首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
噬菌体与细菌是自然界中存在最广泛的两类微生物,两者在群体水平、个体水平以及分子水平上均存在复杂的相互作用关系.细菌能够影响溶原性噬菌体的溶原-裂解决策,而被噬菌体感染的细菌基因表达谱也会受到噬菌体影响,使宿主菌的代谢、应激、抵抗力、毒性等多种性状发生改变.现从细菌和噬菌体两者的角度,分别综述细菌抵抗噬菌体感染以及噬菌体...  相似文献   

2.
摘要:目的 通过分离鉴定鲍曼不动杆菌噬菌体并进行遗传信息分析,为今后噬菌体用于治疗鲍曼不动杆菌引起的感染提供依据。方法 以鲍曼不动杆菌临床分离株为宿主菌,从医院污水中分离鲍曼不动杆菌噬菌体并进行纯化、电镜观察形态特征、提取噬菌体DNA,进行全基因组测序,分析全基因组的结构特征,比较基因组分析其进化关系。结果 分离到鲍曼不动杆菌裂解性噬菌体LZ35,电镜观察显示,该噬菌体属于有尾噬菌体目肌尾病毒科。基因组全长44 885 bp,G+C含量为37.95%,含有83个开放阅读框,其中22个编码序列可预测其功能,61个编码序列为未知基因。噬菌体LZ35的基因组与鲍曼不动杆菌噬菌体IME-AB2和YMC-13-01-C62具有很高的同源性(分别为97%和99%),与鲍曼不动杆菌噬菌体YMC11/12/R1215的进化关系最近。结论 以鲍曼不动杆菌临床分离株为宿主菌,分离到鲍曼不动杆菌裂解性噬菌体LZ35,明确了其形态和基因组特征,为防治噬菌体疗法奠定基础。  相似文献   

3.
噬菌体又称细菌病毒,是公认最丰富的微生物,也是最多样性的,这种多样性是适应所面对选择性压力例如普遍存在宿主菌的噬菌体抗性机制。噬菌体通过6步(吸附、注入、复制、转录翻译、组装和释放)侵入细菌并使之裂解,但是当噬菌体感染细菌,就会面临细菌抗噬菌体的机制,宿主菌能够进化出多种抗噬菌体的机制来避免噬菌体的侵染和裂解。本文就对宿主菌抗噬菌体各种机制作一综述。  相似文献   

4.
溶原性     
大多数噬菌体是烈性的(如T4、T7、φ×174等),即它们在生长循环结束时杀死细胞。不过有许多噬菌体,能以另一种方式和寄主相互作用:噬菌体和寄主一起增殖,这样的关系就叫做溶原性。在溶原性细胞中的噬菌体叫做前噬菌体。一、溶原性菌株的性质温和噬菌体感染一个敏感细菌菌株时,可根据各  相似文献   

5.
陈学梅  魏云林  季秀玲 《遗传》2021,(3):240-248
噬菌体是地球上最多的生物实体,一直被认为是细菌的天敌.然而随着基因组学和分子生物学等技术的快速发展,人们发现噬菌体与宿主之间存在微妙而复杂的关系.前噬菌体是指溶原性细菌内存在的整套噬菌体DNA基因组,广泛分布在细菌基因组中,对调节细菌宿主生理具有重要作用,如参与调节宿主的毒力、影响生物膜形成、赋予宿主免疫力等.有趣的是...  相似文献   

6.
噬菌体内溶素的酶学特性及其应用前景   总被引:2,自引:0,他引:2  
噬菌体内溶素是噬菌体在入侵宿主菌及侵染后期释放过程中合成的一类酶蛋白,该蛋白质能够破坏宿主细胞壁肽聚糖层。噬菌体编码的内溶素有四种类型:葡糖苷酶、酰胺酶、肽链内切酶和转糖基酶。大部分噬菌体内溶素由于缺少信号肽无法分泌表达,通常需要另外一种噬菌体编码的穴蛋白(holin)破坏细胞膜,然后才能够进入到细胞周间质裂解细菌细胞壁。大部分噬菌体内溶素可以特异地作用于自身宿主菌,同时也可以利用基因工程手段有目的地改造成功能特异的酶蛋白,因此可以用来作为生物制剂预防及控制微生物感染。  相似文献   

7.
【目的】枯草芽孢杆菌(Bacillus subtilis)是在自然界中广泛存在的革兰氏阳性菌,其抗逆性极强,能抑制大多数有害菌的繁殖,是常用的产酶菌,用其生产的蛋白酶、淀粉酶占全球工业酶产量的50%。原噬菌体(prophage)整合在宿主基因组中,可为宿主提供基因和生物学功能,非常具有研究价值。以往,有关B. subtilis原噬菌体的报道主要集中于缺陷型原噬菌体(defective prophage),本研究对一株非缺陷型活性原噬菌体(active prophage)的基因组进行解析,以扩充对非缺陷型原噬菌体的认知。【方法】使用丝裂霉素C从枯草芽孢杆菌中诱导一株噬菌体,命名为Bacillus phage Bsu-yong1(简称Bsu-yong1)。对Bsu-yong1进行负染、透射电镜(transmission electron microscopy,TEM)观察,用Illumina MiSeq测定其基因组序列、综合运用生物信息学工具对其进行基因功能注释和系统进化分析。【结果】Bsu-yong1与PBSX类缺陷型原噬菌体在形态上相似,但Bsu-yong1具有完整的噬菌体基因组,这与缺陷型原噬菌体不同,后者在包装过程中不能正确包裹自身的基因组,而是随机包裹一段宿主染色体。Bsu-yong1基因组全长为43 590 bp,G+C含量为41%,含有62个开放阅读框(open reading frame,ORF),呈模块化分布。Bsu-yong1拥有基因编码T7SS效应器LXG多态性毒素(T7SS effector LXG polymorphic toxin)、ImmA/IrrE蛋白和SMI1/KNR4蛋白。前二者为细菌毒素(toxin),后者为抗毒素(antitoxin),toxin-antitoxin是细菌免疫系统重要成员,参与菌间竞争与环境适应。此前,尚未有编码LXG polymorphic toxin的基因在噬菌体中被发现和报道。在基于全基因组比对构建的蛋白谱进化树(proteomic tree)中,Bsu-yong1与噬菌体sv105、rho14、vB_BteM-A9Y聚集形成一个独立的进化支(clade),基因组比对显示它们基因组的复制与调控模块具有高度保守性,它们共享29个核心基因(core gene),均具有PBSX样形态特征。Bsu-yong1与其他噬菌体的进化距离较远。将Bsu-yong1与所有噬菌体进行比对,得到的成对序列比较(pairwise sequence comparison,PASC)最大值为46.72%,小于属边界值(70%)。【结论】vB_Bsu-yong1在有尾纲中代表一个新的未知的属;建议构建一个新的科(family),该科由Bsu-yong1与噬菌体sv105、rho14、vB_BteM-A9Y组成。vB_Bsu-yong携带免疫相关基因,它可能有利于宿主在菌间竞争中获胜和适应环境。本研究丰富了噬菌体基因数据库,拓展了对芽孢杆菌活性原噬菌体的认知。  相似文献   

8.
[背景]噬菌体具有特定的杀菌能力,对生态和细菌的进化具有重要影响。近年来由于多重耐药细菌的全球出现,噬菌体疗法逐渐引起了人们的关注。[目的]对一株新型裂解K63荚膜型肺炎克雷伯菌的噬菌体vB_KpnP_IME308进行生物学特性研究、测序和比较基因组学的分析。[方法]以一株从临床分离到的肺炎克雷伯菌为宿主菌分离噬菌体,应用双层平板法进行噬菌体最佳感染复数(optimal multiplicity of infection)、一步生长曲线(one-step growth curve)、温度以及pH敏感性实验测定,纯化噬菌体并通过透射电镜观察噬菌体形态;应用标准的苯酚-氯仿提取方案提取噬菌体全基因组,使用Illumina MiSeq测序平台进行噬菌体全基因组测序,测序后对噬菌体全基因组序列进行组装、注释、进化和比较基因组学分析。[结果]分离到一株新型的肺炎克雷伯菌噬菌体,命名为vB_KpnP_IME308;其最佳感染复数为0.001,一步生长曲线结果显示,其感染宿主菌的潜伏期约为20 min,裂解期约为80 min,平均裂解量330PFU/cell;噬菌体vB_KpnP_IME308在4-50℃和pH 5.0-10.0范围内稳定;电镜观察该噬菌体属于短尾噬菌体科(Podoviridae)。基因组测序结果表明,噬菌体基因组全长为43 091bp,(G+C)mol%含量为53.9%,(A+T)mol%含量为46.1%。BLASTn比对结果表明,该噬菌体与目前已知噬菌体基因组仅84%区域有相似性。噬菌体进化树结果表明该噬菌体属于Autographivirinae亚科的Drulisvirus属的成员。[结论]从医院污水中分离鉴定了一株新型的肺炎克雷伯菌噬菌体,表征并分析了噬菌体全基因组序列,这些结果均表明该噬菌体具有开发为抗肺炎克雷伯菌制剂的潜力,为噬菌体治疗多重耐药细菌感染奠定了基础。  相似文献   

9.
检测噬菌体DNA法鉴别细菌的溶原性   总被引:1,自引:0,他引:1  
根据前噬菌体的可诱导性,将细菌培养物经丝裂霉素C诱导,诱导液滤过除菌,经核酸酶处理和聚乙二醇(PEG 6000)浓缩,再用苯酚进行抽提。通过检测抽提物中有无DNA,以确定菌株的溶原性。实验证明从溶原菌诱导液中可提取DNA,同时表明该DNA确为溶原菌诱导出的噬菌体DNA,而非溶原性菌以同样方法不能取得DNAo用此方法,可以作为鉴别细菌溶原性的一个手段。  相似文献   

10.
溶原性感染作为浮游病毒生态学效应表达方式之一,常以24 h化学诱导得到的溶原性宿主可诱导率来量化。为了获得适合淡水环境的溶原性宿主可诱导率研究方法,本研究采集6个淡水湖泊水样,对每个水样采用直接法、滤膜法、滤膜振荡法和直接振荡法4种诱导培养方法,通过宿主诱导致死率计算6个淡水湖泊浮游细菌和浮游植物溶原诱导率。结果表明:无论是浮游细菌还是浮游植物,直接法获得的诱导结果普遍高于其他方法,表明游离病毒的裂解性感染能够显著影响溶原诱导率的测定结果;直接振荡法获得的6个湖泊溶原诱导率与滤膜法及滤膜振荡法获得结果间均无显著差异,说明实验中振荡培养能有效抑制裂解性病毒对宿主的裂解性感染。本研究通过直接诱导结合振荡培养能够获得与滤膜法一致的诱导效果,但相比于滤膜法,直接振荡法实验过程更加简单,是一种更为高效的测定方法。  相似文献   

11.
An individual-based model (IbM) for bacterial adaptation and evolution, COSMIC-Rules, has been employed to simulate interactions of virtual temperate bacteriophages (phages) and their bacterial hosts. Outcomes of infection mimic those of a phage such as lambda, which can enter either the lytic or lysogenic cycle, depending on the nutritional status of the host. Infection of different hosts possessing differing restriction and modification systems is also simulated. Phages restricted upon infection of one restricting host can be adapted (by host-controlled modification of the phage genome) and subsequently propagate with full efficiency on this host. However, such ability is lost if the progeny phages are passaged through a new host with a different restriction and modification system before attempted re-infection of the original restrictive host. The simulations show that adaptation and re-adaptation to a particular host-controlled restriction and modification system result in lower efficiency and delayed lysis of bacterial cells compared with infection of non-restricting host bacteria.  相似文献   

12.
In the oceans, viruses that infect bacteria (phages) influence a variety of microbially mediated processes that drive global biogeochemical cycles. The nature of their influence is dependent upon infection mode, be it lytic or lysogenic. Temperate phages are predicted to be prevalent in marine systems where they are expected to execute both types of infection modes. Understanding the range and outcomes of temperate phage–host interactions is fundamental for evaluating their ecological impact. Here, we (i) review phage-mediated rewiring of host metabolism, with a focus on marine systems, (ii) consider the range and nature of temperate phage–host interactions, and (iii) draw on studies of cultivated model systems to examine the consequences of lysogeny among several dominant marine bacterial lineages. We also readdress the prevalence of lysogeny among marine bacteria by probing a collection of 1239 publicly available bacterial genomes, representing cultured and uncultivated strains, for evidence of complete prophages. Our conservative analysis, anticipated to underestimate true prevalence, predicts 18% of the genomes examined contain at least one prophage, the majority (97%) were found within genomes of cultured isolates. These results highlight the need for cultivation of additional model systems to better capture the diversity of temperate phage–host interactions in the oceans.  相似文献   

13.
A series of mutants derived from the temperate corynebacteriophages beta(tox+), gamma(tox-), and L(tox+) was isolated and characterized. In three-factor crosses between mutant beta phages the relative map order of the genetic markers determining extended host ranges (h and h') and loss of ability to lysogenize (c) was found to be h--c--h'. Recombination between markers was observed in matings between phage beta and the heteroimmune corynebacteriophages gamma and L. In such matings between heteroimmune phages the c markers of phages beta and gamma failed to segregate from the imm markers which determine the specificity of lysogenic immunity in these phages. The factor which directs the synthesis of diphtherial toxin during infection of appropriate corynebacterial hosts by toxinogenic corynebacteriophages is designated tox(+). It was possible to show that the tox(+) determinant of phage beta behaves as a single genetic element which occupies a position between the loci h and imm on the genetic map of this phage. Genetic recombination between mutants of phage beta occurred at very low frequencies in biparental matings performed by mixed infection of Corynebacterium diphtheriae C7(s)(-)(tox-). Considerably higher recombination frequencies were observed when lysogenic bacterial strains carrying one parental phage as prophage were induced by ultraviolet irradiation and then superinfected by the second parental phage. Maximal stimulation of genetic recombination between mutant beta phages was detected when superinfection followed ultraviolet irradiation of the lysogenic cells within a limited period of time. In matings between phages with incomplete genetic homology, the stimulation of recombination by ultraviolet radiation was much less effective.  相似文献   

14.
Phage as agents of lateral gene transfer   总被引:10,自引:0,他引:10  
When establishing lysogeny, temperate phages integrate their genome as a prophage into the bacterial chromosome. Prophages thus constitute in many bacteria a substantial part of laterally acquired DNA. Some prophages contribute lysogenic conversion genes that are of selective advantage to the bacterial host. Occasionally, phages are also involved in the lateral transfer of other mobile DNA elements or bacterial DNA. Recent advances in the field of genomics have revealed a major impact by phages on bacterial chromosome evolution.  相似文献   

15.
Phage-host interactions in soil   总被引:3,自引:0,他引:3  
Abstract Phages are abundant and ubiquitous in nature, and are therefore important components of microbial communities. They can impact on host populations in several ways, including predation and alteration of host phenotype by genetic interactions. The dynamic survival of phage populations in soil requires infective interactions with host populations which must be undergoing growth. Hence survival is limited by the activity of soil bacteria, and phage populations must adopt strategies to overcome periods of inactivity. One of the most effective strategies is the lysogenic cycle of temperate phages. It is argued here that lysogeny in soil has a distinct advantage over virulence for phage and host survival, as opposed to aquatic ecosystems where virulence seems a more successful strategy for phage populations.  相似文献   

16.
A large number of strains of Oenococcus oeni (formerly Leuconostoc oenos) that had been isolated from wines were checked for lysogeny with mitomycin C as inducer. As a result of this test, 45% of the strains proved to be lysogenic, suggesting that lysogeny is widespread among bacteria isolated from wines during malolactic fermentation. The sensitivity of bacteria to phages was very different, depending on the strain. All the lysogenic strains were resistant to infection by the temperate phage they released. Some phages infected none of the strains. Phages of Oenoc. oeni had a classical morphology, an isometric head, and a long striated tail. With the broadest host strain as an indicator, phages were detected in wines after malolactic fermentation. Received: 28 November 1997 / Accepted: 5 January 1998  相似文献   

17.
Temperate phages are viruses of bacteria that can establish two types of infection: a lysogenic infection in which the virus replicates with the host cell without producing virions, and a lytic infection where the host cell is eventually destroyed, and new virions are released. While both lytic and lysogenic infections are routinely observed in the environment, the ecological and evolutionary processes regulating these viral dynamics are still not well understood, especially for uncultivated virus-host pairs. Here, we characterized the long-term dynamics of uncultivated viruses infecting green sulfur bacteria (GSB) in a model freshwater lake (Trout Bog Lake, TBL). As no GSB virus has been formally described yet, we first used two complementary approaches to identify new GSB viruses from TBL; one in vitro based on flow cytometry cell sorting, the other in silico based on CRISPR spacer sequences. We then took advantage of existing TBL metagenomes covering the 2005–2018 period to examine the interactions between GSB and their viruses across years and seasons. From our data, GSB populations in TBL were constantly associated with at least 2-8 viruses each, including both lytic and temperate phages. The dominant GSB population in particular was consistently associated with two prophages with a nearly 100% infection rate for >10 years. We illustrate with a theoretical model that such an interaction can be stable given a low, but persistent, level of prophage induction in low-diversity host populations. Overall, our data suggest that lytic and lysogenic viruses can readily co-infect the same host population, and that host strain-level diversity might be an important factor controlling virus-host dynamics including lytic/lysogeny switch.Subject terms: Bacteriophages, Metagenomics  相似文献   

18.
Wild-type bacteriophage phie and IS (interference-sensitive) mutants of the related phage SP82G did not productively infect strains of Bacillus subtilis that were lysogenic for temperate phage SPO2. In these abortive infections, the sensitive phages adsorbed to and penetrated the nonpermissive host, phage-directed macromolecular syntheses were initiated, but both viral and bacterial nucleic acid production abruptly stopped about 15 min after addition of the phages. The cessation of RNA and DNA synthesis was preceded or coincident with a reduction in oxygen utilization by the infected cultures. Genetic studies of both phie and SP82G suggest sensitivity to SPO2-mediated abortive infection was controlled by a single gene. A mutant of SPO2, SPO2ehp4-, lysogens of which no longer interfere with the development of SP82GIs, was also isolated. The discovery of this ehp- variant suggests the normal SPO2 prophage synthesized a substance that alters cell physiology in some manner detrimental to SP82GIs development. Since SPO2ehp4- grew on and lysogenized bacteria sensitive to wild-type SPO2, the product of the eph gene was apparently not an essential function of this temperate phage.Overall, these observations exhibit remarkable similarities to the inhibition of T4rII mutants by the product of the rex gene of phage lambda.  相似文献   

19.
The population biology of bacterial viruses: why be temperate   总被引:7,自引:0,他引:7  
A model of the interactions between populations of temperate and virulent bacteriophage with sensitive, lysogenic, and resistant bacteria is presented. In the analysis of the properties of this model, particular consideration is given to the conditions under which temperate bacteriophage can become established and will be maintained in bacterial populations. The effects of the presence of resistant bacteria and virulent phage on these "existence" conditions for temperate viruses are considered. It is demonstrated that under broad conditions temperate phage will be maintained in bacterial populations and will coexist with virulent phage. Extrapolating from this formal consideration of the population biology of temperate bacteriophage, a number of hypotheses for the conditions under which temperate, rather than virulent, modes of phage reproduction are to be anticipated and the nature of the selective pressures leading to the evolution and persistence of this "benign" type of bacterial virus are reviewed and critically evaluated. Two hypotheses for the "advantages of temperance" are championed: (1) As a consequence of the allelopathic effects of diffusing phage, in physically structured habitats, lysogenic colonies are able to sequester resources and, in that way, have an advantage when competing with sensitive nonlysogens. (2) Lysogeny is an adaptation for phage to maintain their populations in "hard times," when the host bacterial density oscillates below that necessary for phage to be maintained by lytic infection alone.  相似文献   

20.
细菌常受到数量众多的噬菌体感染,宿主细菌在和噬菌体竞赛中进化出多样化的分子策略,流产感染(abortive infection,Abi)是其中之一。毒素-抗毒素系统(toxin-antitoxin system,TA)会在细菌受到压力胁迫时表达并介导细菌的低代谢甚至休眠,还能直接减少子代噬菌体形成。此外,部分毒素序列和结构与Cas蛋白高度同源,噬菌体甚至会编码抗毒素类似物来阻遏对应毒素的活性。这表明流产感染中细菌死亡过程导致的噬菌体感染失败与TA功能高度重合,TA可能是噬菌体侵染宿主的主要阻力和防御力量之一。文中基于TA系统的分类和功能,对参与噬菌体流产感染的TA系统进行了综述,并预测具有流产功能的TA系统和其在抗生素开发和疾病治疗中的应用前景。这有助于认识细菌-噬菌体相互作用,并指导噬菌体治疗和合成生物学。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号