首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We studied the karyology of Bangia atropurpurea (Roth) C. Ag. collected from marine and freshwater populations from the Mediterranean region and some northeastern Atlantic localities. Gametophytic thalli had two haploid karyotypes, n = 3 and n = 4. The n = 4 karyotype was only occasionally present in the Mediterranean and was also found in one Atlantic population, confirming a previous report. We propose that the four-chromosome karyotype is an aneuploid form, n + 1. Chromosomes were frequently observed either in a parallel arrangement or in a circular configuration.  相似文献   

2.
The fine structure of released, attached, and germinating carpospores of Porphyra variegata (Kjellm.) Hus is described. Adhesive vesicles, formed during sporogenesis and discharged upon settling of the spore, produced a layer of adhesive mucilage around the spore and filled a deep imagination on the spore's ventral side. The mucilage layer was punctured by the emergence of a germ tube. Both spore and germ tube were lined by newly deposited cell wall. Germination was accompanied by vacuolation and starch mobilization. The morphological development of the sporeling was not noticeably influenced by the great variability of the timing, location, and orientation of septum formation. The attached carpospore possessed a plastid like that of gametophyte cells: stellate with one large central pyrenoid and no peripheral encircling thylakoids. Cells of mature vegetative cells of the conchocelis had plastids that were elongate and parietal and had multiple pyrenoids and encircling thylakoids. Most stages in the transition between the two forms of plastids occurred during carpospore germination.  相似文献   

3.
A complementary DNA (cDNA) clone from a Porphyra purpurea (Roth) C. Agardh sporophyte-specific subtracted cDNA library was found to encode a protein similar to serine proteases of the chymotrypsin class. The encoded protein contains a typical signal peptide and is particularly similar to chymotrypsins in the regions surrounding the active site residues and the activation site where cleavage of the propeptide occurs. In addition, the six cysteine residues characteristic of chymotrypsins are conserved. However, two of the three residues of the active site His/Asp/Ser charge relay triad have been replaced, indicating that the protein is unlikely to have peptidase activity. Northern hybridization confirmed that this cDNA is derived from an abundant, sporophyte-specific messenger RNA (mRNA). The presence of signal peptide on the encoded protein and the abundance of its mRNA suggested that this protein might be localized in the cell wall. Consequently, sporophyte cell walls were isolated and a major protein having a molecular weight similar to that estimated for the encoded protein was purified. N-terminal sequence analysis indicated that this cell wall protein is identical to that encoded by the cDNA with the amino terminus of the mature protein beginning at the activation site. This cell wall structural protein appears to have evolved from a chymotrypsin-like progenitor but has been adapted to bind cell wall proteins and/or polysaccharides rather than to cleave proteins.  相似文献   

4.
A complementary DNA(cDNA)clone from a Porphyra purpurea (Roth) C. Agardh gametophyte-specific subtracted cDNA library was found to encode a protein containing a signal peptide and four very similar regions with a high degree of amino acid sequence similarity to the cellulose-binding domains of fungal celluloses. Northern hybridization analysis indicated that the messenger RNA of this cDNA is highly abundant in the gametophyte but not detectable in the sporophyte. In vitro translation of the cDNA in the presence of canine pancreatic microsomes demonstrated that the signal peptide is capable of directing the protein into the endoplasmic reticulum where it is glycosylated. Because these observations suggested a possible role as a gametophyte-specific cell wall protein, cell wall protein, were isolated and a major protein having a molecular weight similar to that estimated for the encoded protein was purified. N-terminal sequence analysis indicated that this was the protein encoded by the cDNA. The abundance and organization of this protein suggest a role as a cell wall structural protein involved in cross-linking polysaccharides.  相似文献   

5.
The discovery in the early 1980s that meiosis occurs during germination of conchospores of Porphyra yezoensis Ueda suggested that the sexually divided fronds of Porphyra purpurea (Roth) C. Agardh might similarly originate from meiotic segregation of a pair of sex-determining alleles during early sporeling development. After establishing conditions suitable for propagating P. purpurea in culture, observations on developing sporelings demonstrated that meiosis takes place during the first two divisions of the germinating conchospores. In the first division, the spore is split into an upper and lower cell. In the second, an anticlinal division in the upper cell yields two daughter cells situated one beside the other, and a periclinal division in the bottom cell gives two cells arranged one above the other. Thus, during normal development, the first four cells of the sporeling constitute a meiotic tetrad whose cells are arranged in a characteristic fashion. Stable color mutants of P. purpurea were isolated, genetically characterized, and used as genetic markers to follow the fate of individual cells of the tetrad during subsequent frond development. Nearly the entire blade of the mature thallus is derived from the two upper cells of the tetrad, with the two lower cells mostly giving rise to the rhizoidal holdfast region. Cell lineage boundaries laid down by the segregation of color alleles at meiosis corresponded perfectly with those later defined by sexual differentiation on the same fronds, strongly supporting the hypothesis that sex determination in P. purpurea is controlled by alleles at a segregating chromosomal locus.  相似文献   

6.
Growth, blade shape and blade thickness of young gametophytes of Porphyra abbottae Krishnamurthy cultured from conchospores were determined at various combinations of temperature (8, 10, 12° C), photon flux density (17.5, 70, 140 μmol·m-?2·S?1), nutrient concentration (5, 25, 50, 100% f medium) and water motion (0, 50, 100, 150 rpm). Growth (as surface area) was light-saturated at 70 μmol· m?2· S?1, light-inhabited at 140 μmol·m?2· S?1, and nutrient-saturated an 25% f medium. Temperature had no significant effect on growth. Water motion and nutrients had an interactive effect on growth, with water motion having the greatest effect at the lowest nutrient concentrations. Water motion enhanced growth even at saturating nutrient concentrations. Blade length / width ratio was greater in low light (2.5) than in saturating light (1.9); with increasing water motion the ratio increased from 1.2 to 2.4. Blade thickness (53-88 μm) was greatest at the highest nutrient concentrations and at the lowest water motion levels. Temperature and light did not have a consistent effect on blade thickness.  相似文献   

7.
Lithium chloride facilitates the softening of cell walls resulting in a simple, quick (2 h) method for DNA extraction from the red seaweed Porphyra perforata J. Agardh. A 5-min treatment of tissues in Lid at 55°C extracts DNA that is relatively free of the viscous polysaccharides and proteins that are usually coextracted in large amounts from cell walls and cytoplasm. This protocol does not require grinding of tissues, hydroxyapatite binding, cetyl trimethyl ammonium bromide treatments, enzymatic treatments, phenol extraction, or CsCl-gradient centrifugation. The resulting DNA is of sufficient quality to be used as a template for polymerase chain reaction amplification.  相似文献   

8.
Methods were developed for the isolation of large numbers of healthy protoplasts from two species of the agarophyte Gracilaria; G. tikvahiae McLachlan and G. lemaneiformis (Bory) Weber-van Bosse. This is the first report of protoplast isolation and cell division in a commercially important, phycocolloid-producing red seaweed, as well as for a member of the Florideophycidae. The optimal enzyme composition for cell wall digestion and protoplast viability consisted of 3% Onozuka R-10, 3% Macerozyme R-10, 1% agarase and 0.5% Pectolyase Y- 23 dissolved in a 60% seawater osmoticum containing 1.0 M mannitol. The complete removal of the cell wall was confirmed by several different methods, including electron microscopic examination, and the absence of Calcofluor White (for cellulose) and TBO (for sulfated polysaccharide) staining. Spontaneous protoplast fusion was observed on several occasions. Protoplast viability was dependent upon the strain and age of the parent material, as well as the mannitol concentration of the enzyme osmoticum. Cell wall regeneration generally occurred in 2-6 days; cell division in 5-10 days. Protoplast-produced cell masses up to the 16-32 cell stage have been grown in culture. However, efforts to regenerate whole plants have been unsuccessful to date.  相似文献   

9.
The conchocelis cells of four strains of Porphyra yezoensis Udea and four other Porphyra species were cryopreserved in liquid nitrogen (LN) using a programmable freezer or a simple prefreezing system, which consisted of a styrofoam box and a deep-freezer at ?40° C. The cells differed in their freezing tolerance but survived maximally when prefrozen to ?40° C in a cryoprotective solution composed of 10% dimethylsulfoxide and 0.5 M sorbitol in 50% seawater. The cryopreservation was successfully performed by applying the simple prefreezing system as well as by a programmable freezer. Conchocelis cells thawed from the LN temperature formed colonies and retained the ability to form conchospores that grew into gametophytic thalli. This technique using a simple prefreezing system will accelerate the spread of Porphyra cryopreservation.  相似文献   

10.
A new species, Porphyra rediviva (Bangiales, Rhodophyta), is described from the northeast Pacific based on morphological, cytological, reproductive, ecological, and molecular characters. This species occurs at high intertidal levels in salt marshes along the coasts of Washington, Oregon, and northern California and exhibits a growth optimum at reduced salinity. It is further distinguished by a distinct demarcation between male and female sectors of the gametophytic thalli of epilithic specimens. The species is found most commonly in the drift or trapped in Salicornia beds, but these detached blades never have been found with sporangia or gametangia. Molecular analyses using restriction fragment length polymorphism patterns of polymerase chain reaction–amplified ribosomal DNA (rDNA) show that this salt marsh Porphyra is conspecific throughout its range and is distinct from other Pacific Porphyra species with similar reproductive patterns. Based on molecular data, P. rediviva is related most closely to P. purpurea from the North Atlantic. Fixed rDNA polymorphisms between the two taxa, however, support ecological and cytological evidence that they should be considered different species.  相似文献   

11.
The small subunit ribosomal RNA (SSU rRNA) gene was amplified from 15 species of the red alga Porphyra and digested with restriction enzymes to generate data for species identification. The subset of species selected for phylogenetic analysis was P. cuneiforms (Setchell et Hus) Krishnamurthy, P. nereocystis anderson, P. schizophylla Hollenberg et Abbott, P. thuretii Setchell et Dawson and Porphyra 1674. Bangia sp. was used as an out-group. Restriction sites were mapped and used as characters in parsimony and maximum likelihood analysis. The phylogenetic hypotheses generated were compared statistically to possible alternative phylogenies based on traditional morphological taxonomic characters. The results indicate that the current subgenera in Porphyra do not represent monophyletic groups and that traditional morphological and ecological taxonomic characters alone may not be adequate for definitive species identification and cannot be relied on as an indication of Porphyra have large insertions in the SSU gene that are apparently splicesd from the final SSU rRNA molecule. The possible character, distribution and potential significance of these putative introns are discussed.  相似文献   

12.
The cell wall of the red microalgae Porphyridium sp. (UTEX 637) comprises a complex amorphous polysaccharide (6–7 × 106 Da). The polysaccharide is made up of xylose, glucose, and galactose as the main sugars, as well as some minor sugars, protein, sulfate, and glucuronic acid, the latter two conferring a negative charge on the polysaccharide. In this study, we used synchronized cultures as one of the ways of unraveling the mechanism of biosynthesis of this complex polysaccharide by following cell-wall formation during the cell cycle. Synchronization of Porphyridium sp. was achieved with an alternating light:dark regime of 12:12 h LD and dilution of the culture at the end of the cycle. Under these conditions, cell duplication occurred between the 12th and 14th hours of the cycle. The following order of building toward formation of the final polysaccharide appeared to take place: Intermediate polysaccharides with molecular masses ranging from 0.5 × 106 to 2 × 106 Da appeared in succession during hours 2–6 of the cycle, and the full-sized polysaccharide was detected by the 8th hour. At the beginning of the cycle, xylose was the predominant sugar. Sulfur peaked at hours 2–4; glucose, galactose, and glucuronic acid at hours 8–12; and the minor sugars at hours 12–14. Upon incubation of low molecular mass polymer (0.5 × 106 Da) collected from the 4th hour with cellular crude extract from cells of the 6th hour of the cycle, two intermediates were formed (0.8 × 106 Da and 2 × 106 Da). We suggest that the 0.5 × 106 Da polymer intermediate, which is composed mainly of xylose, is the first polymer secreted into the medium, where it is further polymerized enzymatically to produce the 2 × 106 Da polymer via an intermediate 0.8 × 106 Da polymer. Later, the full-size polysaccharide is produced.  相似文献   

13.
The cell division cycle in several pelagic dinoflagellate species has been shown to be phased with the diurnal cycle, suggesting that their cell cycle may be regulated by a circadian clock. In this study, we examined the cell cycle of an epibenthic dinoflagellate, Gambierdiscus toxicus Adachi and Fukuyo (Dinophyceae), and found that cell division was similarly phased to the diurnal cycle. Cell division occurred during a 3-h window beginning 6 h after the onset of the dark phase. Cell cycle progression in higher eukaryotes is regulated by a cell cycle regulatory protein complex consisting of cyclin and the cyclin-dependent kinase CDC2. In this report, we identified a CDC2-like kinase in G. toxicus that displays activity in vitro against a known substrate of CDC2 kinase, histone H1. As in higher eukaryotes, CDC2 kinase was expressed constitutively in G. toxicus throughout the cell cycle, but it was activated only late in the dark phase, concurrent with the presence of mitotic cells. These results indicate that cell division in G. toxicus is regulated by molecular controls similar to those found in higher eukaryotes.  相似文献   

14.
Whole thallus absorptance spectra were recorded for Porphyra abbottae Krishnamurthy gametophytes grown in batch culture at combinations of temperature (8, 10, 12° C), irradiance (17.5, 70, 140 μmol photons·m?2·s?1), nutrients (f/4, f/2, f media) and water motion (0, 50, 100, 150 rpm). Light, nutrients, water motion and the interaction of nutrients with water motion all significance affected broadband (400-700 nm) absorptance and absorptance by phycoerythrin (566 nm), phycocyanin (624 nm) and chlorophyll a (680 nm). Absorptances increased in low light, low water motion and high nutrient levels. Shifts in phycoerythrin: chlorophyll a absorptance ratios closely paralleled changes of absorptance by the major pigments, whereas the phycoerythrin: phycocyanin ratio decreased only with increasing nutrient supply Absorptance ratios were significantly correlated with growth rate. Absorptance increased asymptotically with blade thickness or pigment content. Based on previously determined growth rates, nutrient saturated P. abbottae can synthesize photosynthetic pigments in excess of immediate needs. Allocation is given preferentially to the phycobiliproteins, with highest preference for phycocyanin.  相似文献   

15.
16.
The diurnal and seasonal variations in floridoside content and floridoside phosphate synthase (FPS) activity were measured in samples of Porphyra perforata J. Ag. growing in the field. Floridoside content generally increased about fourfold from early morning to the middle of the day and then dropped gradually in the afternoon and the evening. On a monthly basis, there was a steady increase in floridoside content from February to May. A similar trend in monthly increase in FPS activity was also observed from February to April. The level of FPS activity varied with the time of day. The highest activity was observed early in the morning shortly after dawn; subsequently, it decreased, reaching about 50% of the peak value late in the afternoon/evening. On a daily as well as seasonal basis, a change in FPS activity correlated with a change in floridoside content. Among environmental factors, floridoside content and FPS activity showed a positive correlation with daylength and temperature on a seasonal basis. However, on a daily basis, salinity and water temperature did not seem to affect the floridoside content or the FPS activity.  相似文献   

17.
We have determined the conditions which give optimal growth and conchospore release in laboratory cultures of free conchocelis of the red alga Porphyra torta Krishnamurthy. With cool white fluorescent light on a 16L.8D photoregime, the fastest sustained growth (5% volume increase d?1) was observed from 10–15°C and 25–100 μE-m ?2.s?1; slightly faster growth was observed at 15°C and 300 μE.m?2.s?1, but such conditions are close to lethal. Conchoporangin will form under a wide range of conditions in conchocelis of this species. However, conchospores will mature and release only when the cultures are exposed to a short day photoperiod. The critical pholoperiod is just shorter than 12 h, The minimum number of photoinductive cycles for complete conchospore release is four for a range of conditions but can be just one depending on pretreatment.  相似文献   

18.
Fertilization of cultured microscopic female gametophytes by spermatia from field-collected male gametophytes of Palmaria sp. was observed by light and transmission electron microscopy. Liberated spermatia had a prophase-arrested nucleus with a pair of polar rings. The protoplast of spermatia was covered with ca. a 3-μm-thick hyaline covering. After spermatium inoculation, the spermatial covering was attached specifically to the coat surrounding the cell wall of the trichogyne. The spermatial covering was eliminated only at the site of gamete attachment, resulting in direct attachment of the spermatial plasma membrane to the trichogyne within 5 min after spermatium inoculation. This direct attachment was followed by completion of spermatial nuclear division and cell wall formation. The polar rings disappeared before prometaphase. The cytoplasm of the binucleate spermatium invaded the trichogyne cell wall and subsequently fused with the trichogyne cytoplasm. The trichogyne could fuse with many spermatia, and many male nuclei (the derivative nuclei of spermatial nuclear division) could enter the trichogyne cytoplasm.  相似文献   

19.
Cellulose acetate electrophoresis of the hot water soluble polysaccharide extracts from whole filaments, as well as base, mid and tip segments, of marine asexual and sexual Bangia atropurpurea (Roth) C. Ag. Yielded distinctive patterns which demonstrated that changes occur in the outer cell walls during sexual reproduction. Heterogeneity of the sulfated polysaccharide components isolated from outer cell walls was shown to be specifically related to sexual reproduction. Two components (Band I and II) were detected in extracts from tips of sexual filaments, whole only one (Band I) was present in the vegetative segments of all filaments and in asexual reproductive regions. The faster running component (Band II) was detected during the later stages of sexual development, prior to maturation.  相似文献   

20.
Hybrid cells were obtained from somatic cell fusion among male, female, and tetrasporangial plants in Griffithsia japonica Okamura by a wound-healing process. Isolated fusion cells regenerated new mature plants with mixed reproductive structures. The plants regenerated from hybrid cells between male and female plants developed into 1) spermatangiate, 2) carpogonial, 3) bisexual with spermatangia and carpogonial branches, 4) mixed-phase with spermatangia and tetrasporangia, or 5) bisexual/mixed-phase plants with spermatangia, carpogonial branches, and tetrasporangia. About 70% of the plants regenerated from hybrid cells between male and female plants produced tetrasporangia that were always formed with spermatangia on a single cell. Some of those tetrasporangia released tetraspores, six of which gave rise to mature plants. The plants regenerated from hybrid cells between male and tetrasporangial plants developed into spermatangiate, tetrasporangiate, or mixed-phase plants with spermatangia and tetrasporangia. The plants regenerated from hybrid cells between female and tetrasporangial plants developed into carpogonial, tetrasporangiate, or mixed-phase plants with carpogonial branches and tetrasporangia. All types of reproductive structures we re functional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号