首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ‘Lord Byron’ cultivar of Fuchsia hybrida is a long day plant for which GA acts as an inhibitor of flower initiation. At the dosages required to inhibit initiation (0.025 μg per plant) GA also promotes increased stem elongation but causes no other departures from normal development. Similar tests with auxins, antiauxins, kinins, and other substances showed no effect on flower initiation at dosages equivalent to that for GA. At 10- to 100-fold greater dosages, auxins, kinins, and anti-auxins inhibit not only flower initiation but also vegetative development. Thus the effect of GA on flower initiation appears to be unique, although other hormonal substances, such as abscisin, have not been tested. GA-induced inhibition is directly proportional to the dosage applied and inversely to the strength of long day induction (as measured by the number of long days). GA is most effective when applied to the terminal bud rather than to the mature leaves, suggesting that it is active at the site of flower initiation rather than in the leaves. If it is applied after translocation of the floral stimuli from the leaves, GA does not prevent flower initiation. Regardless of the dose applied, GA is less effective if applied later rather than earlier during LD induction. The inhibitory effect persists for several days. For example, an 0.85 μg dosage causes an 8–10-day delay in initiation; lower dosages have reduced effects. GA inhibits flower initiation but has no effect upon flower development. The rate of bud development is the same in GA-treated and control plants. Apparently no more than one to two axillary buds immediately below the apical meristem are receptive to long day-induced floral stimuli from the leaves. Regardless of the daylength conditions axillary buds more basal do not initiate flowers but develop into branch axes. The effect of a long day treatment persists for a very short time, perhaps no longer than the inhibition caused by minimal GA dosage. Thus flower initiation continues for a very short time following the end of long day induction. The significance of these findings is discussed in relation to the many reports of GA-induced inhibition as well as promotion of flower initiation. In particular, the discussion concerns the nation that flower initiation in fuchsia may be controlled by a gibberellin-like transmissible inhibitor.  相似文献   

2.
We studied the relative effectiveness of different pollinators of Spathiphyllum friedrichsthalii Schott for 15 months on Barro Colorado Island, Panama. Pollen-foraging stingless bees (Apidae: Trigona) made 87% of floral visits. Experiments showed that these bees pollinate flowers, and correlations of fruit- and seed-set with visitation frequencies and floral contact times suggested that they were responsible for the majority of seeds produced. Fifteen species of fragrance-foraging, male euglossine bees (Apidae: Euglossini) collectively accounted for a small portion of seed-set in fewer than 27% of the inflorescences. Neocorynura (Halictidae) were pollen thieves and were unimportant as pollinators. We propose that euglossine and stingless bees differentially influence outcrossing rates and the evolution of floral traits of S. friedrichsthalii. Foraging behavior of male euglossines should allow for more long-distance pollen flow whereas stingless bees are likely to promote near-neighbor and geitonogamous pollinations. We discuss why the prolonged male phase of anthesis in this protogynous species may be maintained through pollination by stingless bees rather than male euglossines. Furthermore, although the floral fragrance is attractive to many species of male euglossines, it attracts few individuals. This condition may represent an intermediate step in the evolution of predominant pollination by male euglossines.  相似文献   

3.
The component parts of modular organisms often show interspecific variation in their longevity. In plants, the flower is an example of such a structure. Models are developed in this paper to predict optimal floral longevity (the optimal length of time that flowers should remain open and functional) under a variety of conditions. A tradeoff involving allocation of resources to floral construction versus floral maintenance is assumed. The main model variables are the rate at which pollen and seed fitness accrue over time (fitness-accrual rates) and the daily cost of maintaining an existing flower relative to the cost of constructing a new one (floral maintenance cost). Long-lived flowers are selected when fitness-accrual rates and floral maintenance costs are low, whereas short-lived flowers are selected when fitness-accrual rates and floral maintenance costs are high. Dichogamy favors longer-lived flowers relative to homogamy, whereas nonindependence among flowers in their attractiveness to pollinators (attraction to flower clusters) selects for shorter-lived flowers. Reduction in floral maintenance costs later on in the flower's life favors longer-lived flowers. Observations on the dissemination and receipt of pollen in individual flowers over time, together with measurements of corolla respiration and nectar sugar production rate are required to test the model quantitatively. The parameters important to the evolution of optimal floral longevity (i.e., maintenance and construction costs, and fitness-accrual rates) may be general features of evolution of optimal longevities of other repeated structures.  相似文献   

4.
Floral induction by night interruption of Fuchsia hybrida cv. Lord Byron, a quantitative long-day plant with decussate phyllotaxis and an indeterminate flowering habit, altered neither the rate of leaf initiation nor the rate of leaf expansion; nor did flower initiation and development change the vegetative growth of the plants. This was diagnosed using plastochron duration and plastochron ratio measurements before, during, and after a 10-day induction period. A comparison between indeterminate and determinate flowering is made using these two parameters.  相似文献   

5.
6.
对一株分离自敦煌壁画的菌株进行了生理生化检测,结果表明,该菌符合黄杆菌属(Flavobacterium),不定种(Species Incertae Sedis)的特征.在加有铅丹(Pb_3O_4)的培养基上,菌体呈棕黑色.通过鉴定,认为该棕色为菌体将铅丹氧化成PbO_2的缘故.在pH9.8、37℃、黑暗条件下氧化程度最高.纯氧及纯氮气条件下菌体氧化铅丹受抑制,菌株氧化铅丹受质粒控制,菌体具主动吸收铅的能力,电镜观察铅主要位于原生质体内,5×10~(-3)mol/ml NaN_3抑制菌体生长.  相似文献   

7.
Divergent mate preferences and subsequent genetic differentiation between populations has been demonstrated, but its effects on interspecific interactions are unknown. Associated species exploiting these mate preferences, for example, may diverge to match local preferences. We explore this idea in the sexually deceptive, fly‐mimicking daisy, Gorteria diffusa, by testing for association between genetic structure in the fly pollinator (a proxy for mate preference divergence) and geographic divergence in floral form. If genetic structure in flies influences interactions with G. diffusa, we expect phylogeographically distinct flies to be associated with different floral forms. Flies associated with forms exploiting only feeding behavior often belonged to several phylogeographic clades, whereas flies associated with forms exploiting male‐mating behavior always belonged to distinct clades, indicating the possibility of pollinator‐mediated floral divergence through phylogeographic variation in mating preferences of male flies. We tested this hypothesis with reciprocal presentations using male flies from distinct clades associated with separate floral forms. Results show that males from all clades exhibit similar preferences, making pollinator driven divergence through geographic variation in mate preference unlikely. Males, however, showed evidence of learned resistance to deceptive traits, suggesting antagonistic interactions between plants and pollinators may drive deceptive floral trait evolution in G. diffusa.  相似文献   

8.
I examined the adaptive significance of two floral traits in the perennial herb, Lupinus argenteus: 1) the retention of corollas on “spent” flowers, i.e., flowers containing inviable pollen, unreceptive stigmas, and negligible pollinator rewards and 2) a change in corolla color of retained “spent” flowers, which is restricted to a spot on the banner petal. At anthesis, this spot is yellow, and approximately four days later, it changes to purple. After the change, purple flowers remain on plants an additional 5–7 days before corolla abscission occurs; purple flowers were avoided by pollinators, presumably because they contained less pollen (rewards) than yellow ones. I experimentally tested the hypothesis that purple flowers contribute to the floral display of the plant by removing varying numbers of spent flowers and assessing the effect on pollination visitation. Pollinators preferentially approached and foraged on plants with greater numbers of flowers per inflorescence; they did not discriminate between yellow (rewarding) and purple (nonrewarding) flowers at interplant distances greater than 0.4 meters but would preferentially forage on plants with more total flowers, even if these individuals contained fewer rewarding flowers. Thus, spent flowers increased the overall attractiveness of plants to pollinators. In theory, color change may benefit plants in two ways. First, by directing pollinators to rewarding flowers, the change may increase pollinator foraging efficiency, with the result that pollinators visit more flowers before leaving plants (pollinator-tenure mechanism). Second, by directing pollinators to receptive flowers, the color change may prevent incoming pollen from being wasted on unreceptive stigmas and may prevent collection of inviable pollen (pollination-efficiency mechanism). I tested the pollinator-tenure mechanism experimentally by removing pollen from yellow flowers, thereby reducing the reliability of the color-reward signal. Pollinators visited fewer total flowers on experimental plants than on controls, resulting in reduced seed production in one year.  相似文献   

9.
10.
Morphological traits often covary within and among species according to simple power laws referred to as allometry. Such allometric relationships may result from common growth regulation, and this has given rise to the hypothesis that allometric exponents may have low evolvability and constrain trait evolution. We formalize hypotheses for how allometry may constrain morphological trait evolution across taxa, and test these using more than 300 empirical estimates of static (within‐species) allometric relations of animal morphological traits. Although we find evidence for evolutionary changes in allometric parameters on million‐year, cross‐species time scales, there is limited evidence for microevolutionary changes in allometric slopes. Accordingly, we find that static allometries often predict evolutionary allometries on the subspecies level, but less so across species. Although there is a large body of work on allometry in a broad sense that includes all kinds of morphological trait–size relationships, we found relatively little information about the evolution of allometry in the narrow sense of a power relationship. Despite the many claims of microevolutionary changes of static allometries in the literature, hardly any of these apply to narrow‐sense allometry, and we argue that the hypothesis of strongly constrained static allometric slopes remains viable.  相似文献   

11.
The remarkable diversity of coloration and species present in hummingbirds has been considered the result of sexual selection. I evaluate if color differences among species in the genus Coeligena are consistent with expectations from sexual selection theory. If sexual selection on color is important for speciation, closely related species should be markedly different in the colors of feather patches associated with aggression and breeding. I evaluate this prediction through a statistical assessment of the phylogenetic signal of colors from five feather patches: crown, gorget, belly, upper back, and rump. The first two are associated with aggressive and courtship displays and are expected to be under sexual selection, whereas the others are not. Contrary to expectations, the crown and gorget were the only patches with significant phylogenetic signal. Furthermore, I assess if populations of dichromatic species are more divergent in coloration and therefore have reduced gene flow. Color distances among dichromatic subspecies were larger than among monochromatic subspecies, but the magnitude of phenotypic differentiation was not related to levels of gene flow. These results support a role for sexual selection in shaping color variation among populations, but these differences alone are not sufficient to explain speciation.  相似文献   

12.
Pollinator response to petal color polymorphism in wild radish (Raphanus sativus) was investigated. Behavior of insect visitors was observed within experimental flower arrays, each containing two of the petal color forms seen intermixed in California populations: white, yellow, pink, and bronze. Honeybees, which accounted for almost 90% of all visits, typically preferred yellow or white flowers and discriminated against bronze. Their preference for white increased significantly as the Raphanus flowering season progressed. Syrphid flies were also frequent visitors and increased in abundance near the end of the season. Syrphids typically preferred pink to other colors. Individual honeybees tended to specialize on either yellow or pink flowers on a short-term basis. This foraging pattern provides the potential for positive assortative mating among plants with yellow or pink flowers. Intraspecific pollinator discrimination may influence genotypic frequencies as well as the relative maternal and paternal reproductive success of color morphs.  相似文献   

13.
14.
15.
We hypothesize that the evolution of an ecologically important character, the host associations of specialized phytophagous insects, has been influenced by limitations on genetic variation. Using as a historical framework a phylogenetic reconstruction of the history of host associations in the beetle genus Ophraella (Chrysomelidae), we have employed quantitative-genetic methods to screen four species for genetic variation in larval survival, oviposition (in one species only), and feeding responses to their congeners' host plants, in the Asteraceae. We here report results of studies of one species and evaluate the results from all four. Analysis of half-sib/full-sib families and of progenies of wild females of O. notulata, a specialist on Iva (Ambrosiinae), provided evidence of genetic variation in larval consumption of five of six test plants and in adult consumption of four of six. Larval mortality was complete on five plants; only on Ambrosia, a close relative of the natural host, was there appreciable, and genetically variable, survival. Oviposition on Ambrosia showed marginally significant evidence of genetic variation; a more distantly related plant elicited no oviposition at all. In compiling results from four Ophraella species, reported in this and two other papers, we found no evidence of genetic variation in 18 of 39 tests of feeding responses and 14 of 16 tests of larval survival on congeners' hosts. This result is consistent with the hypothesis that absence or paucity of genetic variation may constrain or at least bias the evolution of host associations. The lower incidence of genetic variation in survival than in feeding behavior may imply, according to recent models, that avoidance is a more common evolutionary response to novel plants than adaptation. The usually great disparity between mean performance on congeners' hosts and the species' natural hosts, and an almost complete lack of evidence for negative genetic correlations, argue against the likelihood that speciation has occurred by sympatric host shift. The presence versus apparent absence of genetic variation in consumption was correlated with the propinquity of relationship between the beetle species tested and the species that normally feeds on the test plant, suggesting that the history of host shifts in Ophraella has been guided in part by restrictions on genetic variation. It was also correlated with the propinquity of relationship between a test plant and the beetle's natural host. The contributions of plant relationships and insect relationships, themselves correlated in part, to the pattern of genetic variation, are not readily distinguishable, but together accord with phylogenetic evidence that these and other phytophagous insects adapt most readily to related plants. In this instance, therefore, the macroevolution of an ecologically important character appears to have been influenced by genetic constraints. We hypothesize that absence of the structural prerequisites for genetic variation in complex characters may affect genetic variation and the trajectory of evolution.  相似文献   

16.
17.
18.
Many species have elaborate and complex coloration and patterning, which often differ between the sexes. Sexual selection may increase the size or intensity of color patches (elaboration) in one sex or drive the evolution of novel signal elements (innovation). The latter potentially increases color pattern complexity. Color pattern complexity may also be influenced by ecological factors related to predation and environment; however, very few studies have investigated the effects of both sexual and natural selection on color pattern complexity across species. We used a phylogenetic comparative approach to examine these effects in 85 species and subspecies of Australian dragon lizards (family Agamidae). We quantified color pattern complexity by adapting the Shannon–Wiener diversity index. There were clear sex differences in color pattern complexity, which were positively correlated with both sexual dichromatism and sexual size dimorphism, consistent with the idea that sexual selection plays a significant role in the evolution of color pattern complexity. By contrast, we found little evidence of a link between environmental factors and color pattern complexity on body regions exposed to predators. Our results suggest that sexual selection rather than natural selection has led to increased color pattern complexity in males.  相似文献   

19.
Males of sexually dimorphic species often appear more divergent among taxa than do females, so it is often assumed that evolutionary changes have occurred primarily in males. Yet, sexual dimorphisms can result from historical changes in either or both of the sexes, and few previous studies have investigated such patterns using phylogenetic methods. Here, we describe the evolution of male and female plumage colors in the grackles and allies (Icteridae), a songbird clade with a broad range in levels of sexual dichromatism. Using a model of avian perceptual color space, we calculated color distances within and among taxa on a molecular phylogeny. Our results show that female plumage colors have changed more dramatically than male colors in the evolutionary past, yet male colors are significantly more divergent among species today. Historical increases in dichromatism have involved changes in both sexes, whereas decreases in dichromatism have nearly always involved females evolving rapidly to look like males. Dichromatism is also associated with mating system in this group, with monogamous taxa tending to exhibit relatively low levels of sexual dichromatism. Our findings suggest that, despite appearances, female plumage evolution plays a more prominent role in sexual dichromatism than is generally assumed.  相似文献   

20.
The intertidal snail Nucella lapillus exhibits considerable variation in shell color both within and between populations differentially exposed to wave action. Populations from high-wave-energy shores tended to be highly polymorphic and were dominated by pigmented morphs (especially brown), while those at more sheltered locations exhibited less polymorphism and were predominantly white. Field and laboratory experiments were conducted to determine the role of physiological stress and selective predation in maintaining the observed distribution of color morphs. The results demonstrated that 1) physiological stress from high temperature and desiccation during periods of tidal emersion was greater on protected shores, 2) under similar natural conditions, brown morphs heated up faster, attained higher temperatures, desiccated more rapidly, and suffered greater mortality than did white morphs, and 3) when pairs of brown and white morphs were tethered intertidally there was virtually no mortality of either morph on the exposed shore or in shaded microhabitats on the protected shore, but brown morphs suffered much greater mortality in sunny microhabitats on the protected shore. These findings demonstrate that the interpopulation variation in shell color of N. lapillus is in part a response to a selective gradient in physiological stress. Selection for crypsis by visually hunting predators did not appear to play a prominent role; however, only adults were considered, and the predation experiments were conducted in the fall before shorebirds that prey on whelks had arrived from their summer feeding grounds. Further experimentation to quantify the effects of visual predators such as birds and fish, particularly on juvenile snails, is necessary to assess adequately the importance of predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号