首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 966 毫秒
1.
结核病仍旧威胁着全球人类健康,中国是结核病高发国家之一,寻求新的药物和疫苗势在必行。随着对噬菌体研究的深入,分枝杆菌噬菌体成为结核病新型药物发现和药敏实验的研究热点之一。噬菌体进入宿主菌体内,以裂解和溶源两种途径进入循环。以分枝杆菌的溶源性噬菌体为例,综述了分枝杆菌噬菌体整合和裂解分子机理。分枝杆菌溶源性噬菌体的整合需噬菌体基因组的附着位点attachment site(attP),宿主菌分枝杆菌基因组的附着位点attachment site(attB),整合酶integrase(Int)和整合宿主因子integration host factor(mIHF)。部分溶源性噬菌体如Ms6进入裂解循环,复制转录组装成新的子代噬菌体,在裂解素(Lysin)和穿孔素(Holin)的协同作用下裂解宿主菌,释放子代噬菌体。目前国内未见对分枝杆菌噬菌体的研究报道。研究分枝杆菌噬菌体整合及裂解机理对结核病治疗新药开发有一定的启示。  相似文献   

2.
噬菌体又称细菌病毒,是公认最丰富的微生物,也是最多样性的,这种多样性是适应所面对选择性压力例如普遍存在宿主菌的噬菌体抗性机制。噬菌体通过6步(吸附、注入、复制、转录翻译、组装和释放)侵入细菌并使之裂解,但是当噬菌体感染细菌,就会面临细菌抗噬菌体的机制,宿主菌能够进化出多种抗噬菌体的机制来避免噬菌体的侵染和裂解。本文就对宿主菌抗噬菌体各种机制作一综述。  相似文献   

3.
吴根福   《微生物学通报》2001,28(2):99-100
溶源性细菌(Lysosen或lysogenic bacteria),简称溶源菌,是指染色质体上整合有前噬菌体并能正常生长繁殖而不被裂解的细菌。它具有以下几个显著的特性:(1)自发裂解;(2)诱发裂解;(3)复愈;(4)免疫性;(5)溶源转变。在这5大特性中,前三者很容易理解,而对免疫性和溶源转变可能有点困难,甚至一些教科书中也会有不同的看法。现将我们在教学中碰到的一些问题及我们的观点与大家交流,不当之处,望能批评指正。1关于免疫性 有些专家认为:任何溶源菌对已感染的噬菌体以外的其它噬菌体即超感染噬…  相似文献   

4.
目的 通过分离鉴定鲍曼不动杆菌噬菌体并进行遗传信息分析,为今后噬菌体用于治疗鲍曼不动杆菌引起的感染提供依据。方法 以鲍曼不动杆菌临床分离株为宿主菌,从医院污水中分离鲍曼不动杆菌噬菌体并进行纯化、电镜观察形态特征、提取噬菌体DNA,进行全基因组测序,分析全基因组的结构特征,比较基因组分析其进化关系。结果 分离到鲍曼不动杆菌裂解性噬菌体LZ35,电镜观察显示,该噬菌体属于有尾噬菌体目肌尾病毒科。基因组全长44 885 bp,G+C含量为37.95%,含有83个开放阅读框,其中22个编码序列可预测其功能,61个编码序列为未知基因。噬菌体LZ35的基因组与鲍曼不动杆菌噬菌体IME-AB2和YMC-13-01-C62具有很高的同源性(分别为97%和99%),与鲍曼不动杆菌噬菌体YMC11/12/R1215的进化关系最近。结论 以鲍曼不动杆菌临床分离株为宿主菌,分离到鲍曼不动杆菌裂解性噬菌体LZ35,明确了其形态和基因组特征,为防治噬菌体疗法奠定基础。  相似文献   

5.
细菌CRISPR-Cas 系统功能及其与噬菌体相互作用   总被引:1,自引:0,他引:1  
摘要:近来研究发现,细菌CRISPR-Cas 系统在宿主菌抵抗可移动基因元件(mobile genetic elements,MGEs)的过程中发挥重要作用。CRISPR-Cas还参与宿主菌群体行为和毒力基因调控、DNA修复和基因组进化过程。本文着重综述细菌CRISPR-Cas系统的结构、类型、作用机制及其适应性免疫之外的其他功能(如对内源性基因表达的调控、促进基因组进化、DNA修复等);概述噬菌体抵抗CRISPR-Cas系统的机制,并对噬菌体-宿主菌相互作用进行探讨和展望。  相似文献   

6.
霍乱由霍乱弧菌(Vibrio cholerae)菌株感染人体所引起,可导致重度脱水性腹泻,死亡率高.霍乱弧菌存在于水生环境中,人类因食用被污染的水或食物而受到感染,暴发流行.VPIФ/CTXФ/TCP体系是决定该菌侵染力和毒力的关键,它集中体现了有关噬菌体——噬菌体——宿主细菌多元作用,阐释其分子机制是目前十分活跃的研究领域[1,2].作为典型示例,这个体系突出了噬菌体介导的病原细菌毒力溶源转变、毒力基因水平转移和进化等同题[3],开创了在分子水平上研究流行病学、预防医学的新领域[4-6].  相似文献   

7.
[背景]噬菌体具有特定的杀菌能力,对生态和细菌的进化具有重要影响。近年来由于多重耐药细菌的全球出现,噬菌体疗法逐渐引起了人们的关注。[目的]对一株新型裂解K63荚膜型肺炎克雷伯菌的噬菌体vB_KpnP_IME308进行生物学特性研究、测序和比较基因组学的分析。[方法]以一株从临床分离到的肺炎克雷伯菌为宿主菌分离噬菌体,应用双层平板法进行噬菌体最佳感染复数(optimal multiplicity of infection)、一步生长曲线(one-step growth curve)、温度以及pH敏感性实验测定,纯化噬菌体并通过透射电镜观察噬菌体形态;应用标准的苯酚-氯仿提取方案提取噬菌体全基因组,使用Illumina MiSeq测序平台进行噬菌体全基因组测序,测序后对噬菌体全基因组序列进行组装、注释、进化和比较基因组学分析。[结果]分离到一株新型的肺炎克雷伯菌噬菌体,命名为vB_KpnP_IME308;其最佳感染复数为0.001,一步生长曲线结果显示,其感染宿主菌的潜伏期约为20 min,裂解期约为80 min,平均裂解量330PFU/cell;噬菌体vB_KpnP_IME308在4-50℃和pH 5.0-10.0范围内稳定;电镜观察该噬菌体属于短尾噬菌体科(Podoviridae)。基因组测序结果表明,噬菌体基因组全长为43 091bp,(G+C)mol%含量为53.9%,(A+T)mol%含量为46.1%。BLASTn比对结果表明,该噬菌体与目前已知噬菌体基因组仅84%区域有相似性。噬菌体进化树结果表明该噬菌体属于Autographivirinae亚科的Drulisvirus属的成员。[结论]从医院污水中分离鉴定了一株新型的肺炎克雷伯菌噬菌体,表征并分析了噬菌体全基因组序列,这些结果均表明该噬菌体具有开发为抗肺炎克雷伯菌制剂的潜力,为噬菌体治疗多重耐药细菌感染奠定了基础。  相似文献   

8.
诱导试验表明N_3质粒抑制λ溶源菌诱导处理时的裂解性发育途径,使λ噬菌体产率大大降低,仅为对照的10~(-5)—10~(-6)。感染实验表明N_3质粒主要抑制λ噬菌体的溶源性发育途径,其溶源菌形成率仅为对照的1.3—1.9%。从N_3质粒对λ噬菌体感染时与λ溶源菌诱导时的发育途径的不同作用的事实推测N_3质粒的某种产物(蛋白质)与λ噬菌体cI蛋白相作用,以障碍cI蛋白正常解离或聚合的方式而干扰其发育途径。  相似文献   

9.
【目的】本研究旨在通过驯化提高噬菌体的裂解能力并降低其宿主菌耐受性产生的速度,从而提高对重要病原菌-碳青霉烯类耐药肺炎克雷伯菌(carbapenem-resistant Klebsiella pneumoniae, CRKp)的杀菌效果。【方法】以临床CRKp菌株Kp2092为宿主菌,利用双层琼脂平板法从污水中分离噬菌体并分析其裂解谱;对其中的广谱强裂解性噬菌体通过透射电镜观察其形态特征并进行全基因组测序;通过噬菌体-宿主连续培养进行噬菌体驯化,并比较驯化前后噬菌体生物学特性的差异。【结果】分离得到的9株肺炎克雷伯菌噬菌体中,噬菌体P55anc裂解能力强且裂解谱广,透射电镜观察发现其为短尾噬菌体。P55anc基因组全长40 301 bp,包含51个编码序列,其中27个具有已知功能,主要涉及核酸代谢、噬菌体结构蛋白、DNA包装和细胞裂解等。噬菌体P55anc经9 d的驯化后,得到3株驯化噬菌体。驯化后噬菌体杀菌能力增强,主要表现为细菌生长曲线显著下降、噬菌体暴发量增多、裂解谱扩大,且宿主菌对其产生抗性的概率显著降低。与此同时,驯化后的噬菌体在热处理、紫外暴露以及血清等环境下保持较好的稳定性。【结论】利用噬菌体-宿主连续培养的方法可对噬菌体进行驯化和筛选,驯化后的噬菌体杀菌效果更强,且在不同压力处理下的稳定性良好,而细菌产生噬菌体抗性的概率也降低。  相似文献   

10.
霍乱由霍乱弧菌 (Vibriocholerae)菌株感染人体所引起 ,可导致重度脱水性腹泻 ,死亡率高。霍乱弧菌存在于水生环境中 ,人类因食用被污染的水或食物而受到感染 ,暴发流行。VPIΦ CTXΦ TCP体系是决定该菌侵染力和毒力的关键 ,它集中体现了有关噬菌体———噬菌体———宿主细菌多元作用 ,阐释其分子机制是目前十分活跃的研究领域[1,2 ] 。作为典型示例 ,这个体系突出了噬菌体介导的病原细菌毒力溶源转变、毒力基因水平转移和进化等问题[3] ,开创了在分子水平上研究流行病学、预防医学的新领域[4~ 6 ] 。1 霍乱弧菌…  相似文献   

11.
An individual-based model (IbM) for bacterial adaptation and evolution, COSMIC-Rules, has been employed to simulate interactions of virtual temperate bacteriophages (phages) and their bacterial hosts. Outcomes of infection mimic those of a phage such as lambda, which can enter either the lytic or lysogenic cycle, depending on the nutritional status of the host. Infection of different hosts possessing differing restriction and modification systems is also simulated. Phages restricted upon infection of one restricting host can be adapted (by host-controlled modification of the phage genome) and subsequently propagate with full efficiency on this host. However, such ability is lost if the progeny phages are passaged through a new host with a different restriction and modification system before attempted re-infection of the original restrictive host. The simulations show that adaptation and re-adaptation to a particular host-controlled restriction and modification system result in lower efficiency and delayed lysis of bacterial cells compared with infection of non-restricting host bacteria.  相似文献   

12.
In the oceans, viruses that infect bacteria (phages) influence a variety of microbially mediated processes that drive global biogeochemical cycles. The nature of their influence is dependent upon infection mode, be it lytic or lysogenic. Temperate phages are predicted to be prevalent in marine systems where they are expected to execute both types of infection modes. Understanding the range and outcomes of temperate phage–host interactions is fundamental for evaluating their ecological impact. Here, we (i) review phage-mediated rewiring of host metabolism, with a focus on marine systems, (ii) consider the range and nature of temperate phage–host interactions, and (iii) draw on studies of cultivated model systems to examine the consequences of lysogeny among several dominant marine bacterial lineages. We also readdress the prevalence of lysogeny among marine bacteria by probing a collection of 1239 publicly available bacterial genomes, representing cultured and uncultivated strains, for evidence of complete prophages. Our conservative analysis, anticipated to underestimate true prevalence, predicts 18% of the genomes examined contain at least one prophage, the majority (97%) were found within genomes of cultured isolates. These results highlight the need for cultivation of additional model systems to better capture the diversity of temperate phage–host interactions in the oceans.  相似文献   

13.
A series of mutants derived from the temperate corynebacteriophages beta(tox+), gamma(tox-), and L(tox+) was isolated and characterized. In three-factor crosses between mutant beta phages the relative map order of the genetic markers determining extended host ranges (h and h') and loss of ability to lysogenize (c) was found to be h--c--h'. Recombination between markers was observed in matings between phage beta and the heteroimmune corynebacteriophages gamma and L. In such matings between heteroimmune phages the c markers of phages beta and gamma failed to segregate from the imm markers which determine the specificity of lysogenic immunity in these phages. The factor which directs the synthesis of diphtherial toxin during infection of appropriate corynebacterial hosts by toxinogenic corynebacteriophages is designated tox(+). It was possible to show that the tox(+) determinant of phage beta behaves as a single genetic element which occupies a position between the loci h and imm on the genetic map of this phage. Genetic recombination between mutants of phage beta occurred at very low frequencies in biparental matings performed by mixed infection of Corynebacterium diphtheriae C7(s)(-)(tox-). Considerably higher recombination frequencies were observed when lysogenic bacterial strains carrying one parental phage as prophage were induced by ultraviolet irradiation and then superinfected by the second parental phage. Maximal stimulation of genetic recombination between mutant beta phages was detected when superinfection followed ultraviolet irradiation of the lysogenic cells within a limited period of time. In matings between phages with incomplete genetic homology, the stimulation of recombination by ultraviolet radiation was much less effective.  相似文献   

14.
Phage-host interactions in soil   总被引:3,自引:0,他引:3  
Abstract Phages are abundant and ubiquitous in nature, and are therefore important components of microbial communities. They can impact on host populations in several ways, including predation and alteration of host phenotype by genetic interactions. The dynamic survival of phage populations in soil requires infective interactions with host populations which must be undergoing growth. Hence survival is limited by the activity of soil bacteria, and phage populations must adopt strategies to overcome periods of inactivity. One of the most effective strategies is the lysogenic cycle of temperate phages. It is argued here that lysogeny in soil has a distinct advantage over virulence for phage and host survival, as opposed to aquatic ecosystems where virulence seems a more successful strategy for phage populations.  相似文献   

15.
Phage as agents of lateral gene transfer   总被引:10,自引:0,他引:10  
When establishing lysogeny, temperate phages integrate their genome as a prophage into the bacterial chromosome. Prophages thus constitute in many bacteria a substantial part of laterally acquired DNA. Some prophages contribute lysogenic conversion genes that are of selective advantage to the bacterial host. Occasionally, phages are also involved in the lateral transfer of other mobile DNA elements or bacterial DNA. Recent advances in the field of genomics have revealed a major impact by phages on bacterial chromosome evolution.  相似文献   

16.
A large number of strains of Oenococcus oeni (formerly Leuconostoc oenos) that had been isolated from wines were checked for lysogeny with mitomycin C as inducer. As a result of this test, 45% of the strains proved to be lysogenic, suggesting that lysogeny is widespread among bacteria isolated from wines during malolactic fermentation. The sensitivity of bacteria to phages was very different, depending on the strain. All the lysogenic strains were resistant to infection by the temperate phage they released. Some phages infected none of the strains. Phages of Oenoc. oeni had a classical morphology, an isometric head, and a long striated tail. With the broadest host strain as an indicator, phages were detected in wines after malolactic fermentation. Received: 28 November 1997 / Accepted: 5 January 1998  相似文献   

17.
Wild-type bacteriophage phie and IS (interference-sensitive) mutants of the related phage SP82G did not productively infect strains of Bacillus subtilis that were lysogenic for temperate phage SPO2. In these abortive infections, the sensitive phages adsorbed to and penetrated the nonpermissive host, phage-directed macromolecular syntheses were initiated, but both viral and bacterial nucleic acid production abruptly stopped about 15 min after addition of the phages. The cessation of RNA and DNA synthesis was preceded or coincident with a reduction in oxygen utilization by the infected cultures. Genetic studies of both phie and SP82G suggest sensitivity to SPO2-mediated abortive infection was controlled by a single gene. A mutant of SPO2, SPO2ehp4-, lysogens of which no longer interfere with the development of SP82GIs, was also isolated. The discovery of this ehp- variant suggests the normal SPO2 prophage synthesized a substance that alters cell physiology in some manner detrimental to SP82GIs development. Since SPO2ehp4- grew on and lysogenized bacteria sensitive to wild-type SPO2, the product of the eph gene was apparently not an essential function of this temperate phage.Overall, these observations exhibit remarkable similarities to the inhibition of T4rII mutants by the product of the rex gene of phage lambda.  相似文献   

18.
Temperate phages are viruses of bacteria that can establish two types of infection: a lysogenic infection in which the virus replicates with the host cell without producing virions, and a lytic infection where the host cell is eventually destroyed, and new virions are released. While both lytic and lysogenic infections are routinely observed in the environment, the ecological and evolutionary processes regulating these viral dynamics are still not well understood, especially for uncultivated virus-host pairs. Here, we characterized the long-term dynamics of uncultivated viruses infecting green sulfur bacteria (GSB) in a model freshwater lake (Trout Bog Lake, TBL). As no GSB virus has been formally described yet, we first used two complementary approaches to identify new GSB viruses from TBL; one in vitro based on flow cytometry cell sorting, the other in silico based on CRISPR spacer sequences. We then took advantage of existing TBL metagenomes covering the 2005–2018 period to examine the interactions between GSB and their viruses across years and seasons. From our data, GSB populations in TBL were constantly associated with at least 2-8 viruses each, including both lytic and temperate phages. The dominant GSB population in particular was consistently associated with two prophages with a nearly 100% infection rate for >10 years. We illustrate with a theoretical model that such an interaction can be stable given a low, but persistent, level of prophage induction in low-diversity host populations. Overall, our data suggest that lytic and lysogenic viruses can readily co-infect the same host population, and that host strain-level diversity might be an important factor controlling virus-host dynamics including lytic/lysogeny switch.Subject terms: Bacteriophages, Metagenomics  相似文献   

19.
细菌常受到数量众多的噬菌体感染,宿主细菌在和噬菌体竞赛中进化出多样化的分子策略,流产感染(abortive infection,Abi)是其中之一。毒素-抗毒素系统(toxin-antitoxin system,TA)会在细菌受到压力胁迫时表达并介导细菌的低代谢甚至休眠,还能直接减少子代噬菌体形成。此外,部分毒素序列和结构与Cas蛋白高度同源,噬菌体甚至会编码抗毒素类似物来阻遏对应毒素的活性。这表明流产感染中细菌死亡过程导致的噬菌体感染失败与TA功能高度重合,TA可能是噬菌体侵染宿主的主要阻力和防御力量之一。文中基于TA系统的分类和功能,对参与噬菌体流产感染的TA系统进行了综述,并预测具有流产功能的TA系统和其在抗生素开发和疾病治疗中的应用前景。这有助于认识细菌-噬菌体相互作用,并指导噬菌体治疗和合成生物学。  相似文献   

20.
The population biology of bacterial viruses: why be temperate   总被引:7,自引:0,他引:7  
A model of the interactions between populations of temperate and virulent bacteriophage with sensitive, lysogenic, and resistant bacteria is presented. In the analysis of the properties of this model, particular consideration is given to the conditions under which temperate bacteriophage can become established and will be maintained in bacterial populations. The effects of the presence of resistant bacteria and virulent phage on these "existence" conditions for temperate viruses are considered. It is demonstrated that under broad conditions temperate phage will be maintained in bacterial populations and will coexist with virulent phage. Extrapolating from this formal consideration of the population biology of temperate bacteriophage, a number of hypotheses for the conditions under which temperate, rather than virulent, modes of phage reproduction are to be anticipated and the nature of the selective pressures leading to the evolution and persistence of this "benign" type of bacterial virus are reviewed and critically evaluated. Two hypotheses for the "advantages of temperance" are championed: (1) As a consequence of the allelopathic effects of diffusing phage, in physically structured habitats, lysogenic colonies are able to sequester resources and, in that way, have an advantage when competing with sensitive nonlysogens. (2) Lysogeny is an adaptation for phage to maintain their populations in "hard times," when the host bacterial density oscillates below that necessary for phage to be maintained by lytic infection alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号