首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Muscle tropomyosin was modified with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-chloride) at several different pH values. NBD-chloride reacts specifically with SH residue at neutral pH but it reacts with both SH residue and amino residues at alkaline pH. The polymerizability of tropomyosin at low ionic strength and the binding property of tropomyosin to F-actin were not affected by the modification of SH residues but they were lost rapidly by the modification of amino groups, in accordance with the previous report [Johnson, P. & Smillie, L.B. (1977) Biochemistry 16, 2264-2269]. By the addition of heavy meromyosin, labeled tropomyosin which could not bind to F-actin recovered the binding ability to F-actin and it could regulate the superprecipitation of actomyosin in the presence of troponin. Further modification of amino groups (labeling ratios more than 5) led to loss of the regulating ability completely.  相似文献   

2.
The interactions of actin filaments with actin-binding protein (filamin) and caldesmon under the influence of tropomyosin were studied in detail using falling-ball viscometry, binding assay and electron microscopy. Caldesmon decreased the binding constant of filamin with F-actin. In contrast, the maximum binding ability of filamin to F-actin was decreased by tropomyosin. The filamin-induced gelation of actin filaments was inhibited by caldesmon. Tropomyosin also inhibited this gelation. The effect of caldesmon became stronger under the influence of tropomyosin. Furthermore, both caldesmon and tropomyosin additionally decreased the filamin binding to F-actin. From these results, caldesmon and tropomyosin appeared to influence filamin binding to F-actin with different modes of actin. In addition, there was no sign of direct interactions between filamin, caldesmon and tropomyosin as judged from gel filtration. Under the influence of caldesmon and tropomyosin, calmodulin conferred Ca2+ sensitivity on the filamin-induced gelation of actin filaments.  相似文献   

3.
Actin modified at Lys-61 with fluorescein 5-isothiocyanate (FITC) recovers the ability to polymerize following the binding of phalloidin. The resulting polymer (FITC-P-actin) activates the S1-Mg2+-ATPase activity to the same extent as non-labeled F-actin. However, in the absence of phalloidin, FITC-actin (0.5 mg/ml) neither polymerized nor activated the S1-Mg2+-ATPase activity effectively even when it was preincubated with S1 for 3 h in 0.1 mM ATP, 0.1 mM CaCl2, and 1 mM Tris/HCl (pH 8.0), in contrast to the previous report [Miller, L., Phillips, M., & Reisler, E. (1988) Eur. J. Biochem. 174, 23-29]. The modification of Lys-61 did not impair the ability to bind tropomyosin or tropomyosin-troponin. On the other hand, the fluorescence polarization of FITC-P-actin increased when tropomyosin or troponin-tropomyosin was added. Moreover, the modification of Lys-61 affected the regulation of the actin activation of the S1-Mg2+-ATPase activity by the tropomyosin and troponin complex. In 30 mM KCl, 2.5 mM ATP, and 5 mM MgCl2, tropomyosin alone has been shown to inhibit the actin-activated S1-Mg2+-ATPase. This inhibition did not occur with FITC-P-actin even though tropomyosin was tightly bound. When troponin-tropomyosin was added, the FITC-P-actin activation of S1-Mg2+-ATPase activity was regulated in response to micromolar Ca2+ concentrations. On the other hand, in 30 mM KCl, 2.5 mM ATP, and 2 mM MgCl2, tropomyosin alone did not inhibit the actin-activated S1-Mg2+-ATPase activity with either non-labeled F-actin or FITC-actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
It has been possible to specifically label rabbit skeletal muscle actin at Lys-237 with 2,4-pentanedione, producing an enamine. This reaction can be reversed with hydroxylamine. The modification can be carried out with actin in either the G- or F-forms and does not affect polymerization-depolymerization. The modification does affect, however, the interaction of tropomyosin (Tm) with the modified F-actin. In the absence of Ca2+ and Mg2+ (mu = 0.12), Tm failed to bind to the modified F-actin whereas it did bind to unmodified F-actin (1 Tm:7 actins). Tm binding could be restored under these conditions by the addition of either troponin (Tn), Mg2+, or Mg2+ and Ca2+. Under certain conditions, Tm alone has been shown to inhibit actin-activated heavy meromyosin (HMM)-Mg2+-ATPase. This inhibition did not occur with the modified F-actin even though Tm was bound (approximately 1 Tm:7 actins). Even when Tn was added to this system (in the absence of Ca2+), no inhibition of ATPase could be observed. Thus, this modification appears to prevent F-actin X Tm from assuming the "blocking" inhibitory position (conformation). In addition, Tn appears to enhance the activation of heavy meromyosin-Mg2+-ATPase by the modified F-actin X Tm complex whether Ca2+ is present or not. This state may be analogous to the potentiated state (Murray, J. M., Knox, M. K., Trueblood, C. E., and Weber, A. (1982) Biochemistry 27, 906-915) seen with myosin subfragment 1-saturated actin at low ATP levels. Thus, using modified and unmodified F-actin, it is possible to produce three Tm X actin states: off (F-actin X Tm), on (modified F-actin X Tm), and "potentiated" (modified F-actin X Tm X Tn).  相似文献   

5.
Differential scanning calorimetry (DSC) and light scattering were used to analyze the interaction of duck gizzard tropomyosin (tropomyosin) with rabbit skeletal-muscle F-actin. In the absence of F-actin, tropomyosin, represented mainly by heterodimers, unfolds at 41 degrees C with a sharp thermal transition. Interaction of tropomyosin heterodimers with F-actin causes a 2-6 degrees C shift in the tropomyosin thermal transition to higher temperature, depending on the tropomyosin/actin molar ratio and protein concentration. A pronounced shift of the tropomyosin thermal transition was observed only for tropomyosin heterodimers, and not for homodimers. The most pronounced effect was observed after complete saturation of F-actin with tropomyosin molecules, at tropomyosin/actin molar ratios > 1 : 7. Under these conditions, two well-separated peaks of tropomyosin were observed on the thermogram besides the peak of F-actin, the peak characteristic of free tropomyosin heterodimer, and the peak with a maximum at 45-47 degrees C corresponding to tropomyosin bound to F-actin. By measuring the temperature-dependence of light scattering, we found that thermal unfolding of tropomyosin is accompanied by its dissociation from F-actin. Thermal unfolding of tropomyosin is almost completely reversible, whereas F-actin denatures irreversibly. The addition of tropomyosin has no effect on thermal unfolding of F-actin, which denatures with a maximum at 64 degrees C in the absence and at 78 degrees C in the presence of a twofold molar excess of phalloidin. After the F-actin-tropomyosin complex had been heated to 90 degrees C and then cooled (i.e. after complete irreversible denaturation of F-actin), only the peak characteristic of free tropomyosin was observed on the thermogram during reheating, whereas the thermal transitions of F-actin and actin-bound tropomyosin completely disappeared. Therefore, the DSC method allows changes in thermal unfolding of tropomyosin resulting from its interaction with F-actin to be probed very precisely.  相似文献   

6.
The regulation of vertebrate striated muscle contraction involves a number of different molecules, including the thin-filament accessory proteins tropomyosin and troponin that provide Ca2+-dependent regulation by controlling access to myosin binding sites on actin. Cardiac myosin binding protein C (cMyBP-C) appears to modulate this Ca2+-dependent regulation and has attracted increasing interest due to links with inherited cardiac diseases. A number of single amino acid mutations linked to clinical diseases occur in the N-terminal region of cMyBP-C, including domains C0 and C1, which previously have been shown to bind to F-actin. This N-terminal region also has been shown to both inhibit and activate actomyosin interactions in vitro. Using electron microscopy and three-dimensional reconstruction, we show that C0 and C1 can each bind to the same two distinctly different positions on F-actin. One position aligns well with the previously reported binding site that clashes with the binding of myosin to actin, but would force tropomyosin into an “on” position that exposes myosin binding sites along the filament. The second position identified here would not interfere with either myosin binding or tropomyosin positioning. It thus appears that the ability to bind to at least two distinctly different positions on F-actin, as observed for tropomyosin, may be more common than previously considered for other actin binding proteins. These observations help to explain many of the seemingly contradictory results obtained with cMyBP-C and show how cMyBP-C can provide an additional layer of regulation to actin-myosin interactions. They also suggest a redundancy of C0 and C1 that may explain the absence of C0 in skeletal muscle.  相似文献   

7.
H Miyata  S Chacko 《Biochemistry》1986,25(9):2725-2729
The binding of gizzard tropomyosin to gizzard F-actin is highly dependent on free Mg2+ concentration. At 2 mM free Mg2+, a concentration at which actin-activated ATPase activity was shown to be Ca2+ sensitive, a molar ratio of 1:3 (tropomyosin:actin monomer) is required to saturate the F-actin with tropomyosin to the stoichiometric ratio of 1 mol of tropomyosin to 7 mol of actin monomer. Increasing the Mg2+ could decrease the amount of tropomyosin required for saturating the F-actin filament to the stoichiometric level. Analysis of the binding of smooth muscle tropomyosin to smooth muscle actin by the use of Scatchard plots indicates that the binding exhibits strong positive cooperativity at all Mg2+ concentrations. Calcium has no effect on the binding of tropomyosin to actin, irrespective of the free Mg2+ concentration. However, maximal activation of the smooth muscle actomyosin ATPase in low free Mg2+ requires the presence of Ca2+ and stoichiometric binding of tropomyosin to actin. The lack of effect of Ca2+ on the binding of tropomyosin to actin shows that the activation of actomyosin ATPase by Ca2+ in the presence of tropomyosin is not due to a calcium-mediated binding of tropomyosin to actin.  相似文献   

8.
A A Lal  E D Korn 《Biochemistry》1986,25(5):1154-1158
At saturating concentrations, tropomyosin inhibited the rate of spontaneous polymerization of ATP-actin and also inhibited by 40% the rates of association and dissociation of actin monomers to and from filaments. However, tropomyosin had no effect on the critical concentrations of ATP-actin or ADP-actin. The tropomyosin-troponin complex, with or without Ca2+, had a similar effect as tropomyosin alone on the rate of polymerization of ATP-actin. Although tropomyosin binds to F-actin and not to G-actin, the absence of an effect on the actin critical concentration is probably explicable in terms of the highly cooperative nature of the binding of tropomyosin to F-actin and its very low affinity for a single F-actin subunit relative to the affinity of one actin subunit for another in F-actin.  相似文献   

9.
Actin in the human erythrocyte forms short protofilaments which are only long enough to accommodate tropomyosin monomers (Shen, B.W., Josephs, R. and Steck, T.L. (1986) J. Cell Biol. 102, 997-1006). This interaction between actin and tropomyosin monomers is predicted to be weak, since tropomyosin polymerization parallels its affinity for F-actin. We examine the binding of human erythrocyte tropomyosin to actin in the presence and absence of spectrin and its ability to polymerize. The binding of human erythrocyte tropomyosin to F-actin is not affected appreciably by the present of spectrin. Saturating F-actin with erythrocyte tropomyosin, however, weakens the binding of spectrin dimers to actin. Although tropomyosin from human erythrocyte and rabbit cardiac muscle have similar affinity for F-actin, the polymerizability of erythrocyte tropomyosin as determined by viscosity measurements is much reduced relative to muscle tropomyosin. This unusual property of erythrocyte tropomyosin is likely due to differences in its primary structure from other known tropomyosin at the amino and carboxyl terminal regions which are responsible for its head-to-tail polymerization and cooperative binding to F-actin. Analysis of the distribution of tyrosine by 2-dimensional tryptic mapping of 125I-labelled erythrocyte tropomyosin shows that tyrosine at positions 162, 214, 221, 261 and 267 in rabbit cardiac tropomyosin are conserved in human erythrocyte tropomyosin but Tyr-60 is absent. This observation suggests that erythrocyte tropomyosin has a carboxyl terminal region similar to its muscle counterparts but its amino terminal region resembles that of platelet tropomyosin which also lacks Tyr-60.  相似文献   

10.
Actin and tropomyosin, purified from both muscle and brain, and α-actinin, purified from muscle, have been labeled in vitro by reductive methylation to specific activities of greater than 105 dpm/μg protein. Actin so modified bound DNase I and polymerized identically to unmodified actin. Furthermore, the spectral properties of actin did not change after labeling. The interactions of labeled tropomyosin and α-actinin with F-actin were nearly identical to those of the unmodified proteins. These modified proteins comigrated with their unmodified counterparts in both SDS-containing polyacrylamide gels and isoelectric focusing gels. The labeled actin was quantitatively extracted from SDS-containing polyacrylamide gels (yield > 98% of radioactivity applied demonstrating that all of the radioactivity was protein bound. The reductive methylation procedure worked well at pH 8.0–8.5 in either pyrophosphate buffer or Bicine buffer using formaldehyde with [3H]-sodium borohydride as the reducing agent. The procedure could also be performed at pH 7.0 in phosphate buffer using [14C]-formaldehyde with sodium cyanoborohydride as the reducing agent. Proteins so labeled are ideal for use in quantitative experiments involving protein-protein interactions.  相似文献   

11.
Several non-muscle tropomyosins have been reported to lack the ability to polymerize in a head-to-tail manner [Dabrowska, R. et al. (1983) J. Muscle Res. Cell Motil. 1, 83-92; C?té, G.P. (1983) Mol. Cell. Biochem. 57, 127-146]. Unlike rabbit skeletal muscle tropomyosin, these proteins could therefore not protect the F-actin microfilaments neither from disassembly or from cross-linking by the other actin-associating factors. However, we have provided evidence that, in vitro, pig platelet tropomyosin, although shorter in molecular length, exhibits the same properties as the muscle protein: it self-associates and forms a 1:6 complex with platelet filamentous actin under physiological conditions [Prulière et al. (1984) J. Muscle Res. Cell Motil. 6, 126]. In this paper, we examine the effects of several other actin-binding proteins on the microfilaments saturated with this non-muscle tropomyosin. Since contractile proteins often vary with the cell type and may require different conditions for their interactions, we have developed a procedure which allows the parallel purification of actin-binding protein (ABP), vinculin, alpha-actinin, gelsolin as well as actin and tropomyosin from the same batch of cells. Thus, using an homogeneous system, we show by viscometry, sedimentation and densitometry, and by electron microscopy, that pig platelet tropomyosin can protect the structure of the microfilaments from the action of the modulating factors to the same extent as rabbit skeletal muscle alpha-tropomyosin. Our data suggest that interaction of ABP, vinculin or alpha-actinin can occur only with the ends of the filaments when F-actin is saturated with tropomyosin, while cross-linking takes place by interactions with sites localized along the entire length of F-actin in the absence of tropomyosin. Moreover, the presence of tropomyosin on F-actin leads to the total inhibition of gelsolin severing activity, although it did not prevent the binding of gelsolin to the F-actin--tropomyosin complex. This suggests that pig platelet as well as skeletal muscle tropomyosins have the ability to increase the strength of the interaction between actin monomers within the filament. This also suggests that the binding sites of gelsolin along the filaments are not localized in the groove of the F-actin helix.  相似文献   

12.
Electron microscopy and fiber diffraction studies of reconstituted F-actin-tropomyosin filaments reveal the azimuthal position of end-to-end linked tropomyosin molecules on the surface of actin. However, the longitudinal z-position of tropomyosin along F-actin is still uncertain. Without this information, atomic models of F-actin-tropomyosin filaments, free of constraints imposed by troponin or other actin-binding proteins, cannot be formulated, and thus optimal interfacial contacts between actin and tropomyosin remain unknown. Here, a computational search assessing electrostatic interactions for multiple azimuthal locations, z-positions, and pseudo-rotations of tropomyosin on F-actin was performed. The information gleaned was used to localize tropomyosin on F-actin, yielding an atomic model characterized by protein-protein contacts that primarily involve clusters of basic amino acids on actin subdomains 1 and 3 juxtaposed against acidic residues on the successive quasi-repeating units of tropomyosin. A virtually identical model generated by docking F-actin and tropomyosin atomic structures into electron microscopy reconstructions of F-actin-tropomyosin validated the above solution. Here, the z-position of tropomyosin alongside F-actin was defined by matching the seven broad and narrow motifs that typify tropomyosin's twisting superhelical coiled-coil to the wide and tapering tropomyosin densities seen in surface views of F-actin-tropomyosin reconstructions. The functional implications of the F-actin-tropomyosin models determined in this work are discussed.  相似文献   

13.
《Biophysical journal》2019,116(12):2275-2284
The initial binding of tropomyosin onto actin filaments and then its polymerization into continuous cables on the filament surface must be precisely tuned to overall thin-filament structure, function, and performance. Low-affinity interaction of tropomyosin with actin has to be sufficiently strong to localize the tropomyosin on actin, yet not so tight that regulatory movement on filaments is curtailed. Likewise, head-to-tail association of tropomyosin molecules must be favorable enough to promote tropomyosin cable formation but not so tenacious that polymerization precedes filament binding. Arguably, little molecular detail on early tropomyosin binding steps has been revealed since Wegner’s seminal studies on filament assembly almost 40 years ago. Thus, interpretation of mutation-based actin-tropomyosin binding anomalies leading to cardiomyopathies cannot be described fully. In vitro, tropomyosin binding is masked by explosive tropomyosin polymerization once cable formation is initiated on actin filaments. In contrast, in silico analysis, characterizing molecular dynamics simulations of single wild-type and mutant tropomyosin molecules on F-actin, is not complicated by tropomyosin polymerization at all. In fact, molecular dynamics performed here demonstrates that a midpiece tropomyosin domain is essential for normal actin-tropomyosin interaction and that this interaction is strictly conserved in a number of tropomyosin mutant species. Elsewhere along these mutant molecules, twisting and bending corrupts the tropomyosin superhelices as they “lose their grip” on F-actin. We propose that residual interactions displayed by these mutant tropomyosin structures with actin mimic ones that occur in early stages of thin-filament generation, as if the mutants are recapitulating the assembly process but in reverse. We conclude therefore that an initial binding step in tropomyosin assembly onto actin involves interaction of the essential centrally located domain.  相似文献   

14.
Tropomyosins from bovine aorta and pulmonary artery exhibit identical electrophoretic patterns in sodium dodecyl sulfate but differ from tropomyosins of either chicken gizzard or rabbit skeletal muscle. Each of the four tropomyosins binds readily to skeletal muscle F-actin as indicated by their sedimentation with actin and by their ability to maximally stimulate or inhibit actin-activated ATPase activity at a molar ratio of one tropomyosin per seven actin monomers. Smooth and skeletal muscle tropomyosins differ in their effects on activity of skeletal myosin or heavy meromyosin (HMM); the former can enhance activity under conditions in which the latter inhibits. Gizzard and arterial tropomyosins are usually equally effective in stimulating ATPase activity of skeletal acto-HMM, but at high concentrations of Mg2+ gizzard tropomyosin is more effective, a result that cannot be attributed to differences in the binding of the two tropomyosins to F-actin. The effects of tropomyosin also depend on the type of myosin; tropomyosin enhances activity of gizzard myosin under conditions in which it inhibits that of skeletal myosin. Increasing the pH or the Mg2+ concentration can reverse the effect of tropomyosin on actin-stimulated ATPase activity of skeletal HMM from activation to inhibition, but this reversal is not found with gizzard myosin. Activity in the absence of tropomyosin is independent of pH, and the loss of activation with increasing pH is not accompanied by loss of binding of tropomyosin to actin.  相似文献   

15.
The intestinal epithelial cell brush border exhibits distinct localizations of the actin-binding protein components of its cytoskeleton. The protein interactions that dictate this subcellular organization are as yet unknown. We report here that tropomyosin, which is found in the rootlet but not in the microvillus core, can bind to and saturate the actin of isolated cores, and can cause the dissociation of up to 30% of the villin and fimbrin from the cores but does not affect actin binding by 110-kD calmodulin. Low speed sedimentation assays and ultrastructural analysis show that the tropomyosin-containing cores remain bundled, and that 110-kD calmodulin remains attached to the core filaments. The effects of tropomyosin on the binding and bundling activities of villin were subsequently determined by sedimentation assays. Villin binds to F-actin with an apparent Ka of 7 X 10(5) M-1 at approximate physiological ionic strength, which is an order of magnitude lower than that of intestinal epithelial cell tropomyosin. Binding of villin to F-actin presaturated with tropomyosin is inhibited relative to that to pure F-actin, although full saturation can be obtained by increasing the villin concentration. Villin also inhibits the binding of tropomyosin to F-actin, although not to the same extent. However, tropomyosin strongly inhibits bundling of F-actin by villin, and bundling is not recovered even at a saturating villin concentration. Since villin has two actin-binding sites, both of which are required for bundling, the fact that tropomyosin inhibits bundling of F-actin under conditions where actin is fully saturated with villin strongly suggests that tropomyosin's and one of villin's F-actin-binding sites overlap. These results indicate that villin and tropomyosin could compete for actin filaments in the intestinal epithelial cell, and that tropomyosin may play a major role in the regulation of microfilament structure in these and other cells.  相似文献   

16.
The effect of caldesmon on the rotational dynamics of actin filaments alone or conjugated with heavy meromyosin and/or tropomyosin has been measured by the electron paramagnetic resonance (EPR) technique using a maleimide spin label rigidly bound to Cys374 of actin. The rotation of actin protomers in filaments and the angular distribution of spin probes on actin were determined by conventional EPR spectroscopy, while torsional motions within actin filaments were detected by saturation transfer EPR measurements. Binding of caldesmon to F-actin resulted in the reduction of torsional mobility of actin filaments. The maximum effect was produced at a ratio of about one molecule of caldesmon/seven actin protomers. Smooth muscle tropomyosin enhanced the effect of caldesmon, i.e. caused further slowing down of internal motions within actin filaments. Caldesmon increased the degree of order of spin labels on F-actin in macroscopically oriented pellets in the presence of tropomyosin but not in its absence. Computer analysis of the spectra revealed that caldesmon alone slightly changed the orientation of spin probes relative to the long axis of the filament. In the presence of tropomyosin this effect of caldesmon was potentiated and then approximately every twentieth protomer along the actin filament was affected. Caldesmon weakened the effect of heavy meromyosin both on the polarity of environment of the spin label attached to F-actin and on the degree of order of labels on actin in macroscopically oriented pellets. Whereas the former effect of caldesmon was independent of tropomyosin, the latter one was observed only in the absence of tropomyosin.  相似文献   

17.
Peptides corresponding to the N-terminus of skeletal myosin light chain 1 (rsMLC1 1-37) and the short loop of human cardiac beta-myosin (hcM398-414) have been shown to interact with skeletal F-actin by NMR and fluorescence measurements. Skeletal tropomyosin strengthens the binding of the myosin peptides to actin but does not interact with the peptides. The binding of peptides corresponding to the inhibitory region of cardiac troponin I (e.g. hcTnI128-153) to F-actin to form a 1 : 1 molar complex is also strengthened in the presence of tropomyosin. In the presence of inhibitory peptide at relatively lower concentrations the myosin peptides and a troponin I peptide C-terminal to the inhibitory region, rcTnI161-181, all dissociate from F-actin. Structural and fluorescence evidence indicate that the troponin I inhibitory region and the myosin peptides do not bind in an identical manner to F-actin. It is concluded that the binding of the inhibitory region of troponin I to F-actin produces a conformational change in the actin monomer with the result that interaction at different locations of F-actin is impeded. These observations are interpreted to indicate that a major conformational change occurs in actin on binding to troponin I that is fundamental to the regulatory process in muscle. The data are discussed in the context of tropomyosin's ability to stabilize the actin filament and facilitate the transmission of the conformational change to actin monomers not in direct contact with troponin I.  相似文献   

18.
Interaction of tropomyosin with F-actin-heavy meromyosin complex   总被引:1,自引:0,他引:1  
The effect of phosphorylated and dephosphorylated heavy meromyosins (HMMs) saturated with Ca2+ or Mg2+ on the binding of tropomyosin to F-actin and on the conformational changes of tropomyosin on actin was investigated. The experimental data were analysed on the basis of th emodel of cooperative binding of tropomyosin to F-actin with overlapping binding sites. In general, attachment of both HMMs to F-actin increased around 100-fold the tropomyosin-binding affinity but concomittantly reduced the cooperatively of binding. In the presence of Ca2+ and in the absence of ATP the binding of tropomyosin to F-actin in a "doubly contiguous" manner was three-fold stronger for F-actin saturated with dephosphorylated HMM as compared to phosphorylated HMM. Under the same rigor conditions but in the absence of Ca2+ the reverse was true but the difference was about 1.5-fold. The binding stoichiometry of tropomyosin to actin was 7:1 in the presence of dephosphorylated HMM saturated with Ca2+ or phosphorylated-saturated with Mg2+ and tended to be about 6:1 for both after the exchange of the cation bound to myosin heads. Bound HMM was also found to influence the fluorescence polarization of 1,5-IAEDANS-labelled tropomyosin complexed with F-actin in muscle ghost fibres. In the presence of Ca2+, the amount of randomly arranged tropomyosin fluorophores decreased when dephosphorylated HMM was bound to ghost fibres, in contrast to an observed increase in the case of bound phosphorylated HMM. Thus HMM induced conformational changes of tropomyosin in the actin-tropomyosin complex that was reflected in an alteration of the geometrical arrangement between tropomyosin and actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The reactivity and function of thiol groups in trout actin   总被引:2,自引:0,他引:2       下载免费PDF全文
1. Considerable differences were found between the rates and degrees of modification of native trout actin with iodo[2-(14)C]acetate and iodo[1-(14)C]acetamide. 2. With iodoacetate, G- and F-actin were both labelled in the N-terminal peptide only. This modification had little effect on the ability of the actin to polymerize. 3. Iodoacetamide labelled three cysteine residues in both G- and F-actin. The modified cysteine residues were identified from the position of the corresponding tryptic peptides on peptide ;maps'. 4. The modification had little effect on the ability of G-actin to polymerize, to bind ATP or to bind Ca(2+), or on the ability of F-actin to depolymerize. 5. It is concluded that the three cysteine residues present on the ;surface' of the native trout actin molecule have no direct role in the polymerization processes, the binding of ATP, or the binding of Ca(2+).  相似文献   

20.
Human erythrocytes contain a Mr 43,000 tropomyosin-binding protein that is unrelated to actin and that has been proposed to play a role in modulating the association of tropomyosin with spectrin-actin complexes based on its stoichiometry in the membrane skeleton of one Mr 43,000 monomer per short actin filament (Fowler, V. M. 1987. J. Biol. Chem. 262:12792-12800). Here, we describe an improved procedure to purify milligram quantities to 98% homogeneity and we show that this protein inhibits tropomyosin binding to actin by a novel mechanism. We have named this protein tropomodulin. Unlike other proteins that inhibit tropomyosin-actin interactions, tropomodulin itself does not bind to F-actin. EM of rotary-shadowed tropomodulin-tropomyosin complexes reveal that tropomodulin (14.5 +/- 2.4 nm [SD] in diameter) binds to one of the ends of the rod-like tropomyosin molecules (33 nm long). In agreement with this observation, Dixon plots of inhibition curves demonstrate that tropomodulin is a non-competitive inhibitor of tropomyosin binding to F-actin (Ki = 0.7 microM). Hill plots of the binding of the tropomodulin-tropomyosin complex to actin indicate that binding does not exhibit any positive cooperativity (n = 0.9), in contrast to tropomyosin (n = 1.9), and that the apparent affinity of the complex for actin is reduced 20-fold with respect to that of tropomyosin. These results suggest that binding of tropomodulin to tropomyosin may block the ability of tropomyosin to self-associate in a head-to-tail fashion along the actin filament, thereby weakening its binding to actin. Antibodies to tropomodulin cross-react strongly with striated muscle troponin I (but not with troponin T) as well as with a nontroponin Mr 43,000 polypeptide in muscle and in other nonerythroid cells and tissues, including brain, lens, neutrophils, and endothelial cells. Thus, erythrocyte tropomodulin may be one member of a family of tropomyosin-binding proteins that function to regulate tropomyosin-actin interactions in non-muscle cells and tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号