首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The avian magnetic compass works as an inclination compass. Instead of using the polarity of the magnetic field to determine direction, birds use the inclination of the dip angle. Consequently, transequatorial migrants have to reverse their response to the magnetic compass after crossing the magnetic equator. When confronted with an artificial magnetic field that reverses the vertical component of the magnetic field, migrants such as the bobolink reverse their headings relative to magnetic north even in the presence of visual cues such as stellar patterns. Bobolinks, which breed in temperate North America and winter in temperate South America, were tested in a planetarium under fixed star patterns in a series of magnetic fields incremented each night from the natural field in the northern hemisphere through an artificial horizontal field to an artificial southern hemisphere magnetic field. The birds maintained a constant heading throughout the experiment and did not reverse direction after the simulated crossing of the magnetic equator as previous experiments predicted. In nature, this response would have meant continuation of their migration flight across the equator and into the opposite hemisphere. The switch from “equatorward” orientation to “poleward” orientation is probably triggered by experience with a horizontal magnetic field and/or visual cues. The ability to maintain an accurate heading while crossing the magnetic equator may be based on the use of visual cues such as the stars.  相似文献   

2.
How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.  相似文献   

3.
Animals adapted to light-deprived habitats might have improved non-visual sensory systems. Specimens of several cave-dwelling species of urodeles spontaneously and persistently align to natural or artificially-modified permanent magnetic fields. Video observations under dim infrared illumination revealed an obvious individual preference for one particular magnetic direction in every animal tested. Therefore, animals changed alignments predictably when the horizontal magnetic field vector (compass direction) was artificially reversed or deviated. When the vertical vector was compensated, individuals aligned axially. With the vertical vector reversed (inclination upward), either axial alignment was still typical, or the individuals behaved as with the horizontal vector reversed. However, reactions as to the natural field occurred as well. The findings suggest a receptor mechanism that needs both horizontal and vertical magnetic cues, but it is still an open question how and where the physical and physiological mechanisms of magnetic transduction and reception are realized. The visual system is likely not necessary because Proteus is ontogenetically deprived of eyesight, and the other species were blindfolded due to the faint infrared illumination. The results therefore tend to favor those putative receptor mechanisms, assumed to work by means of magnetite nano-elements. In sum, the ability to align within the geomagnetic field may be considered a prerequisite for magnetic orientation and is, among other sensory improvements, judged to be highly relevant as an important sensorial and ecological adaptation to light-deprived habitats.  相似文献   

4.
Previous experiments have shown that a short, strong magnetic pulse caused migratory birds to change their headings from their normal migratory direction to an easterly direction in both spring and autumn. In order to analyse the nature of this pulse effect, we subjected migratory Australian silvereyes, Zosterops lateralis, to a magnetic pulse and tested their subsequent response under different magnetic conditions. In the local geomagnetic field, the birds preferred easterly headings as before, and when the horizontal component of the magnetic field was shifted 90 degrees anticlockwise, they altered their headings accordingly northwards. In a field with the vertical component inverted, the birds reversed their headings to westwards, indicating that their directional orientation was controlled by the normal inclination compass. These findings show that although the pulse strongly affects the magnetite particles, it leaves the functional mechanism of the magnetic compass intact. Thus, magnetite-based receptors seem to mediate magnetic 'map'-information used to determine position, and when affected by a pulse, they provide birds with false positional information that causes them to change their course.  相似文献   

5.
Ant responses were tested under both the natural geomagnetic and artificially induced Earth-strength electromagnetic field. Foragers were trained for a month to visit a food source at the north arm accessed through an orientation platform assembly. Under the natural geomagnetic field, when all other orientational cues were eliminated, results indicated significant heterogeneity of ant distribution with the majority seeking geomagnetic north in darkness. However, in light, foragers failed to discriminate geomagnetic north. Under shifted artificial electromagnetic field, orientation was predominantly on the artificial magnetic N/S axis with a significant preference for the artificial north in both light and dark conditions.  相似文献   

6.
Migratory Australian silvereyes (Zosterops lateralis) were tested under monochromatic light at wavelengths of 424 nm blue and 565 nm green. At a low light level of 7 x 10(15) quanta m(-2) s(-1) in the local geomagnetic field, the birds preferred their seasonally appropriate southern migratory direction under both wavelengths. Their reversal of headings when the vertical component of the magnetic field was inverted indicated normal use of the avian inclination compass. A higher light intensity of 43 x 10(15) quanta m(-2) s(-1), however, caused a fundamental change in behaviour: under bright blue, the silvereyes showed an axial tendency along the east-west axis; under bright green, they showed a unimodal preference of a west-northwesterly direction that followed a shift in magnetic north, but was not reversed by inverting the vertical component of the magnetic field. Hence it is not based on the inclination compass. The change in behaviour at higher light intensities suggests a complex interaction between at least two receptors. The polar nature of the response under bright green cannot be explained by the current models of light-dependent magnetoreception and will lead to new considerations on these receptive processes.  相似文献   

7.
Freshwater turtle hatchlings primarily use visual cues for orientation while dispersing from nests; however, hatchlings rapidly develop a relationship between a sun or geomagnetic compass and a dispersal target that allows them to maintain an established direction of movement when target habitats are not visible. We examined dispersal patterns of hatchling snapping turtles (Chelydra serpentina) and Blanding's turtles (Emydoidea blandingii) dispersing in large arenas in a mowed field and in dense corn. The dispersal of three categories of hatchlings were examined: (1) naïve individuals (no previous dispersal experience), (2) arena‐experienced (limited dispersal experience in arenas in natural habitat), and (3) natural‐experienced hatchling Blanding's turtles (captured after extensive experience dispersing W in natural habitats toward wetlands). Experienced hatchlings were assigned to treatments consisting of having a magnet or a non‐magnetic aluminum sham or nothing glued to their anterior carapace before release in the corn arena. Dispersal patterns of naïve hatchlings of both species were strongly directional in the field arena with visible target horizons and primarily random in the corn arena where typical target horizons were blocked. When released in corn, dispersal patterns were similar for arena‐experienced hatchlings with magnets or shams attached and differed from their prior dispersal headings in the field arena as naïve hatchlings. Natural‐experienced hatchling Blanding's turtles with and without magnets were able to accurately maintain their prior headings to the WNW while dispersing in the field or corn arenas (i.e., the presence of a magnet did not disrupt their ability to maintain their prior heading). Based on the assumption that no other type of compass exists in hatchlings, we conclude that they were not using a geomagnetic compass, but by default were using sun compass orientation to maintain dispersal headings in dense corn where no typical target habitats were visible.  相似文献   

8.
Many animals are now known to have a magnetic sense which they use when moving from one place to another. Among insects, this sense has only been studied in any detail in the honey bee. A role for a magnetic compass sense in cross-country migration has not so far been demonstrated for any insect. On clear nights the large yellow underwing moth, Noctua pronuba, has been shown to orientate by both the moon and the stars. However, radar studies have shown moths to be well-oriented on overcast nights as well as clear nights. We report here that when large yellow underwings are placed in an orientation cage on overcast nights and the Earth's normal magnetic field is reversed, there is a corresponding reversal in the orientation of the moth. We conclude that this species makes use of the Earth's magnetic field in maintaining compass orientation on overcast nights. We also show that the preferred compass orientation to the Earth's magnetic field is the same as the compass direction that results from orientation to the moon and stars.  相似文献   

9.
On their migratory journeys, terrestrial birds can come across large inhospitable areas with limited opportunities to rest and refuel. Flight over these areas poses a risk especially when wind conditions en route are adverse, in which case inhospitable areas can act as an ecological barrier for terrestrial migrants. Thus, within the east-Atlantic flyway, the North Sea can function as an ecological barrier. The main aim of this study was to shed light on seasonal patterns of bird migration in the southern North Sea and determine whether departure decisions on nights of intense migration were related to increased wind assistance. We measured migration characteristics with a radar that was located 18 km off the NW Dutch coast and used simulation models to infer potential departure locations of birds on nights with intense nocturnal bird migration. We calculated headings, track directions, airspeeds, groundspeeds on weak and intense migration nights in both seasons and compared speeds between seasons. Moreover, we tested if departure decisions on intense migration nights were associated with supportive winds. Our results reveal that on the intense migration nights in spring, the mean heading was towards E, and birds departed predominantly from the UK. On intense migration nights in autumn, the majority of birds departed from Denmark, Germany and north of the Netherlands with the mean heading towards SW. Prevailing winds from WSW at departure were supportive of a direct crossing of the North Sea in spring. However, in autumn winds were generally not supportive, which is why many birds exploited positive wind assistance which occurred on intense migration nights. This implies that the seasonal wind regimes over the North Sea alter its migratory dynamics which is reflected in headings, timing and intensity of migration.  相似文献   

10.
Behavioral researchers have attached magnets to birds during orientation experiments, assuming that such magnets will disrupt their ability to obtain magnetic information. Here, we investigate the effect of an attached magnet on the ability to derive directional information from a radical-pair based compass mechanism. We outline in some detail the geometrical symmetries that would allow a bird to identify magnetic directions in a radical-pair based compass. We show that the artificial field through an attached magnet will quickly disrupt the birds' ability to distinguish pole-ward from equator-ward headings, but that much stronger fields are necessary to disrupt their ability to detect the magnetic axis. Together with estimates of the functional limits of a radical-pair based compass, our calculations suggest that artificial fields of comparable size to the geomagnetic field are not generally sufficient to render a radical-pair based compass non-functional.  相似文献   

11.
To assess the relative importance of celestial and magnetic cues for orientation at dusk, Australian silvereyes, Zosterops l. lateralis, were subjected to artificial magnetic fields under the natural evening sky, beginning 30 min before sunset. Control birds tested in the local geomagnetic field preferred their normal south-southwesterly migratory direction. Birds tested in a magnetic field with north deflected counterclockwise to 240°WSW showed northeasterly tendencies from the first test onward. Birds subjected to a corresponding clockwise deflection to 120°ESE, in contrast, first showed southerly directions, but from the 7th test onward shifted towards the northwest. Hence, both experimental groups followed the shift in magnetic north, one immediately, the other after a delay. When the birds were later tested in a vertical magnetic field without directional information, the two experimental groups continued in the direction they had preferred in the artificial magnetic fields, presumably by celestial cues alone. This indicates that they had not simply ignored celestial cues, but had recalibrated them according to the altered magnetic fields. The reasons for the initial difference between the two experimental groups remain unclear. Delayed responses to deflections of magnetic north have also been observed in previous studies. They appear to be the main reason why studies that expose birds only once to a cue-conflict situation often seem to indicate a dominance of celestial cues, whereas studies exposing the birds repeatedly usually indicate a dominance of magnetic cues. Accepted: 17 September 1997  相似文献   

12.
SPRING MIGRATION OVER PUERTO RICO AND THE WESTERN ATLANTIC, A RADAR STUDY   总被引:1,自引:0,他引:1  
W. John  Richardson 《Ibis》1974,116(2):172-193
Migration over Puerto Rico was recorded by time-lapse filming of the display of a long-range surveillance radar on 40 days and 37 nights in the period 2 March-29 May 1971. Moderate density movements occurred every night; low density movements occurred on most days. Many birds, primarily passerines, took off from Puerto Rico each evening at 20–45 minutes after sunset.
Almost all birds flew to the west, NW or north. Birds were seen approaching from the direction of the Windward Islands and Venezuela, over Puerto Rico, and departing towards the Bahamas and eastern coast of the U.S. Uni- and multivariate analyses showed that the number of birds departing W-N each evening was positively correlated with following winds.
There is less night-to-night variation in the amount of migration at Puerto Rico than in eastern North America. However, this is apparently the result of less variable weather in the tropics, not the result of any lesser degree of meteorological selectivity by the migrants.
The tracks of the birds were correlated with wind direction. Birds moved WNW-NW with NE side winds but NW-NNW with SE following winds. The tracks were rarely exactly downwind. The variance amongst the directions of individual birds at any given time was usually small and not correlated with cloud cover or magnetic disturbances. The estimated headings of the birds varied from day to day in a pattern suggesting adjustment of headings to compensate at least partially for lateral wind drift.
In autumn many birds approach Puerto Rico from the north or even east of north; in spring few birds moved in the opposite directions. This difference in routes takes advantage of prevailing wind patterns.  相似文献   

13.
Dealing effectively with space to find important resources in a natural environment is a fundamental ability necessary for survival. Evidence has already been provided that wild gray mouse lemurs revisit stationary feeding sites regularly. In this study, we explore to what extent two sympatric mouse lemur species, Microcebus murinus and M. ravelobensis, revisited artificial feeding sites during a period of food scarcity. As the tested populations are marked with individual transponders, we built up artificial feeding platforms equipped with a transponder reader at nine different locations where mouse lemurs had been previously caught. We baited them with a liquid reward and recorded the visitors' ID, the time and frequency of their visits, as well as all encounters that occurred on the platforms. Only mouse lemurs visited platforms and a total of sixteen individuals across both species were identified. Mouse lemurs visited a platform with a frequency of 2.02 (+/-0.95, range: 1-3.4) times in a night and they revisited it on several consecutive nights following their first visit (percentage of revisits 90.6%+/-11.7, range: 73.3-100%). First visits on a platform occurred on average 44 min (+/-35; range: 13-131) after sunset. We identified encounters between mouse lemurs on platforms: all of them were agonistic and within a species. Within a dyad, chasers were significantly heavier than chasees (N=7 dyads). Our design of platform experiments offers the advantage of observing wild individually known small primates in their natural environment and of setting up controlled experiments to gain insight into their sensory and cognitive abilities.  相似文献   

14.
Natural resource extraction can represent a major human modification to the landscape. Habitat reclamation is becoming an increasingly important strategy for abating the loss of biodiversity associated with these developments; however, the demographic and genetic consequences of colonizing artificial habitat remain unknown in many species. Here, we investigated the genetic consequences of landscape modifications for the American pika (Ochotona princeps) relative to two major developments in British Columbia, Canada: a large open-pit copper mine (Highland Valley Copper) under partial reclamation and a bisecting major highway (97C). We assessed microsatellite genotypic data for 109 individuals across 15 sites located either within the mine on artificial habitat or on adjacent natural habitat both north and south of the highway. There were no significant differences in levels of heterozygosity, allelic richness or inbreeding between natural (n?=?7) and artificial sites (n?=?8). However, pikas residing on artificial habitat exhibited significantly higher relatedness estimates. Bayesian clustering analyses revealed two distinct genetic units corresponding to north and south of the highway, with further substructure detected in the south. Likewise, high genetic friction was detected in the central region of the area, largely corresponding to the highway and modified landscape associated with the mine. At a finer scale, pairwise estimates of differentiation and migration rates suggest little gene flow may be occurring among sites across the sampling area, with some evidence for directional migration from artificial to natural sites. Overall, artificial habitat has been successful in promoting occupancy for American pikas, however, barriers to gene flow likely associated with resource extraction and road construction limit connectivity across the landscape.  相似文献   

15.
Magnetic compass orientation was first discovered for migrating/homing birds in which all individuals of a population or species prefer a predictable magnetic direction during a particular migratory situation. If all other sensory cues are absent, the Earth’s magnetic field may serve as a reference for other orientation mechanisms. It will be demonstrated that alpine newts (Triturus alpestris, Salamandridae) spontaneously align according to the natural or the deviated magnetic field lines of the Earth. They are able to do this in the dark and by apparently seeking to maintain a specific angle with respect to the magnetic field vector. When the horizontal component of the magnetic vector was eliminated, animals became disoriented, and orientation became random. We infer that the animals observed had learned to prefer a particular magnetic direction following environmental/geographical cues. Alternatively, the magnetic directional alignments are innate as, e.g. in migrating birds, but these may be modified/altered according to season, age, hormonal status, and environmental factors such as “landmarks”, light-, sound-, or olfactory cues. Numerous observations of the aligning showed that the preference for a certain magnetic compass direction/axis was not only individual but also specific for the population-subgroups tested. Specimens roughly preferred magnetic directions close to east or west. However, the larvae were able to learn to align to obviously attractive hiding spots (tubes) that were provided in a direction that deviated with respect to the first magnetic preference. The new conditioned alignments were, again, referred to magnetically by the animals and remained stable, even if the hiding tubes were absent. Animals preferred that direction until, eventually, a new directional cue became attractive.  相似文献   

16.
We used simulated magnetic displacements to test orientation preferences of juvenile steelhead trout (Oncorhynchus mykiss) exposed to magnetic fields existing at the northernmost and southernmost boundaries of their oceanic range. Fish reared in natural magnetic conditions distinguished between these two fields by orienting in opposite directions, with headings that would lead fish towards marine foraging grounds. However, fish reared in a spatially distorted magnetic field failed to distinguish between the experimental fields and were randomly oriented. The non-uniform field in which fish were reared is probably typical of fields that many hatchery fish encounter due to magnetic distortions associated with the infrastructure of aquaculture. Given that the reduced navigational abilities we observed could negatively influence marine survival, homing ability and hatchery efficiency, we recommend further study on the implications of rearing salmonids in unnatural magnetic fields.  相似文献   

17.
To test for the hypothesis that Ctenomys talarum can use the earth's magnetic field for spatial orientation, we carried out field and laboratory experiments to analyse if C. talarum burrows present any geomagnetic orientation in their natural habitat, if C. talarum show any spontaneous directional preference when starting to excavate their burrows and if this subterranean rodent is capable to use the earth's magnetic field to orient towards a goal in a complex maze. No correlation between the burrowing direction and the earth's magnetic field was found. We could not find any evidence for any spontaneous directional preference when starting to excavate the burrows in C. talarum. The change of the horizontal vector of the geomagnetic field did not affect the ability of this rodent to orient towards a goal in an artificial labyrinth. Explanations for these results and other possible mechanisms of orientation that could be used by C. talarum are discussed.  相似文献   

18.
Artificial reefs are used by many fisheries managers as a tool to mitigate the impact of fisheries on coastal fish communities by providing new habitat for many exploited fish species. However, the comparison between the behavior of wild fish inhabiting either natural or artificial habitats has received less attention. Thus the spatio-temporal patterns of fish that establish their home range in one habitat or the other and their consequences of intra-population differentiation on life-history remain largely unexplored. We hypothesize that individuals with a preferred habitat (i.e. natural vs. artificial) can behave differently in terms of habitat use, with important consequences on population dynamics (e.g. life-history, mortality, and reproductive success). Therefore, using biotelemetry, 98 white seabream (Diplodus sargus) inhabiting either artificial or natural habitats were tagged and their behavior was monitored for up to eight months. Most white seabreams were highly resident either on natural or artificial reefs, with a preference for the shallow artificial reef subsets. Connectivity between artificial and natural reefs was limited for resident individuals due to great inter-habitat distances. The temporal behavioral patterns of white seabreams differed between artificial and natural reefs. Artificial-reef resident fish had a predominantly nocturnal diel pattern, whereas natural-reef resident fish showed a diurnal diel pattern. Differences in diel behavioral patterns of white seabream inhabiting artificial and natural reefs could be the expression of realized individual specialization resulting from differences in habitat configuration and resource availability between these two habitats. Artificial reefs have the potential to modify not only seascape connectivity but also the individual behavioral patterns of fishes. Future management plans of coastal areas and fisheries resources, including artificial reef implementation, should therefore consider the potential effect of habitat modification on fish behavior, which could have key implications on fish dynamics.  相似文献   

19.
Orientation of birds in total darkness   总被引:1,自引:0,他引:1  
Magnetic compass orientation of migratory birds is known to be light dependent, and radical-pair processes have been identified as the underlying mechanism. Here we report for the first time results of tests with European robins, Erithacus rubecula, in total darkness and, as a control, under 565 nm green light. Under green light, the robins oriented in their normal migratory direction, with southerly headings in autumn and northerly headings in spring. By contrast, in darkness they significantly preferred westerly directions in spring as well as autumn. This failure to show the normal seasonal change characterizes the orientation in total darkness as a "fixed direction" response. Tests in magnetic fields with the vertical or the horizontal component inverted showed that the preferred direction depended on the magnetic field but did not involve the avian inclination compass. A high-frequency field of 1.315 MHz did not affect the behavior, whereas local anesthesia of the upper beak resulted in disorientation. The behavior in darkness is thus fundamentally different from normal compass orientation and relies on another source of magnetic information: It does not involve the radical-pair mechanism but rather originates in the iron-containing receptors in the upper beak.  相似文献   

20.
The migratory orientation of juvenile white-crowned sparrows, Zonotrichia leucophrys gambelli, was investigated by orientation cage experiments in manipulated magnetic fields performed during the evening twilight period in northwestern Canada in autumn. We did the experiments under natural clear skies in three magnetic treatments: (1) in the local geomagnetic field; (2) in a deflected magnetic field (mN shifted −90°); and (3) after exposure to a deflected magnetic field (mN −90°) for 1 h before the cage experiment performed in the local geomagnetic field at dusk. Subjects showed a mean orientation towards geographical east in the local geomagnetic field, north of the expected migratory direction towards southeast. The sparrows responded consistently to the shifted magnetic field, demonstrating the use of a magnetic compass during their first autumn migration. Birds exposed to a cue conflict for 1 h on the same day before the experiment, and tested in the local geomagnetic field at sunset, showed the same northerly orientation as birds exposed to a shifted magnetic field during the experiment. This result indicates that information transfer occurred between magnetic and celestial cues. Thus, the birds' orientation shifted relative to available sunset and geomagnetic cues during the experimental hour. The mean orientation of birds exposed to deflected magnetic fields prior to and during testing was recorded up to two more times in the local geomagnetic field under natural clear and overcast skies before release, resulting in scattered mean orientations.Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号