首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Little is known about the effects of aging on synapses in the mammalian nervous system. We examined the innervation of individual mouse submandibular ganglion (SMG) neurons for evidence of age‐related changes in synapse efficacy and number. For approximately 85% of adult life expectancy (30 months) the efficacy of synaptic transmission, as determined by excitatory postsynaptic potential (EPSP) amplitudes, remains constant. Similarly, the number of synapses contacting individual SMG neurons is also unchanged. After 30 months of age, however, some neurons (23%) dramatically lose synaptic input exhibiting both smaller EPSP amplitude and fewer synaptic boutons. Attenuation of both the amplitude and frequency of miniature EPSPs was also observed in neurons from aged animals. Electron micrographs revealed that, although there were many vesicle‐laden preganglionic axonal processes in the vicinity of the postsynaptic membrane, the number of synaptic contacts was significantly lower in old animals. These results demonstrate primary, age‐associated synapse elimination with functional consequences that cannot be explained by pre‐ or postsynaptic cell death. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 214–226, 2004  相似文献   

2.
The activation of silent synapses is a proposed mechanism to account for rapid increases in synaptic efficacy such as long-term potentiation (LTP). Using simultaneous recordings from individual pre- and postsynaptic neurons in organotypic hippocampal slices, we show that two CA3 neurons can be connected entirely by silent synapses. Increasing release probability or application of cyclothiazide does not produce responses from these silent synapses. Direct measurement of NMDAR-mediated postsynaptic responses in all-silent synaptic connections before and after LTP induction show no change in failure rate, amplitude, or area. These data do not support hypotheses that synapse silent results from presynaptic factors or that LTP results from increases in presynaptic glutamate release. LTP is also associated with an increase in postsynaptic responsiveness to exogenous AMPA. We conclude that synapse silence, activation, and expression of LTP are postsynaptic.  相似文献   

3.
Long-lasting postsynaptic potentials (PSPs) generated by decreases in membrane conductance (permeability) have been reported in many types of neurons. We investigated the possible role of such long-lasting decreases in membrane conductance in the modulation of synaptic transmission in the sympathetic ganglion of the bullfrog. The molecular basis by which such conductance-decrease PSPs are generated was also investigated. Synaptic activation of muscarinic cholinergic receptors on these sympathetic neurons results in the generation of a slow EPSP (excitatory postsynaptic potential), which is accompanied by a decrease in membrane conductance. We found that the conventional "fast" EPSPs were increased in amplitude and duration during the iontophoretic application of methacholine, which activates the muscarinic postsynaptic receptors. A similar result was obtained when a noncholinergic conductance-decrease PSP--the late-slow EPSP--was elicited by stimulation of a separate synaptic pathway. The enhancement of fast EPSP amplitude increased the probability of postsynaptic action potential generation, thus increasing the efficacy of impulse transmission across the synapse. Stimulation of one synaptic pathway is therefore capable of increasing the efficacy of synaptic transmission in a second synaptic pathway by a postsynaptic mechanism. Furthermore, this enhancement of synaptic efficacy is long-lasting by virtue of the long duration of the slow PSP. Biochemical and electrophysiological techniques were used to investigate whether cyclic nucleotides are intracellular second messengers mediating the membrane permeability changes underlying slow-PSP generation. Stimulation of the synaptic inputs, which lead to the generation of the slow-PSPs, increased the ganglionic content of both cyclic AMP and cyclic GMP. However, electrophysiological analysis of the actions of these cyclic nucleotides and the actions of agents that affect their metabolism does not provide support for such a second messenger role for either cyclic nucleotide.  相似文献   

4.
Neuronal synapse formation is a multistep process regulated by several pre- and postsynaptic adhesion and signaling proteins. Recently, we found that agrin acts as one such synaptogenic factor at neuronal synapses in the PNS by demonstrating that structural synapse formation is impaired in the superior cervical ganglia (SCG) of z+ agrin-deficient mice and in SCG cultures derived from those animals. Here, we tested whether synaptic function is defective in agrin-null (AGD-/-) ganglia and began to define agrin's mechanism of action. Our electrophysiological recordings of compound action potentials showed that presynaptic stimulation evoked action potentials in approximately 40% of AGD-/- ganglionic neurons compared to 90% of wild-type neurons; moreover, transmission could not be potentiated as in wild-type or z+ agrin-deficient ganglia. Intracellular recordings also showed that nerve-evoked excitatory postsynaptic potentials in AGD-/- neurons were only 1/3 the size of those in wild-type neurons and mostly subthreshold. Consistent with these defects in transmission, we found an approximately 40-50% decrease in synapse number in AGD-/- ganglia and cultures, and decreased levels of differentiation at the residual synapses in culture. Furthermore, surface levels of acetylcholine receptors (AChRs) were equivalent in cultured AGD-/- and wild-type neurons, and depolarization reduced the synaptic localization of AChRs in AGD-/- but not wild-type neurons. These findings provide the first direct demonstration that agrin is required for proper structural and functional development of an interneuronal synapse in vivo. Moreover, they suggest a novel role for agrin, in stabilizing the postsynaptic density of nAChR at nascent neuronal synapses.  相似文献   

5.
Neuronal connections are established through a series of developmental events that involve close communication between pre- and postsynaptic neurons. In the visual system, BDNF modulates the development of neuronal connectivity by influencing presynaptic retinal ganglion cell (RGC) axons. Increasing BDNF levels in the optic tectum of Xenopus tadpoles significantly increases both axon arborization and synapse density per axon terminal within a few hours of treatment. Here, we have further explored the mechanisms by which BDNF shapes synaptic connectivity by imaging tectal neurons, the postsynaptic partners of RGCs. Individual neurons were co-labeled with DsRed2 and a GFP-tagged postsynaptic density protein (PSD95-GFP) to visualize dendritic morphology and postsynaptic specializations simultaneously in vivo. Immunoelectron microscopy confirmed that PSD95-GFP predominantly localized to ultrastructurally identified synapses. Time-lapse confocal microscopy of individual, double-labeled neurons revealed a coincident, activity-dependent mechanism of synaptogenesis and axon and dendritic arbor growth, which is differentially modulated by BDNF. Microinjection of BDNF into the optic tectum significantly increased synapse number in tectal neuron dendritic arbors within 24 hours, without significantly influencing arbor morphology. BDNF function-blocking antibodies had opposite effects. The BDNF-elicited increase in synapse number complements the previously observed increase in presynaptic sites on RGC axons. These results, together with the timescale of the response by tectal neurons, suggest that the effects of BDNF on dendritic synaptic connectivity are secondary to its effects on presynaptic RGCs. Thus, BDNF influences synaptic connectivity in multiple ways: it enhances axon arbor complexity expanding the synaptic territory of the axon, while simultaneously coordinating synapse formation and stabilization with individual postsynaptic cells.  相似文献   

6.
A review is given of experiments performed in the author's laboratory on slices from the rat visual cortex and hippocampus. The aim was to test the existence of the positive feedback in central synapses according to a mechanism of electrical (ephatic) linking proposed by A. L. Byzow. The hypothesis predicts that, in a subset of central synapses, artificial postsynaptic membrane potential (MP) hyperpolarization should increase the amplitude of the excitatory postsynaptic current (EPSC) and potential (EPSP) not only due to a deviation from the equilibrium potential but also due to increased presynaptic transmitter release. In a part of the experiments, we found changes in several traditional parameters of transmitter release during hyperpolarization: number of response failures, coefficient of variation of response amplitude and quantal content of minimal EPSC/EPSP. The effects were especially prominent for the giant mossy fibre-CA3 synapses. For them, "supralinear" amplitude-voltage relations at hyperpolarized membrane potentials and voltage--dependent paired--pulse facilitation ratios were found. All these "non-classical" effects disappeared when composite, rather than minimal, EPSCs were evoked. These data were consistent with simulation experiments performed on the Byzov's synaptic model with the ephaptic feedback and therefore they strengthen the hypothesis. Independent of their interpretation, the data reveal a novel feedback mechanism. The mechanism provides a possibility for the central postsynaptic neurone to control the efficacy of a subset of synapses via postsynaptic MP modifications. The mechanism can essentially increase the efficacy of large ("perforated") synapses. It explains the significance of the increased number of such synapses following experimental challenges such as leading to induction of the long-term potentiation or to behavioural conditioning.  相似文献   

7.
Tracy TE  Yan JJ  Chen L 《The EMBO journal》2011,30(8):1577-1592
Newly formed glutamatergic synapses often lack postsynaptic AMPA-type glutamate receptors (AMPARs). Aside from 'unsilencing' the postsynaptic site, however, the significance of postsynaptic AMPAR insertion during synapse maturation remains unclear. To investigate the role of AMPAR in synapse maturation, we used RNA interference (RNAi) to knockdown AMPARs in cultured hippocampal neurons. Surprisingly, loss of postsynaptic AMPARs increased the occurrence of presynaptically inactive synapses without changing the release probability of the remaining active synapses. Additionally, heterologous synapses formed between axons and AMPAR-expressing HEK cells develop significantly fewer inactive presynaptic terminals. The extracellular domain of the AMPAR subunit GluA2 was sufficient to reproduce this effect at heterologous synapses. Indeed, the retrograde signalling by AMPARs is independent of their channel function as RNAi-resistant AMPARs restore synaptic transmission in neurons lacking AMPARs despite chronic receptor antagonist treatment. Our findings suggest that postsynaptic AMPARs perform an organizational function at synapses that exceeds their standard role as ionotropic receptors by conveying a retrograde trans-synaptic signal that increases the transmission efficacy at a synapse.  相似文献   

8.
In the oxygenated excised squid (Loligo pealii) stellate ganglion preparation one can produce excitation of the stellar giant axons by stimulating the second largest (accessory fiber, Young, 1939) or other smaller preganglionic giant axons. Impulse transmission is believed to occur at the proximal synapses of the stellar giant axons rather than the distal (giant) synapses which are excited by the largest giant preaxon. Proximal synaptic transmission is more readily depressed by hypoxia and can be fatigued independently of, and with fewer impulses than, the giant synapses. Intracellular recording from the last stellar axon at its inflection in the ganglion reveals both proximal and distal excitatory postsynaptic potentials EPSP's). The synaptic delay, temporal form of the EPSP, and depolarization for spike initiation were similar for both synapses. If the proximal EPSP occurs shortly after excitation by the giant synapse it reduces the undershoot and adds to the falling phase of the spike. If it occurs later it can produce a second spike. Parallel results were obtained when the proximal EPSP's arrived earlier than the EPSP of the giant synapse. In fatigued preparations it was possible to sum distal and proximal or two proximal EPSP's and achieve spike excitation.  相似文献   

9.
Dispersed neurons from embryonic chicken sympathetic ganglia were innervated in vitro by explants of spinal cord containing the autonomic preganglionic nucleus or somatic motor nucleus. The maturation of postsynaptic acetylcholine (ACh) sensitivity and synaptic activity was evaluated from ACh and synaptically evoked currents in voltage-clamped neurons at several stages of innervation. All innervated cells are more sensitive to ACh than uninnervated neurons regardless of the source of cholinergic input. Similarly, medium conditioned by either dorsal or ventral explants mimics innervation by enhancing neuronal ACh sensitivity. This increase is due to changes in the rate of appearance of ACh receptors on the cell surface. There are also several changes in the nature of synaptic transmission with development in vitro, including an increased frequency of synaptic events and the appearance of larger amplitude synaptic currents. In addition, the mean amplitude of the unit synaptic current mode increases, as predicted from the observed changes in postsynaptic sensitivity. Although spontaneous synaptic current amplitude histograms with multimodal distributions are seen at all stages of development, histograms from early synapses are typically unimodal. Changes in the synaptic currents and ACh sensitivity between 1 and 4 days of innervation were paralleled by an increase in the number of synaptic events that evoked suprathreshold activity in the postsynaptic neurons. The early pre- and postsynaptic differentiation described here for interneuronal synapses formed in vitro may be responsible for increased efficacy of synaptic transmission during development in vivo.  相似文献   

10.
Cercal sensory neurons in the cricket innervate interneurons in the central nervous system (CNS) and provide a model system for studying the formation of central synapses. When axons of the sensory neurons were transected during larval development, the cell bodies and the soma-bearing portion of axons, which are located within the cercus, survived but lost their excitability for 9-10 days. During this period, the sensory neurons grew new axons and reinnervated the terminal abdominal ganglion. Physiological recordings showed that sensory neurons of known identity reestablished monosynaptic contacts with their normal postsynaptic interneuron. Moreover, each synapse exhibited a characteristic strength indistinguishable from the intact synapse in an unoperated cricket. Since this selective connectivity was apparent immediately after the excitability of the axotomized sensory neurons was restored, action potentials in the sensory neurons appear to be unnecessary for normal synaptic regeneration to occur. Consistent with this, the reinnervation process was unaffected even when action potentials in the sensory neurons were blocked by tetrodotoxin (TTX) immediately following axotomy until just before testing. During the normal course of development, the characteristic strength of individual synapses changes systematically, resulting in the developmental rearrangement of these synapses (Chiba et al., 1988). This synaptic rearrangement was also unaffected when action potentials in the sensory neurons were blocked by TTX for the last 30% of larval development. Therefore, in the cricket cercal sensory system, both regeneration of the central synapses following axotomy of the presynaptic sensory neurons and the normal rearrangement of connectivity during larval development appear not to require axonal action potentials.  相似文献   

11.
Synaptic Integration in Electrically Coupled Neurons   总被引:2,自引:0,他引:2  
Interactions among chemical and electrical synapses regulate the patterns of electrical activity of vertebrate and invertebrate neurons. In this investigation we studied how electrical coupling influences the integration of excitatory postsynaptic potentials (EPSPs). Pairs of Retzius neurons of the leech are coupled by a nonrectifying electrical synapse by which chemically induced synaptic currents flow from one neuron to the other. Results from electrophysiology and modeling suggest that chemical synaptic inputs are located on the coupled neurites, at 7.5 μm from the electrical synapses. We also showed that the space constant of the coupled neurites was 100 μm, approximately twice their length, allowing the efficient spread of synaptic currents all along both coupled neurites. Based on this cytoarchitecture, our main finding was that the degree of electrical coupling modulates the amplitude of EPSPs in the driving neurite by regulating the leak of synaptic current to the coupled neurite, so that the amplitude of EPSPs in the driving neurite was proportional to the value of the coupling resistance. In contrast, synaptic currents arriving at the coupled neurite through the electrical synapse produced EPSPs of constant amplitude. This was because the coupling resistance value had inverse effects on the amount of current arriving and on the impedance of the neurite. We propose that by modulating the amplitude of EPSPs, electrical synapses could regulate the firing frequency of neurons.  相似文献   

12.
Agrin plays an organizing role in the formation of sympathetic synapses   总被引:5,自引:0,他引:5  
Agrin is a nerve-derived factor that directs neuromuscular synapse formation, however its role in regulating interneuronal synaptogenesis is less clear. Here, we examine agrin's role in synapse formation between cholinergic preganglionic axons and sympathetic neurons in the superior cervical ganglion (SCG) using agrin-deficient mice. In dissociated cultures of SCG neurons, we found a significant decrease in the number of synapses with aggregates of presynaptic synaptophysin and postsynaptic neuronal acetylcholine receptor among agrin-deficient neurons as compared to wild-type neurons. Moreover, the levels of pre- and postsynaptic markers at the residual synapses in agrin-deficient SCG cultures were also reduced, and these defects were rescued by adding recombinant neural agrin to the cultures. Similarly, we observed a decreased matching of pre- and postsynaptic markers in SCG of agrin-deficient embryos, reflecting a decrease in the number of differentiated synapses in vivo. Finally, in electrophysiological experiments, we found that paired-pulse depression was more pronounced and posttetanic potentiation was significantly greater in agrin-deficient ganglia, indicating that synaptic transmission is also defective. Together, these findings indicate that neural agrin plays an organizing role in the formation and/or differentiation of interneuronal, cholinergic synapses.  相似文献   

13.
Numerous studies suggest that the extracellular matrix protein agrin directs the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). Strong support for this hypothesis comes from the observation that the high density of acetylcholine receptors (AChR) normally present at the neuromuscular junction fails to form in muscle of embryonic agrin mutant mice. Agrin is expressed by many populations of neurons in the central nervous system (CNS), suggesting that this molecule may also play a role in neuron-neuron synapse formation. To test this hypothesis, we examined synapse formation between cultured cortical neurons isolated from agrin-deficient mouse embryos. Our data show that glutamate receptors accumulate at synaptic sites on agrin-deficient neurons. Moreover, electrophysiological analysis demonstrates that functional glutamatergic and gamma-aminobutyric acid (GABA)ergic synapses form between mutant neurons. The frequency and amplitude of miniature postsynaptic glutamatergic and GABAergic currents are similar in mutant and age-matched wild-type neurons during the first 3 weeks in culture. These results demonstrate that neuron-specific agrin is not required for formation and early development of functional synaptic contacts between CNS neurons, and suggest that mechanisms of interneuronal synaptogenesis are distinct from those regulating synapse formation at the neuromuscular junction.  相似文献   

14.
Targeting of glutamate receptors to synapses is an important event in both developing and mature neurons. Glutamate receptors are delivered to nascent synapses during synaptogenesis and to existing synapses during activity-dependent synaptic strengthening. Increasing evidence suggests that glutamate receptors are inserted into the plasma membrane before they accumulate at the synapse. Lateral diffusion of receptors occurs at both synaptic and non-synaptic membranes, and glutamate receptors can exchange rapidly between synaptic and extrasynaptic sites. In addition, recent studies show that postsynaptic scaffold molecules can be highly mobile. The dynamic nature of the synapse suggests that many mechanisms might be involved in regulating synapse formation and synaptic plasticity.  相似文献   

15.
Linking synaptic plasticity with behavioral learning requires understanding how synaptic efficacy influences postsynaptic firing in neurons whose role in behavior is understood. Here, we examine plasticity at a candidate site of motor learning: vestibular nerve synapses onto neurons that mediate reflexive movements. Pairing nerve activity with changes in postsynaptic voltage induced bidirectional synaptic plasticity in vestibular nucleus projection neurons: long-term potentiation relied on calcium-permeable AMPA receptors and postsynaptic hyperpolarization, whereas long-term depression relied on NMDA receptors and postsynaptic depolarization. Remarkably, both forms of plasticity uniformly scaled synaptic currents evoked by pulse trains, and these changes in synaptic efficacy were translated into linear increases or decreases in postsynaptic firing responses. Synapses onto local inhibitory neurons were also plastic but expressed only long-term depression. Bidirectional, linear gain control of vestibular nerve synapses onto projection neurons provides a plausible mechanism for motor learning underlying adaptation of vestibular reflexes.  相似文献   

16.
Li J  Erisir A  Cline H 《Neuron》2011,69(2):273-286
Dendrites, axons, and synapses are dynamic during circuit development; however, changes in microcircuit connections as branches stabilize have not been directly demonstrated. By combining in?vivo time-lapse imaging of Xenopus tectal neurons with electron microscope reconstructions of imaged neurons, we report the distribution and ultrastructure of synapses on individual vertebrate neurons and relate these synaptic properties to dynamics in dendritic and axonal arbor structure over hours or?days of imaging. Dynamic dendrites have a high density of immature synapses, whereas stable dendrites have sparser, mature synapses. Axons initiate contacts from multisynapse boutons on stable branches. Connections are refined by decreasing convergence from multiple inputs to postsynaptic dendrites and by decreasing divergence from multisynapse boutons to postsynaptic sites. Visual deprivation or NMDAR antagonists decreased synapse maturation and elimination, suggesting that coactive input activity promotes microcircuit development by concurrently regulating synapse elimination and maturation of remaining contacts.  相似文献   

17.
The physiological mechanisms driving synapse formation are elusive. Although numerous signals are known to regulate synapses, it remains unclear which signaling mechanisms organize initial synapse assembly. Here, we describe new tools, referred to as “SynTAMs” for synaptic targeting molecules, that enable localized perturbations of cAMP signaling in developing postsynaptic specializations. We show that locally restricted suppression of postsynaptic cAMP levels or of cAMP-dependent protein-kinase activity severely impairs excitatory synapse formation without affecting neuronal maturation, dendritic arborization, or inhibitory synapse formation. In vivo, suppression of postsynaptic cAMP signaling in CA1 neurons prevented formation of both Schaffer-collateral and entorhinal-CA1/temporoammonic-path synapses, suggesting a general principle. Retrograde trans-synaptic rabies virus tracing revealed that postsynaptic cAMP signaling is required for continuous replacement of synapses throughout life. Given that postsynaptic latrophilin adhesion-GPCRs drive synapse formation and produce cAMP, we suggest that spatially restricted postsynaptic cAMP signals organize assembly of postsynaptic specializations during synapse formation.  相似文献   

18.
Numerous studies suggest that the extracellular matrix protein agrin directs the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). Strong support for this hypothesis comes from the observation that the high density of acetylcholine receptors (AChR) normally present at the neuromuscular junction fails to form in muscle of embryonic agrin mutant mice. Agrin is expressed by many populations of neurons in the central nervous system (CNS), suggesting that this molecule may also play a role in neuron–neuron synapse formation. To test this hypothesis, we examined synapse formation between cultured cortical neurons isolated from agrin‐deficient mouse embryos. Our data show that glutamate receptors accumulate at synaptic sites on agrin‐deficient neurons. Moreover, electrophysiological analysis demonstrates that functional glutamatergic and gamma‐aminobutyric acid (GABA)ergic synapses form between mutant neurons. The frequency and amplitude of miniature postsynaptic glutamatergic and GABAergic currents are similar in mutant and age‐matched wild‐type neurons during the first 3 weeks in culture. These results demonstrate that neuron‐specific agrin is not required for formation and early development of functional synaptic contacts between CNS neurons, and suggest that mechanisms of interneuronal synaptogenesis are distinct from those regulating synapse formation at the neuromuscular junction. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 547–557, 1999  相似文献   

19.
20.
Synaptic transmission is the key system for the information transfer and elaboration among neurons. Nevertheless, a synapse is not a standing alone structure but it is a part of a population of synapses inputting the information from several neurons on a specific area of the dendritic tree of a single neuron. This population consists of excitatory and inhibitory synapses the inputs of which drive the postsynaptic membrane potential in the depolarizing (excitatory synapses) or depolarizing (inhibitory synapses) direction modulating in such a way the postsynaptic membrane potential. The postsynaptic response of a single synapse depends on several biophysical factors the most important of which is the value of the membrane potential at which the response occurs. The concurrence in a specific time window of inputs by several synapses located in a specific area of the dendritic tree can, consequently, modulate the membrane potential such to severely influence the single postsynaptic response. The degree of modulation operated by the synaptic population depends on the number of synapses active, on the relative proportion between excitatory and inbibitory synapses belonging to the population and on their specific mean firing frequencies. In the present paper we show results obtained by the simulation of the activity of a single Glutamatergic excitatory synapse under the influence of two different populations composed of the same proportion of excitatory and inhibitory synapses but having two different sizes (total number of synapses). The most relevant conclusion of the present simulations is that the information transferred by the single synapse is not and independent simple transition between a pre- and a postsynaptic neuron but is the result of the cooperation of all the synapses which concurrently try to transfer the information to the postsynaptic neuron in a given time window. This cooperativeness is mainly operated by a simple mechanism of modulation of the postsynaptic membrane potential which influences the amplitude of the different components forming the postsynaptic excitatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号