首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dehydration Injury in Germinating Soybean (Glycine max L. Merr.) Seeds   总被引:2,自引:3,他引:2  
The sensitivity of soybean (Glycine max L. Merr. cv Maple Arrow) seeds to dehydration changed during germination. Seeds were tolerant of dehydration to 10% moisture if dried at 6 hours of imbibition, but were susceptible to dehydration injury if dried at 36 hours of imbibition. Dehydration injury appeared as loss of germination, slower growth rates of isolated axes, hypocotyl and root curling, and altered membrane permeability. Increased electrolyte leakage due to dehydration treatment was observed only from isolated axes but not from cotyledons, suggesting that cotyledons are more tolerant of dehydration. The transition from a dehydration-tolerant to a dehydration-susceptible state coincided with radicle elongation. However, the prevention of cell elongation by osmotic treatment in polyethylene glycol (−6 bars) or imbibition in 20 micrograms per milliliter cycloheximide did not prevent the loss of dehydration tolerance suggesting that neither cell elongation nor cytoplasmic protein synthesis was responsible for the change in sensitivity of soybean seeds to dehydration. Furthermore, the rate of dehydration or rate of rehydration did not alter the response to the dehydration stress.  相似文献   

2.
Seeds of soybean (Glycine max L. Merr.) harvested at variousstages of development and allowed to dry in intact pods undergoa maturation process and are viable. Defatted powders of seedharvested 24–66 d after flowering were extracted to yieldbuffer-soluble and alkali-soluble proteins. Imposition of amaturation process increased the level of buffer-soluble proteinsbut had no effect on the disulflde content of these proteins.After undergoing maturation, seeds showed an accumulation ofbuffer-soluble polypeptides in the molecular weight range of43–94 kD. Maturation may be associated with the synthesisof specific polypeptides having a molecular weight of approximately85 kD. Alkali-soluble proteins, which represents the storageproteins, did not show any responses to maturation. Their quantityincreased substantially during seed development and the disulfidelevel was only half that of buffer-soluble proteins, attaininga maximum value of 10.9 mol S per 105 g protein. Matured seedat all harvest dates had a final starch content close to thatof normal seed, 10–20 mg g–1, and soluble sugarswere maintained at quite high levels, 51–83 mg g1.The metabolic program for synthesis and degradation of starchseems quite rigidly followed and is independent of harvest dateor of attachment to the parent plant. Soybean seeds retain considerablesoluble proteins and soluble sugars throughout maturation, andthese collectively may be important in maintaining a desiccationresistant structure.  相似文献   

3.
Variability in leaf gas-exchange traits in thirteen soybean (Glycine max L. Merr) genotypes was assessed in a field experiment conducted at high altitude (1 950 m). Leaf net photosynthetic rate (P N) exhibited a high degree of variability at all the growth stages studied. P N and other gas-exchange parameters exhibited a seasonal pattern that was similar for all the genotypes. P N rate was highest at seed filling stage. P N was positively and significantly associated with aboveground dry matter and seed yield. The area leaf mass (ALM) exhibited a strong positive association with leaf P N, aboveground dry matter, and seed yield. The positive association between ALM, P N, and seed yield suggests that this simple and easy to measure character can be used in breeding programmes as a surrogate for higher photosynthetic efficiency and eventually higher yield.  相似文献   

4.
ATP Sulfurylase Activity in the Soybean [Glycine max (L.) Merr.   总被引:2,自引:5,他引:2       下载免费PDF全文
Adams CA  Johnson RE 《Plant physiology》1968,43(12):2041-2044
ATP sulfurylase activity was assayed in soybean leaf extracts. A simple, rapid assay system using molybdate as an analogue of sulfate was developed. The assay was coupled to inorganic pyrophosphatase. The high pyrophosphatase level in soybean leaf extracts obviated the necessity of adding this enzyme to the assay system. ATP sulfurylase has a pH maximum above 7.5, uses molybdate and ATP as substrates, and requires magnesium ions for activity.  相似文献   

5.
The effect of various day temperatures on NADH-nitrate reductase, NADH- and NADPH-glutamate dehydrogenases, nitrate, protein and leaf area, measured at intervals during the ontogeny of the first trifoliolate soybean leaf, was determined. At 32.5 C and 25 C, nitrate concentration, nitrate reductase, and NADPH-glutamate dehydrogenase activities increased concurrently with leaf development and then decreased as leaf maturation progressed. At 40 C, these three components showed no initial increase and the concentration or activities decreased throughout the development of the leaf. The effects of temperature on NADH-glutamate dehydrogenase were the reverse. Rates of protein accumulation were higher at 40 C during the first 2 days of leaf development while higher rates were measured the first 5 days of leaf growth at 32.5 C. At 25 C, protein accumulation was low during the first 3 days of leaf growth, increased in the period of 3 to 5 days, and then declined up to 8 days of leaf development. Leaf expansion progressed at faster rates at 32.5 C and 25 C and at a much slower rate at 40 C. Leaf growth was essentially complete after the fifth day regardless of temperature.  相似文献   

6.
Intraspecific variations in the rhythmic (circadian) leaf movementsin soybean (Glycine max L. Merr) were investigated. Resultsindicated (1) that whereas there was no significant differencein the free-running periods in continuous darkness among thevarious cultivars tested, there was a significant differencein the response of the free-running rhythms to continuous light;(2) that there was a difference in the phase shifts to singlelight pulses among the cultivars. (The assumption that the responseof the rhythms to continuous light is related functionally tothe phase response to single light pulses was examined usingthe concept of the velocity response curve); and (3) that therewas a significant difference in the stability (accuracy) ofthe rhythms of the cultivars which is related to their photoperiodicsensitivity. (Received March 30, 1983; Accepted November 15, 1983)  相似文献   

7.
Reproductive as well as vegetative parameters of mature soybean (Glycine max [L.] Merr. cv. Wye) plants grown in chambers in which the aerial portion was exposed to altered pO2 during all or part of the growth cycle were measured. Oxygen concentration was found to be a key factor controlling all phases of reproductive development. Exposure to 5% O2 from early seedling stage to senescence increased leaf, stem, and root dry weights and reduced seed yields when compared to 21% O2; exposure to low O2 during the vegetative growth stage from early seedling to mid-flowering arrested pod but not seed development; exposure from mid-flowering to mid-pod filling almost completely arrested seed but not pod development; exposure from mid-pod filling to senescence arrested seed development at the mid-filling stage.  相似文献   

8.
Protein synthesis was studied during precocious and natural soybean seed (Glycine max [L.] Merr.) maturation. Developing seeds harvested 35 days after flowering were precociously matured through controlled dehydration. Total soluble proteins and proteins labeled with [35S]methionine were extracted from control, developing seeds and from precociously and naturally matured seeds and were analyzed by one-dimensional PAGE and fluorography. The results demonstrated that several polypeptides which were designated “mature polypeptides,” were synthesized de novo during precocious and natural seed maturation. Two of these polypeptides, 31 and 128 kilodalton in mass, also stained intensely with Coomassie blue, suggesting their abundant accumulation during seed maturation. Results from in vitro translation experiments showed that the mRNAs corresponding to these “maturation polypeptides” accumulated during precocious maturation and in naturally matured seeds, but not in seeds freshly harvested 35 days after flowering (control). The role of the “maturation polypeptides” is currently unknown; however, their presence and that of their corresponding mRNAs was coincident with the ability of matured seeds to establish seedling growth. This study has demonstrated that precocious seed maturation treatments may be extremely useful for investigations of metabolic events and molecular control mechanisms affecting soybean seed maturation.  相似文献   

9.
Stem-root grafts of seedling plants were used to ascertain thatgenotypic differences in P, Mg, Mn, and B accumulation in soyabean(Glycine max L. Merr.) seeds are controlled by the scion ofthe plant. The effect of the graft per se on mineral accumulationwas negligible. These results are similar to those reportedfor Sr and Ca accumulation in soyabeans. Mechanisms which couldaccount for these observations are briefly discussed.  相似文献   

10.
Initial interaction between rhizobia and legumes actually starts via encounters of both partners in the rhizosphere. In this study, the global expression profiles of Bradyrhizobium japonicum USDA 110 in response to soybean (Glycine max) seed extracts (SSE) and genistein, a major soybean-released isoflavone for nod genes induction of B. japonicum, were compared. SSE induced many genomic loci as compared with genistein (5.0 µM), nevertheless SSE-supplemented medium contained 4.7 µM genistein. SSE markedly induced four predominant genomic regions within a large symbiosis island (681 kb), which include tts genes (type III secretion system) and various nod genes. In addition, SSE-treated cells expressed many genomic loci containing genes for polygalacturonase (cell-wall degradation), exopolysaccharide synthesis, 1-aminocyclopropane-1-carboxylate deaminase, ribosome proteins family and energy metabolism even outside symbiosis island. On the other hand, genistein-treated cells exclusively showed one expression cluster including common nod gene operon within symbiosis island and six expression loci including multidrug resistance, which were shared with SSE-treated cells. Twelve putatively regulated genes were indeed validated by quantitative RT-PCR. Several SSE-induced genomic loci likely participate in the initial interaction with legumes. Thus, these results can provide a basic knowledge for screening novel genes relevant to the B. japonicum- soybean symbiosis.Key words: soybean seed extracts, Bradyrhizobium japonicum, expression clusters, genistein, symbiosis  相似文献   

11.
低磷对大豆主根伸长生长的影响   总被引:1,自引:0,他引:1  
文章采用卷纸培养和分层琼脂培养的方法,研究磷对大豆主根伸长影响的结果表明:低磷[0.2 μmol(KH2PO4)·L-1]显著促进大豆主根伸长,特别是延长大豆主根根尖至最新侧根间的距离;组织切片表明,低磷对主根伸长的促进主要是通过延迟主根伸长区的分化实现的,并且低磷对主根的促进作用不受亚磷酸盐的影响.琼脂分层培养的结果表明,在磷分布不均匀的条件下,低磷影响主根的仲长生长,上层或下层不施磷的大豆主根伸长均有增加.  相似文献   

12.
The influence of 6-benzylaminopurine (BA) on the premature abscission of developing soybean, Glycine max (L.) Merr. fruits of 2 genotypes was studied. BA was applied during the critical period of fruit-setting. The tested concentration range of BA was from 1 micromolar to 5 millimolar; 2 millimolar was optimal. Spray application of 2 millimolar BA to terminal inflorescences at the R3 developmental stage of field-grown soybeans significantly increased fruit-set and seed yield of the Shore genotype during three growing seasons. In contrast, the Essex genotype gave significant responses two out of three seasons. The response of Shore was generally more pronounced than that of Essex. The apical fruits on the inflorescences gave the greatest response to BA. Seed weight increase was apparent 3-4 weeks after BA treatment.  相似文献   

13.
14.
Translocation of Sulfate in Soybean (Glycine max L. Merr)   总被引:4,自引:4,他引:0       下载免费PDF全文
Smith IK  Lang AL 《Plant physiology》1988,86(3):798-802
Sulfate translocation in soybean (Glycine max L. Merr) was investigated. More than 90% of the sulfate entering the shoot system was recoverable in one or two developing trifoliate leaves. In young plants, the first trifoliate leaf contained between 10 to 20 times as much sulfate as the primary leaves, even though both types of leaf had similar rates of transpiration and photosynthesis. We conclude that most of the sulfate entering mature leaves is rapidly loaded into the phloem and translocated to sinks elsewhere in the plant. This loading was inhibited by carbonylcyanide m-chlorophenylhydrazone and selenate. At sulfate concentrations below 0.1 millimolar, more than 95% of the sulfate entering primary leaves was exported. At higher concentrations the rate of export increased but so did the amount of sulfate remaining in the leaves. Removal of the first trifoliate leaf increased two-fold the transport of sulfate to the apex, indicating that these are competing sinks for sulfate translocated from the primary leaves. The small amount of sulfate transported into the mesophyll cells of primary leaves is a result of feedback regulation by the intracellular sulfate pool, not a consequence of their metabolic inactivity. For example, treatment of plants with 2 millimolar aminotriazole caused a 700 nanomoles per gram fresh weight increase in the glutathione content of primary leaves, but had no effect on sulfate aquisition.  相似文献   

15.
Studies have been conducted with the arginase (l-arginine amidinohydrolase, EC 3.5.3.1) of two legumes: jack bean, Canavalia ensiformis (L.) DC., a l-canavanine-containing plant and soybean, Glycine max, a canavanine-free species. Analyses of the arginase obtained from gradient-purified mitochondria of these legumes revealed that the arginine-dependent (ADA) and canavanine-dependent activities (CDA) were localized within this organelle.  相似文献   

16.
17.
Cells of Bradyrhizobium japonicum were grown in media containing either 1.0 mM or 0.5 μM phosphorus. In growth pouch experiments, infection of the primary root of soybean (Glycine max (L.) Merr.) by B. japonicum USDA 31, 110, and 142 was significantly delayed when P-limited cells were applied to the root. In a greenhouse experiment, B. japonicum USDA 31, 110, 122, and 142 grown with sufficient and limiting P were used to inoculate soybeans which were grown with either 5 μM or 1 mM P nutrient solution. P-limited cells of USDA 31 and 110 formed significantly fewer nodules than did P-sufficient cells, but P-limited cells of USDA 122 and 142 formed more nodules than P-sufficient cells. The increase in nodule number by P-limited cells of USDA 142 resulted in significant increases in both nodule mass and shoot total N. In plants grown with 1 mM P, inoculation with P-limited cells of USDA 110 resulted in lower total and specific nitrogenase activities than did inoculation with P-sufficient cells. Nodule numbers, shoot dry weights, and total N and P were all higher in plants grown with 1 mM P, and plants inoculated with USDA 31 grew poorly relative to plants receiving strains USDA 110, 122, and 142. Although the effects of soybean P nutrition were more obvious than those of B. japonicum P nutrition, we feel that it is important to develop an awareness of the behavior of the bacterial symbiont under conditions of nutrient limitation similar to those found in many soils.  相似文献   

18.
Studies were conducted with 9 to 12 day-old soybean (Glycine max [L.] Merr. cv. Williams) seedlings to determine the contribution of roots to whole plant NO(3) (-) reduction. Using an in vivo -NO(3) (-) nitrate reductase (NR) assay (no exogenous NO(3) (-) added to incubation medium) developed for roots, the roots accounted for approximately 30% of whole plant nitrate reductase activity (NRA) of plants grown on 15 mm NO(3) (-).Nitrogen analyses of xylem exudate showed that 53 to 66% of the total-N was as reduced-N, depending on the time of day of exudate collection. These observations supported enzyme data that suggested roots were contributing significantly to whole plant NO(3) (-) reduction. In short-term feeding studies using (15)N-NO(3) (-) significant and increasing atom percent (15)N excess was found in the reduced-N fraction of xylem exudate at 1.5 and 3 hours after feeding, respectively, which verified that roots were capable of reducing NO(3) (-).Estimated reduced-N accumulation by plants based on in vivo -NO(3) (-) NR assays of all plant parts substantially over-estimated actual reduced-N accumulation by the plants. Thus, the in vivo NR assay cannot be used to accurately estimate reduced-N accumulation but still serves as a useful assay for relative differences in treatment conditions.  相似文献   

19.
The rates of CO2 exchange and 14CO2 incorporation in the light and dark and the activities of several photosynthetic, photorespiratory, and respiratory enzymes of soybean (Glycine max [L.] Merr. cv. Wye) reproductive structures were determined at weekly intervals from anthesis to pod maturity. At all stages of pod development soybean reproductive structures were found to be incapable of net photosynthesis under the experimental conditions employed, but capable of gross photosynthesis and light-induced 14CO2 uptake. Consistent with the lack of net photosynthesis throughout the development of the reproductive structure, the maximum in vitro activity of ribulose 1,5-bisphosphate carboxylase (EC 4.1.1.39) in pod tissue was only 3% of that in leaf extracts when expressed on a fresh weight basis. We concluded that the major role of the reproductive structure of the soybean with respect to photosynthetic carbon metabolism is the reassimilation of its respiratory CO2.  相似文献   

20.
Nodulated soybean (Glycine max L. Merr. cv White Eye inoculated with Bradyrhizobium japonicum strain CB 1809) plants were cultured in the absence of combined N from 8 to 28 days with their root systems maintained continuously in 1, 2.5, 5, 10, 20, 40, 60, or 80% O2 (volume/volume) in N2. Plant dry matter yield was unaffected by partial pressure of oxygen (pO2) and N2 fixation showed a broad plateau of maximum activity from 2.5 to 40 or 60% O2. Slight inhibition of nitrogenase activity occurred at 1% O2 and as much as 50% inhibition occurred at 80% O2. Low pO2 (less than 10%) decreased nodule mass on plants, but this was compensated for by those nodules having higher specific nitrogenase activities. Synthesis and export of ureides in xylem was maintained at a high level (70-95% of total soluble N in exudate) over the range of pO2 used. Measurements of nitrogenase (EC 1.7.99.2) activity by acetylene reduction indicated that adaptation of nodules to low pO2 was largely due to changes in ventilation characteristics and involved increased permeability to gases in those grown in subambient pO2 and decreased permeability in those from plants cultured with their roots in pO2 greater than ambient. A range of structural alterations in nodules resulting from low pO2 were identified. These included increased frequency of lenticels, decreased nodule size, increased volume of cortex relative to the infected central tissue of the nodule, as well as changes in the size and frequency of extracellular voids in all tissues. In nodules grown in air, the inner cortex differentiated a layer of four or five cells which formed a band, 40 to 50 micrometers thick, lacking extracellular voids. This was reduced in nodules grown in low pO2 comprising one or two cell layers and being 10 to 20 micrometers thick in those from 1% O2. Long-term adaptation to different external pO2 involved changes which modify diffusive resistance and are additional to adjustments in the variable diffusion barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号