-apomorphine appeared to be a partial agonist. No increase in [35S]GTPγS binding was observed for noninfected cells or cells infected with an unrelated sequence. The quinpirole-stimulated [35S]GTPγS binding could be inhibited by the antagonists clozapine, eticlopride, and haloperidol, and a Schild analysis of these data showed that all three compounds were acting as competitive antagonists of D4 receptors. The rank order of affinities derived from the Schild analysis correlated with that obtained from [3H]spiperone competition binding assays. In conclusion, we have shown that, using this assay system, it is possible to investigate functionally the pharmacology of a recombinant G protein-coupled receptor in the absence of any information regarding the eventual second messenger pathways involved.  相似文献   

10.
We developed a sensitive fluorometric assay to study in vitro fusion between early endosomes isolated from the human hepatoma, Hep G2. Biochemical characterization of this assay showed that fusion between endosomal vesicles was dependent on physiologic temperature, cytosol, and ATP. Fusion was inhibited by pretreatment of vesicles and cytosol with either 1 mM N-ethylmaleimide or 20 microM GTP gamma S. Neither 3 mM ethylene glycol-bis-(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid nor 1 mM CaCl2 significantly affected fusion. In addition, ATP gamma S neither inhibited fusion at 50 microM nor supported fusion at 5 mM. To further our understanding of the factors regulating fusion, inhibitors of endoprotease activity and phosphotyrosine phosphatase activity were assayed for their effect on fusion. The dipeptide inhibitor of endoprotease activity, Cbz-gly-phe-amide, inhibited fusion 70% at 3 mM whereas a dipeptide analogue, Cbz-gly-gly-amide, was without effect. Furthermore, orthovanadate, an inhibitor of phosphotyrosine phosphatase activity, stimulated fusion twofold at 0.5 mM. These results suggest that both tyrosine dephosphorylation and endoprotease activity contribute to the regulation of endosome fusion.  相似文献   

11.
Zhu L  Li Y  Li S  Li H  Qiu Z  Lee C  Lu H  Lin X  Zhao R  Chen L  Wu JZ  Tang G  Yang W 《PloS one》2011,6(12):e29120
Hemagglutinin (HA) of the influenza virus plays a crucial role in the early stage of the viral life cycle by binding to sialic acid on the surface of host epithelial cells and mediating fusion between virus envelope and endosome membrane for the release of viral genomes into the cytoplasm. To initiate virus fusion, endosome pH is lowered by acidification causing an irreversible conformational change of HA, which in turn results in a fusogenic HA. In this study, we describe characterization of an HA inhibitor of influenza H1N1 viruses, RO5464466. One-cycle time course study in MDCK cells showed that this compound acted at an early step of influenza virus replication. Results from HA-mediated hemolysis of chicken red blood cells and trypsin sensitivity assay of isolated HA clearly showed that RO5464466 targeted HA. In cell-based assays involving multiple rounds of virus infection and replication, RO5464466 inhibited an established influenza infection. The overall production of progeny viruses, as a result of the compound's inhibitory effect on fusion, was dramatically reduced by 8 log units when compared with a negative control. Furthermore, RO5487624, a close analogue of RO5464466, with pharmacokinetic properties suitable for in vivo efficacy studies displayed a protective effect on mice that were lethally challenged with influenza H1N1 virus. These results might benefit further characterization and development of novel anti-influenza agents by targeting viral hemagglutinin.  相似文献   

12.
Atif SM  Hasan I  Ahmad N  Khan U  Owais M 《FEBS letters》2006,580(9):2183-2190
The membrane-membrane fusion during fertilization of oocyte by spermatozoa is believed to be mainly mediated by so called "fusion proteins". In the present study we have tried to demonstrate that beside the proteins, lipid components of membrane may play an important role in fusion of oocyte with spermatozoa. Conventional membrane-membrane fusion assays were used as means to demonstrate fusogenic potential of human sperm membrane lipids. The liposomes (spermatosomes) made of the lipids isolated from sperm membrane were found to undergo strong membrane-membrane fusion as evident from fluorescence dequenching and resonance energy transfer assays. Furthermore, the fusion of these liposomes with living cells (J774 A.1 macrophage cell line) was demonstrated to result in an effective transfer of a water-soluble fluorescent probe (calcein) to cytosol of the target cell. Lastly, the liposomes were demonstrated to behave like efficient vehicles for the in vivo cytosolic delivery of the antigens to target cells resulting in elicitation of antigen specific CD8(+) T cell responses.  相似文献   

13.
Abstract: Endomorphin-1 is a peptide whose binding selectivity suggests a role as an endogenous ligand at μ-opioid receptors. In the present study, the effect of endomorphin-1 on μ receptor-coupled G proteins was compared with that of the μ agonist DAMGO by using agonist-stimulated [35S]GTPγS binding in rat brain. [35S]GTPγS autoradiography revealed a similar localization of endomorphin-1 and DAMGO-stimulated [35S]GTPγS binding in areas including thalamus, caudate-putamen, amygdala, periaqueductal gray, parabrachial nucleus, and nucleus tractus solitarius. Naloxone blocked endomorphin-1-stimulated labeling in all regions examined. Although the distribution of endomorphin-1-stimulated [35S]GTPγS binding resembled that of DAMGO, the magnitude of endomorphin-1-stimulated binding was significantly lower than that produced by DAMGO. Concentration-effect curves of endomorphin-1 and DAMGO in thalamic membranes confirmed that endomorphin-1 produced only 70% of DAMGO-stimulated [35S]GTPγS binding. Differences in maximal stimulation of [35S]GTPγS binding between DAMGO and endomorphin-1 were magnified by increasing GDP concentrations, and saturation analysis of net endomorphin-1-stimulated [35S]GTPγS binding revealed a lower apparent B max value than that obtained with DAMGO. Endomorphin-1 also partially antagonized DAMGO stimulation of [35S]GTPγS binding. These results demonstrate that endomorphin-1 is a partial agonist for G protein activation at the μ-opioid receptor in brain.  相似文献   

14.
A fluorescence assay of in vivo endosome fusion was developed and applied to define the kinetics of endosome fusion in baby hamster kidney (BHK) fibroblasts. The assay is based on an approximately 10-fold enhancement of the green fluorescence of BODIPY-avidin upon biotin binding. The BODIPY-avidin fluorescence enhancement occurred in < 25 ms, was pH-independent, and involved a BODIPY-tryptophan interaction. For endocytosis in vivo, BHK fibroblasts were pulse-labeled with BODIPY-avidin together with a red (rhodamine) fluorescent fusion-independent chromophore (TMR). After specified chase times in a nonfluorescent medium, a second cohort of endosomes was pulse-labeled with biotin-conjugated albumin, dextran, or transferrin. Fusion of biotin-containing endosomes with avidin-containing endosomes was quantified by ratio imaging of BODIPY-to-TMR fluorescence in individual endosomes, using imaging methods developed for endosome pH studies. Analysis of BODIPY-to-TMR ratio distributions in avidin-labeled endosomes exposed to zero and maximum biotin indicated > 90% sensitivity for detection of endosome fusion. In avidin pulse (10 min) -chase-biotin albumin pulse (10 min) studies, both fused and unfused endosomes were identified; the fractions of avidin-labeled endosomes that fused with biotin-labeled endosomes were 0.48, 0.21, 0.16, and 0.07 for 0-, 5-, 10-, and 20-min chase times. Fitting of fusion data to a mathematical model of in vivo endosome fusion required the existence of an intermediate fusion compartment. Pulse-chase studies performed with biotin-transferrin to label the early/recycling endosomes indicated that after a 10-min chase, avidin-labeled endosomes reached a compartment that was inaccessible to biotin-transferrin. The assay was also applied to determine whether endosome fusion was influenced by temperature, pH (bafilomycin A1), second messengers (cAMP agonists, phorbol 12-myristate 13-acetate, staurosporine), and growth-related factors (platelet-derived growth factor, genistein). The results establish a sensitive fluorescence assay to quantify the fusion of vesicular compartments in living cells.  相似文献   

15.
Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), a non-hydrolyzable analogue of GTP, inhibits in vitro fusion among early endocytic vesicles in the presence of high concentrations of cytosol. In this report we show that fusion is remarkably stimulated by GTP gamma S under conditions where cytosolic components are the limiting factors for the process. The amount of cytosolic factors required for maximal fusion activity is several-fold decreased by the presence of GTP gamma S. Moreover, preincubation of vesicles in the presence of cytosol and GTP gamma S allows fusion to proceed even in the absence of cytosol. Our results indicate that a GTP-binding protein facilitates the binding of cytosolic factor(s) required for endosome fusion to the endosomal membrane and stabilizes a dilution-resistant intermediate of the fusion process.  相似文献   

16.
rab5 controls early endosome fusion in vitro   总被引:110,自引:0,他引:110  
J P Gorvel  P Chavrier  M Zerial  J Gruenberg 《Cell》1991,64(5):915-925
The small GTP-binding protein rab5 was previously localized on early endosomes and on the cytoplasmic face of the plasma membrane. Using a cell-free assay, we have now tested whether rab5 is involved in controlling an early endocytic fusion event. Fusion could be inhibited by cytosol containing the overexpressed mutant rab5lle133, which does not bind GTP on blots, and by antibodies against rab5, but not against rab2 or rab7. In contrast, fusion was stimulated with cytosol containing overexpressed wild-type rab5. Cytosols containing high levels of rab2 or mutant rab5 with the 9 carboxy-terminal amino acids deleted, which bind GTP on blots, had no effects. Finally, the inhibition mediated by anti-rab5 antibodies could be overcome by complementing the assay with the cytosol containing wild-type rab5, but not with the same cytosol depleted of rab5, nor with cytosol containing the rab5 mutants or rab2. These in vitro findings strongly suggest that rab5 is involved in the process of early endosome fusion.  相似文献   

17.
Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design.  相似文献   

18.
Current models for sorting in the endosomal compartment suggest that endosomal geometry plays a significant role as membrane-bound proteins accumulate in tubular regions for recycling, and lumenal markers accumulate in large vacuolar portions for delivery to lysosomes. Rab5, a small molecular weight GTPase, functions in the formation and maintenance of the early/sorting endosome. Overexpression of the constitutively active form, Rab5(Q79L), leads to enhanced endosome fusion resulting in the enlargement of early endosomes. Using an adenoviral expression system to regulate the time and level of Rab5(Q79L) overexpression in HeLa cells, we find that although endosomes are dramatically enlarged, the rates of transferrin receptor-mediated endocytosis and recycling are unaffected. Moreover, despite the enlarged endosome phenotype, neither the rate of internalization of a fluid phase marker nor the rate of recycling of a bulk lipid marker were affected. These results suggest that GTP hydrolysis by Rab5 is rate-limiting for endosome fusion but not for endocytic trafficking and that early endosome geometry may be a less critical determinant of sorting efficiencies than previously thought.  相似文献   

19.
A quantitative real-time assay of cell-free endosomal vesicle fusion was developed and applied to study fusion mechanisms in endosomes from baby hamster kidney (BHK-21) cells. The assay is based on an irreversible approximately 10-fold increase in BODIPY-avidin fluorescence on binding of biotinylated conjugates. BODIPY-avidin and biotin-dextran were internalized for 10 min at 37 degrees C into separate populations of BHK-21 cells, and endosome fractions were prepared. Postnuclear supernatant fractions underwent ATP- and temperature-dependent fusion, as measured in a sensitive custom-built microfluorimeter by the continuous increase in BODIPY-avidin fluorescence. Fusion processes of efficiency > 2.5% could be detected with 200-ms time resolution in sample volumes of 50 microL containing endosomes derived from approximately 4 x 10(4) cells. The fusion time course consisted of a distinct lag phase (up to 10 min) in which little fusion occurred, followed by an approximately exponential rise (t 1/2 10-30 min; fusion efficiency approximately 15%). The lag phase was reduced by preincubation of separate endosome fractions with ATP at 37 degrees C and by coincubation of endosomes at 22 degrees C before the assay, suggesting a rate-limiting step involving binding of a soluble protein to the endosome membrane. Endosome fusion was strongly inhibited by GTP gamma S, N-ethylmaleimide, and AIF4-. Endosome fusion was not affected by phorbol myristate acetate but was significantly inhibited by cAMP and bovine brain calmodulin. The results establish a sensitive real-time fluorescence assay to quantify the kinetics and extent of endosome fusion in a cell-free system and demonstrate regulation of early endosome fusion by cytosolic second messengers.  相似文献   

20.
After clathrin-mediated endocytosis, clathrin removal yields an uncoated vesicle population primed for fusion with the early endosome. Here we present the first characterization of uncoated vesicles and show that myo6, an unconventional myosin, functions to move these vesicles out of actin-rich regions found in epithelial cells. Time-lapse microscopy revealed that myo6-associated uncoated vesicles were motile and exhibited fusion and stretching events before endosome delivery, processes that were dependent on myo6 motor activity. In the absence of myo6 motor activity, uncoated vesicles remained trapped in the actin mesh, where they exhibited Brownian-like motion. Exit from the actin mesh occurred by a slow diffusion-based mechanism, delaying transferrin trafficking to the early endosome. Expression of a myo6 mutant that bound tightly to F-actin produced immobilized vesicles and blocked trafficking. Depolymerization of the actin cytoskeleton rescued this block and specifically accelerated transferrin delivery to the early endosome without affecting earlier steps in endocytosis. Therefore actin is a physical barrier impeding uncoated vesicle trafficking, and myo6 is recruited to move the vesicles through this barrier for fusion with the early endosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号