首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The catecholaminergic innervation of the hypothalamic paraventricular nucleus (PVN) of the rat was studied by preembedding immunocytochemical methods utilizing specific antibodies which were generated against catecholamine synthesizing enzymes. Phenylethanolamine-N-methyltransferase (PNMT)-immunoreactive terminals contained 80-120 nm dense core granules and 30-50 nm clear synaptic vesicles. The labeled boutons terminated on cell bodies and dendrites of both parvo- and magnocellular neurons of PVN via asymmetric synapses. The parvocellular subnuclei received a more intense adrenergic innervation than did the magnocellular regions of the nucleus. Dopamine-beta-hydroxylase (DBH)-immunopositive axons were most numerous in the periventricular zone and the medial parvocellular subnucleus of PVN. Labeled terminal boutons contained 70-100 nm dense granules and clusters of spherical, electron lucent vesicles. Dendrites, perikarya and spinous structures of paraventricular neurons were observed to be the postsynaptic targets of DBH axon terminals. These asymmetric synapses frequently exhibited subsynaptic dense bodies. Paraventricular neurons did not demonstrate either PNMT or DBH immunoreactivity. The fibers present within the nucleus which contained these enzymes are considered to represent extrinsic afferent connections to neurons of the PVN. Tyrosine hydroxylase (TH)-immunoreactivity was found both in neurons and neuronal processes within the PVN. In TH-cells, the immunolabel was associated with rough endoplasmic reticulum, free ribosomes and 70-120 nm dense granules. Occasionally, nematosome-like bodies and cilia were observed in the TH-perikarya. Unlabeled axons established en passant and bouton terminaux type synapses with these TH-immunopositive cells. TH-immunoreactive axons terminated on cell bodies as well as somatic and dendritic spines of paraventricular parvocellular neurons. TH-containing axons were observed to deeply invaginate into both dendrites and perikarya of magnocellular neurons. These observations provide ultrastructural evidence for the participation of central catecholaminergic neuronal systems in the regulation of the different neuronal and neuroendocrine functions which have been related to hypothalamic paraventricular neurons.  相似文献   

2.
A diverse afferent synaptic input to immunostained oxytocin magnocellular neurons of the paraventricular nucleus of the rat hypothalamus is described. By electron microscopy, immunoreactive material is present within cell bodies and neuronal processes and it is associated primarily with neurosecretory granules and granular endoplasmic reticulum. Afferent axon terminals synapse on perikarya, dendritic processes, and possibly axonal processes of oxytocin-containing neurons. The presynaptic elements of the synaptic complexes contain clear spherical vesicles, a mixture of clear spherical and ellipsoidal vesicles, or a mixture of clear and dense-centered vesicles. The postsynaptic membranes of oxytocinergic cells frequently show a prominent coating of dense material on the cytoplasmic face which gives the synaptic complex a marked asymmetry.  相似文献   

3.
In the present study, a polyclonal antibody against pro-opiomelanocortin derivatives was characterized biochemically. Its immunoreactivity with structures of the arcuate nucleus and the median eminence was investigated by means of the immunogold method and compared with its reaction on adenohypophyseal cells with and without pre-adsorption with pro-opiomelanocortin derivatives. The antiserum detects ACTH and its fragments, in particular alpha-MSH, and beta-endorphin. In the adenohypophysis gold particles are exclusively located on small secretory granules situated in the periphery of branched cells. In the perikarya of the arcuate nucleus gold particles are observed on terminal vesicles abutting from the cis-face of the Golgi apparatus, on granules in its direct vicinity and on small dense core vesicles preferentially located in the cell periphery. Immunoreactive gold-labeled fiber profiles are found in a sub- or intra-ependymal position as well as in the nuclear neuropil proper. Here axodendritic and axosomatic synapses are observed. In both situations the gold particles are mostly restricted to the small dense core vesicles and do not decorate the synaptic vesicles. In the median eminence gold labeled fibers are detected in all layers. The labeled fibers can be closely apposed to tanycytic processes, without, however, forming special contact differentiations. In direction to the perivascular layer of the external zone the labeled profiles are more frequently arranged in groups intermingled with unlabeled fibers. The axons decorated with gold particles can be freely exposed to the perivascular space or are found as single processes in close vicinity to the capillary wall. Subsequent to preincubation of the native antiserum with ACTH1-39 and ACTH18-39 (= CLIP) neither adenohypophyseal cells nor perikarya and fibers in the arcuate nucleus nor axons in the median eminence are decorated with gold particles. Preincubation of the native antiserum with alpha-MSH or beta-endorphin does not change the immunoreaction with the small, peripherally situated granules in the branched adenohypophyseal cells. In neurons of the arcuate nucleus and in fibers of the median eminence, however, the immunoreaction is completely extinguished when the antibody is pre-incubated with alpha-MSH, whereas subsequent to preincubation with beta-endorphin only the amounts of labeled structures are reduced.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Summary Vasopressin-containing neurons, identified by immunocytochemistry, are located predominantly in the posterior magnocellular division of the paraventricular nucleus of the rat hypothalamus. By electron microscopy, the immunoreaction product is seen within the cell bodies and neuronal processes. In the perikarya and dendritic processes, the immunoreactive material is associated primarily with neurosecretory granules. Axonal processes, identified by their content of microtubules and accumulation of neurosecretory granules, show the immunoreaction product in association with both of these organelles. Afferent axo-dendritic, axo-somatic and putative axo-axonic synapses with immunostained vasopressinergic neurons can be identified. The presynaptic profiles do not contain immunoreactive material. This study contributes to the ultrastructural characterization of vasopressinergic neurons in the paraventricular nucleus and of their afferent synaptic input.Supported by NIH Grants HD-12956 and 2SO7RR05403  相似文献   

5.
The fine structure of the parvocellular tuberal nuclei and that of the ependyma bordering the third ventricle in the basal hypothalamus of the White-crowned Sparrow, Zonotrichia leucophrys gambelii, have been investigated. Photoperiodically stimulated birds have been compared with birds held on short days. The perikarya of the neurons of the basal infundibular (tuberal) nucleus, and in part, of the more dorsal layers, contain dense-cored granules (1000-1500 A). The granules in the anterior part of the nucleus are somewhat larger than those of the posterior part. The synapses and the synaptic relationships of these cells are described. The single-layered ependyma of the third ventricle in the basal hypothalamus may be divided into the dorsal typical ependyma, the ventrolateral "glandular" ependyma, and the ventral "glandular" ependyma. Cells of the ventral ependyma lack apical cilia but bear a few microvillous processes. They have well-developed Golgi apparatus, conspicuous polysomes, and frequently dense, irregularly-shaped granules. Basal cytoplasmic processes extend ventrally to the outer surface of the median eminence. Photoperiodic stimulation appears to increase the numbers of apical protrusions of the cells in the ventral glandular ependyma and to cause an increase in size of the nerve cells of the basal infundibular nucleus.  相似文献   

6.
A new type of cell has been identified in cercariae of Schistosoma mansoni. The perikarya (cell bodies) of these cells were located in the body (midsegment), in an area oral to the acetabulum (ventral sucker). Cytoplasmic processes extending from the perikarya ramified throughout the parenchyma of the anterior organ (oral sucker), body, and tail segments by following the path of the nerve processes from the neuropile. The perikarya of these cells had heterochromatic nuclei and a predominance of particulate material and granules (240-360 nm) in their cytoplasm. Aggregates of granules (240-360 nm) and associated vesicles (34 nm) were scattered throughout the cytoplasmic processes of the cells and formed distinct varicosed areas. These processes often connected to the tegument in the midsegment (body) of the cercariae. The granules and associated vesicles reacted (became electron dense) with fixatives reported to be detectors of biogenic amines: The glutaraldehyde/osmium tetroxide fixation procedure rendered the granules electron dense while the glutaraldehyde/chromate/osmium tetroxide fixation procedure rendered the granules and the associated vesicles electron dense. The chromate solution of the latter procedure was responsible for the electron density of the associated vesicles. The morphology of these cells (their long ramifying cytoplasmic processes) and their reaction to chromium suggests that they are probably biogenic aminergic sensory cells.  相似文献   

7.
Summary The catecholaminergic innervation of the hypothalamic paraventricular nucleus (PVN) of the rat was studred by preembedding immunocytochemical methods utilizing specific antibodies which were generated against catecholamine synthesizing enzymes. Phenylethanolamine-N-methyltransferase (PNMT)-immunoreactive terminals contained 80–120 nm dense core granules and 30–50 nm clear synaptic vesicles. The labeled boutons terminated on cell bodies and dendrites of both parvo- and magnocellular neurons of PVN via asymmetric synapses. The parvocellular subnuclei received a more intense adrenergic innervation than did the magnocellular regions of the nucleus. Dopamine--hydroxylase (DBH)-immunopositive axons were most numerous in the periventricular zone and the medial paryocellular subnucleus of PVN. Labeled terminal boutens contained 70–100 nm dense granules and clusters of spherical, electron lucent vesicles. Dendrites, perikarya and spinous structures of paraventricular neurons were observed to be the postsynaptic targets of DBH axon terminals. These asymmetric synapses frequently exhibited subsynaptic dense bodies. Paraventricular neurons did not demonstrate either PNMT or DBH immunoreactivity. The fibers present within the nucleus which contained these enzymes are considered to represent extrinsic afferent connections to neurons of the PVN.Tyrosine hydroxylase (TH)-immunoreactivity was found both in neurons and neuronal processes within the PVN In TH-cells, the immunolabel was associated with rough endoplasmic reticulum, free ribosomes and 70–120 nm dense granules. Occasionally, nematosome-like bodies and cilia were observed in the TH-perikarya. Unlabeled axons established en passant and bouton terminaux type synapses with these TH-immunopositive cells. TH-immunoreactive axons terminated on cell bodies as well as somatic and dendritic spines of paraventricular parvocellular neurons. TH-containing axons were observed to deeply invaginate into both dendrites and perikarya of magnocellular neurons.These observations provide ultrastructural evidence for the participation of central catecholaminergic neuronal systems in the regulation of the different neuronal and neuroendocrine functions which have been related to hypothalamic paraventricular neurons.Supported by NIH Grant NS 19266 to W.K. Paull  相似文献   

8.
Summary The principal supportive elements of the nereid central nervous system are non-neuronal cells that are referred to as supportive glia. Supportive glial cells form a conspicuous cortex in the nerve cord. The inner region of this cortex consists of closely packed processes and cell bodies of fibrous supportive glial cells that are arranged in concentric layers around the perimeter of the neuropile. The fibrous appearance of the glial cells results from dense bundles of cytoplasmic filaments. Many fibrous glial processes penetrate the neuropile and ramify among the neuronal elements. Larger, irregularly shaped cells are the chief supportive glial elements of the peripheral region of the cortex where they line the stromal sheath (neural lamella) and invest the neuronal perikarya with extensive concentric systems of lamellate processes. These glial cells usually possess a relatively undifferentiated cytoplasm with scattered glycogen granules, but occasionally have a well developed Golgi apparatus, endoplasmic reticulum and densely packed particulate glycogen. The supportive glia exhibits numerous desmosomes as well as 5-layered (tight) and 7-layered (gap) junctions. Interspersed among the supportive glial cells are non-neuronal cells referred to as granulocytes. These cells have abundant large, granular inclusions, electron lucent vesicles, plasmalemmal infoldings and microtubules. The granulocytes may be derived from undifferentiated glial cells or may represent coelomocytes that have invaded the nervous tissue.Supported by USPHS Grants No. NIH 5P01 NS-07512, NIH 2T01 GM-00102, and NB-00840.The author acknowledges the excellent technical assistance of Sarah Wurzelmann and Stanley Brown, and thanks Dr. Berta Scharrer for many stimulating discussions.  相似文献   

9.
Both proopiomelanocortin (POMC) and ghrelin peptides are implicated in the feeding regulation. The synaptic relationships between POMC- and ghrelin-containing neurons in the hypothalamic arcuate nucleus were studied using double-immunostaining methods at the light and electron microscope levels. Many POMC-like immunoreactive axon terminals were found to be apposed to ghrelin-like immunoreactive neurons and also to make synapses with ghrelin-like immunoreactive neuronal perikarya and dendritic processes. Most of the synapses were symmetrical in shape. A small number of synapses made by ghrelin-like immunoreactive axon terminals on POMC-like immunoreactive neurons were also identified. Both the POMC- and ghrelin-like immunoreactive neurons were found to contain large dense granular vesicles. These data suggest that the POMC-producing neurons are modulated via synaptic communication with ghrelin-containing neurons. Moreover, ghrelin-containing neurons may also have a feedback effect on POMC-containing neurons through direct synaptic contacts.  相似文献   

10.
Summary In the buccal ganglia of Helix pomatia synapses and sites of possible release of neurosecretory material were investigated electron microscopically. There is one chemical synapse and one electrotonic synapse in the neuropile of the ganglion. No synapses could be detected in the buccal nerves, cerebro-buccal connectives, or in the buccal commissure. The synaptic cleft of the chemical synapse is about 25 nm wide and contains electron-dense material whereas the cleft of the electrotonic synapse is only 5 nm wide. The presynaptic fibre of the chemical synapse contains clear vesicles and dense core vesicles. The release sites of neurosecretory material are found at the initial segment of the axons, at perikarya of neurones, and at the perineurium of the ganglion. If the terminals are located at the plasmalemma of a nerve cell, these release sites are called synapse-like structures according to Roubos and Moorer-van Delft (1979). The synapse-like structures show all structural elements of synapses, except the 25 nm cleft containing dense material; the cleft is only 15–20 nm wide here like the normal cleft between neurones and glial cells or between two fibres. If the secretory material is released at the periphery through the perineurium the terminal is called synaptoid according to Scharrer (1970). In all cases, i.e. synapses, synapse-like structures, and synaptoids, clear vesicles were found in the axon terminal. This finding provides further evidence that clear vesicles always accompany the release of substances from axon endings.  相似文献   

11.
The sinus venosus of the elasmobranch heart is characterized by the presence of large bundles of unmyelinated nerve fibres that bulge into the cardiac lumen, below the endocardium. In the dogfish (Scyliorhinus canicula), these fibres contain numerous dense-core membrane-bounded granules of about 200 nm in diameter. Most intramural ganglion cells of the sinus venosus also show densely packed granules similar to those found in the subendocardial fibres. We have observed strong substance-P-like immunoreactivity in the large fibre bundles and in the perikarya of the ganglion cells. Preabsorption of the antisera with fragment 7–11 of substance P has shown that the antisera recognize the tachykinin canonic sequence. Our findings suggest that an undetermined tachykinin is secreted in the elasmobranch heart, and that it is probably released into the blood stream in the context of a little-known neuroendocrine system.  相似文献   

12.
Zs. Liposits  W.K. Paull 《Peptides》1985,6(6):1021-1036
The corticotropin releasing factor (CRF)-immunoreactive paraventriculo-infundibular neuronal system of long-term adrenalectomized and adrenalectomized-short term dexamethasone treated rats was analyzed at the ultrastructural level using the preembedding peroxidase anti-peroxidase complex (PAP)-immunohistological method. In both groups of animals, parvocellular neurons located in the medial and dorsal subnuclei of the paraventricular nucleus (PVN) showed CRF-like immunoreactivity. The perikarya contained hypertrophied rough endoplasmic reticulum (rER) with dilated cisternae, active Golgi-complexes and numerous neurosecretory granules. The majority of the neurosecretory granules measured 80–120 nm. Dendrites of CRF-immunoreactive neurons contained labeled vesicles, secretory granules, bundles of microtubules, a well-developed smooth endoplasmic reticulum (sER) complex and free ribosomes. Unlabeled terminal boutons of axons were observed to synapse on dendrites and somata of CRF-neurons. In addition, CRF perikarya were found in direct somato-somatic apposition with both CRF-immunopositive and immunonegative parvocellular cells. Retraction of glial processes and the existence of puncta adherentia between the cell membranes characterized these appositions. Varicose CRF axons within the median eminence contained hypertrophied sER, labeled vesicles and neurosecretory granules. The preterminal portions of the CRF-axons were dilated and possessed many labeled 80–120 nm diameter granules. CRF-terminals were greatly enlarged and established direct neurohemal contacts with the external limiting basal lamina of portal vessels without the interposition of tanycytic ependymal foot-processes. These tanycytes were not CRF immunopositive. CRF positive terminals contained clusters of microvesicles, labeled small vesicles and multivesicular bodies, but fewer granular elements than were observed within the preterminals. Many of the labeled organelles were attached to tubules of sER. Occasionally, CRF-axons were observed within the pericapillary space adjacent to portal vessels. The ultrastructural features of CRF-neurons, obtained from adrenalectomized and adrenalectomized plus short-term dexamethasone treated rats did not differ significantly from each other. The hormone content of the entire CRF-neuron was greater in the steroid treated group. Adrenocorticotrophic hormone (ACTH) synthesizing cells in the pars distalis of adrenalectomized-dexamethasone treated rats also showed increased numbers of immunopositive secretory granules (150–320 nm in diameter). These ultrastructural morphological results provide evidence that the function of the paraventriculo-infundibular CRF-system is adrenal steroid hormone dependent and suggest the participation of glial and ependymal elements in the regulation of the system in this hyperfunctional state. The observed membrane specializations are indicative of ephaptic interactions between CRF-neurons and may serve a synchronizing function in adrenalectomized animals.  相似文献   

13.
Summary The fine structure of the brain of the monogenean Gastrocotyle trachuri (Platyhelminthes) is described. The brain consists of a central neuropile surrounded by a layer of cell bodies. The neuropile is composed of a fine meshwork of naked neurites which contain various types of vesicles and other organelles although microtubules have not been found. Five kinds of vesicles; three clear types and two dense types, were found within the neuropile.Two types of neuronal cell body were identified on the basis of their vesicle contents although it is possible that these two types represent the extremes of a single cell type. A characteristic feature of the neuronal perikarya of Gastrocotyle is the presence of deep infoldings into the cell of the outer membrane. These infoldings often contain fibrous interstitial material and in a number of cases hemidesmosome-like structures have been found in the distended, distal end of the infoldings.  相似文献   

14.
Summary Synaptic connections between neurons immunoreactive for arginine vasopressin (AVP) and axon terminals immunoreactive for neuropeptide Y (NPY) were found in the magnocellular part of the paraventricular nucleus (PVN) in the rat hypothalamus. In pre-embedding double immunolabeling, NPY axon terminals labeled with diamin-obenzidine (DAB) reaction product established synaptic junctions on the perikarya and neuronal processes of AVP neurons labeled with silver-gold particles. Ultrastructural morphology of the neurons was more suitably preserved by a combination of pre- and post-embedding procedures. The presynaptic NPY terminals contained many small clear vesicles and a few cored vesicles, and DAB chromogen (immunoreaction product) was located on the surface of the vesicular profiles and on the core. The postsynaptic AVP neurons possessed many large secretory granules labeled with gold particles. At the synaptic junctions, small clear vesicles were accumulated at the presynaptic membrane, and the postsynaptic membrane was coated with a dense accumulation of fine electron dense particles. The perikarya also received synapses made by immuno-negative axon terminals containing many small clear vesicles and a few cored vesicles. These terminals were found more frequently than those containing NPY.  相似文献   

15.
Synaptic connections between neurons immunoreactive for arginine vasopressin (AVP) and axon terminals immunoreactive for neuropeptide Y (NPY) were found in the magnocellular part of the paraventricular nucleus (PVN) in the rat hypothalamus. In pre-embedding double immunolabeling, NPY axon terminals labeled with diaminobenzidine (DAB) reaction product established synaptic junctions on the perikarya and neuronal processes of AVP neurons labeled with silver-gold particles. Ultrastructural morphology of the neurons was more suitably preserved by a combination of pre- and post-embedding procedures. The presynaptic NPY terminals contained many small clear vesicles and a few cored vesicles, and DAB chromogen (immunoreaction product) was located on the surface of the vesicular profiles and on the core. The postsynaptic AVP neurons possessed many large secretory granules labeled with gold particles. At the synaptic junctions, small clear vesicles were accumulated at the presynaptic membrane, and the postsynaptic membrane was coated with a dense accumulation of fine electron dense particles. The perikarya also received synapses made by immuno-negative axon terminals containing many small clear vesicles and a few cored vesicles. These terminals were found more frequently than those containing NPY.  相似文献   

16.
Summary The central nervous system (CNS) and the peripheral nervous system (PNS) of the flatworm Microstomum lineare were studied by means of the peroxidase-antiperoxidase (PAP) immunocytochemical method, with the use of antisera to the molluscan cardioactive peptide FMRF-amide. FMRF-amide immunoreactive perikarya and nerve fibres are observed in the CNS and the PNS. In the CNS, immunoreactive perikarya and nerve fibres occur in the brain, in the epithelial lining and the mesenchymal surroundings of the ciliated pits, and positive fibres in the longitudinal nerve cords. In the PNS, immunoreactive fibre bundles with variocosities occur in the pharyngeal nerve ring, in symmetrical groups of perikarya on each side of the pharynx, and in the mouth area. Positive perikarya and meandering nerve fibres appear in the intestinal wall. A few immunoreactive cells and short nerve processes are observed at the male copulatory organ and on both sides of the vagina. Some immunoreactive peptidergic cells do not correspond to cells previously identified by histological techniques for neurosecretory cells. The distribution of immunoreactivity suggests that the FMRF-amide-like substance in CNS and PNS in this worm has roles similar to those of the brain-gut peptides in vertebrates. The status of FMRF-amide-like peptides as representatives of an evolutionarily old family of peptides is confirmed by the positive immunoreaction to anti-FMRF-amide in this primitive microturbellarian.  相似文献   

17.
Summary In the present study the central innervation of the guinea-pig pineal gland was investigated. The habenulae and the pineal stalk contain myelinated and non-myelinated nerve fibres with few dense-cored and electron-lucent vesicles. Some myelinated fibres leave the main nerve fibre bundles, lose their myelin-sheaths and terminate in the pineal gland. Although direct proof is lacking, the non-myelinated fibres appear to end near the site where the bulk of the myelinated fibres are located. Here a neuropil area exists where synapses between non-myelinated fibre elements are abundant. Neurosecretory fibres were also seen. The results support the concept of functional interrelationships between hypothalamus, epithalamus and the pineal gland.  相似文献   

18.
Summary In the elasmobranch fish, Scyllium stellare, a complex group of cells protrudes into the cavity of the mesencephalic ventricle of the optic tectum. It consists of six to seven large spherical perikarya which resemble neurons of the mesencephalic nucleus of the Vth cranial nerve. The bundled processes of these cells form a stalk connecting the protrusion with the brain tissue. The protrusion is located in the region where the mesencephalic ventricle joins the cerebral aqueduct. This complex was not found in all specimens examined in the present study. The functional role of this peculiar group of cells, which contain dense core granules and are bathed in the cerebrospinal fluid, is open to discussion.  相似文献   

19.
The arcuate nucleus of normal cats and of cats treated with 5-hydroxydopamine (5-OHDA) was investigated by electron microscopy. The neurons of the arcuate nucleus were classified into three types, clear, intermediate and dark, according to their fine structure. The clear type contained numerous dense-cored vesicles and well developed cell organelles. All three types were frequently seen to be partially surrounded by glial processes. Many axo-somatic and axo-dendritic synapses mostly small in diameter were also observed around the neurons. Synaptic contacts were demonstrated between axon endings and axonal processes which contained elementary granules. After administration of 5-OHDA small and large dense-cored vesicles appeared in the nerve endings surrounding the neurons. The relationship between the dense-cored vesicles in the perikarya and dopamine was briefly discussed.  相似文献   

20.
本文应用免疫细胞化学方法在光镜与电镜下观察了大鼠孤束核内脑啡肽样免疫反应(ENK-LI)阳性结构的分布特征和ENK-LI轴突终末的突触联系以及非突触性关系。结果表明:(1)经秋水仙素处理的大鼠,其孤束核内有许多ENK-LI胞体的分布;而未经秋水仙素处理的大鼠,其孤束核内可见密集的ENK-LI纤维与终末;ENK-LI胞体、纤维和终末主要分布于锥体交叉平面至闩平面的孤束核内侧亚核与胶状质亚核。(2)ENK-LI阳性产物主要定位于小圆形清亮囊泡外表面、大颗粒囊泡内和线粒体外表面等处。(3)ENK-LI轴突终末主要与阴性树突形成轴-树突触。(4)阴性轴突终末终止于ENK-LI轴突终末上,形成轴-轴突触。(5)ENK-LI轴突终末与阴性轴突终末形成非突触性的轴-轴并靠。以上结果提示孤束核内的ENK-LI神经成分主要通过突触后机制、也不排除突触前作用,参与孤束核中内脏信息的整合过程,而且这一作用又受到非ENK-LI神经成分的调控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号