首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in ribulose diphosphate (RuDP) carboxylase activity and the content of fraction 1 protein, which had been elucidated to be identical with protein of RuDP carboxylase, in tobacco leaves were examined with age, comparing with change in total protein content. Fraction 1 protein was determined by an immunological precipitin method developed in this experiment. Fraction 1 protein decreased with age and the rate was similar or a little larger than those of total protein and total chlorophyll. The carboxylase activity decreased more rapidly than fraction 1 protein during the senescent process. In a plant, upper leaves showed higher values of the carboxylase activity and fraction 1 protein content than lower leaves. The specific activity, RuDP carboxylase activity per unit fraction 1 protein, in upper leaves was higher than that in lower leaves.  相似文献   

2.
植物泛素/26S蛋白酶体途径研究进展   总被引:6,自引:0,他引:6  
泛素/26S蛋白酶体途径是最重要的,有高度选择性的蛋白质降解途径,由泛素激活酶、泛素结合酶、泛素蛋白连接酶和26S蛋白酶体组成,参与调控植物生长发育的多个方面。泛素蛋白酶体途径参与植物体内的众多生理过程,如植物激素信号,光形态建成、自交不亲和反应和细胞周期等。本文就泛素/26S蛋白酶体途径以及在植物生长发育中的作用的研究近况做一综述。  相似文献   

3.
Recent literature on light-induced changes in the distribution of growth and of endogenous growth regulators in the development of phototropic curvature is reviewed. It is concluded that in a great many cases the Cholodny-Went hypothesis is sufficient to account for the growth changes bringing about curvature, though in certain dicotyledonous seedlings differential effects of light on the synthesis of growth inhibitors across the tissue from the lighted to the shaded side are implicated. The problems in the interpretation of results from experiments in which more than one photoresponse may be simultaneously induced are discussed and methods of circumventing them considered. Action spectroscopy suggests that dicotyledonous seedlings may have the same phototropic photoreceptor as monocotyledonous seedlings.  相似文献   

4.
5.
Yeast Rfu1 (regulator for free ubiquitin chain 1) localizes to endosomes and plays a role in ubiquitin homeostasis by inhibiting the activity of Doa4. We show that Bro1, a member of the class E vacuolar protein sorting proteins that recruits Doa4 to endosomes and stimulates Doa4 deubiquitinating activity, also recruits Rfu1 to endosomes for involvement in ubiquitin homeostasis. This recruitment was mediated by the direct interaction between a region containing the YPEL motif in Rfu1 and the V domain in Bro1, which could be analogous to the interaction between the mammalian Alix V domain and YPXnL motifs of viral and cellular proteins. Furthermore, overexpression of Bro1, particularly the V domain, prevented Rfu1 degradation in response to heat shock. Thus, Bro1, a Doa4 positive regulator, regulated Rfu1, a negative regulator of Doa4. Rfu1 degradation partly involved the proteasome and a ubiquitin ligase Rsp5, suggesting that Rfu1 stability was regulated by ubiquitin-proteasome pathways.  相似文献   

6.
泛肽、核糖体蛋白及泛肽-核糖体蛋白S27a与肿瘤的关系   总被引:1,自引:0,他引:1  
泛肽-核糖体蛋白S27a(Ubiquitin-ribosomal protein S27a,UBRS27a)是泛肽和核糖体蛋白的融合蛋白,N端为泛肽,C端由含C2-C2型锌指结构域的高度保守核糖体蛋白S27a构成。在真核细胞中表达时,被酶解成泛肽和核糖体蛋白。该多功能核糖体蛋白在各种活性增殖细胞和瘤组织中高度表达,在多种类型的肿瘤细胞中,该基因的过量表达是一个典型特征。本实验室对该蛋白在家蚕中的作了初步研究,也发现RPS27a在活性增殖细胞中表达量很高。大多数核糖体蛋白的功能还没有完全探明,它们不仅仅在组装成核糖体时起作用,往往还有核糖体外的功能。回顾了最近几年有关该融合蛋白以及与它相关的泛肽途径、核糖体蛋白与肿瘤之间的关系。通过对它们的研究,有可能预示肿瘤的发生和发展,并为肿瘤临床诊断提供依据,为恶性肿瘤的治疗提供靶点。  相似文献   

7.
泛素/26S蛋白酶体途径(ubiquitin/26S proteasome pathway,UPP)是目前已知最有效的、最具特异性的蛋白质降解途径。该途径介导了真核生物80%-85%的蛋白质降解,参与了细胞多项生命活动过程,对于维持细胞正常生理功能具有重要意义。研究结果表明,植物生长发育的诸多方面以及干旱胁迫响应等过程都受到该途径的调控。概述了泛素/26S蛋白酶体途径及其在植物生长发育过程中的作用,并着重阐述了由泛素-蛋白连接酶E3介导的植物干旱胁迫响应及其作用机制的研究进展。  相似文献   

8.
9.
重复DNA沿染色体的分布是认识植物基因组的组织和进化的要素之一。本研究采用一种改良的基因组原位杂交程序,对基因组大小和重复DNA数量不同的6种植物进行了自身基因组原位杂交(self-genomic in situ hybridization,self-GISH)。在所有供试物种的染色体都观察到荧光标记探针DNA的不均匀分布。杂交信号图型在物种间有明显的差异,并与基因组的大小相关。小基因组拟南芥的染色体几乎只有近着丝粒区和核仁组织区被标记。基因组相对较小的水稻、高粱、甘蓝的杂交信号分散分布在染色体的全长,但在近着丝粒区或近端区以及某些异染色质臂的分布明显占优势。大基因组的玉米和大麦的所有染色体都被密集地标记,并在染色体全长显示出强标记区与弱标记或不标记区的交替排列。此外,甘蓝染色体的所有近着丝粒区和核仁组织区、大麦染色体的所有近着丝粒区和某些臂中间区还显示了增强的信号带。大麦增强的信号带带型与其N-带带型一致。水稻自身基因组原位杂交图型与水稻Cot-1DNA在水稻染色体上的荧光原位杂交图型基本一致。研究结果表明,自身基因组原位杂交信号实际上反映了基因组重复DNA序列对染色体的杂交,因而自身基因组原位杂交技术是显示植物基因组中重复DNA聚集区在染色体上的分布以及与重复DNA相关联的染色质分化的有效方法。  相似文献   

10.
11.
Although unglycosylated HuEpo is fully functional, it has very short serum half‐life. However, the mechanism of in vivo clearance of human Epo (HuEpo) remains largely unknown. In this study, the relative importance of protease‐sensitive sites of recombinant HuEpo (rHuEpo) has been investigated by analysis of structural data coupled with in vivo half‐life measurements. Our results identify α3‐α4 inter‐helical loop region as a target site of lysosomal protease Cathepsin L. Consistent with previously‐reported lysosomal degradation of HuEpo, these results for the first time identify cleavage sites of rHuEpo by specific lysosomal proteases. Furthermore, in agreement with the lowered exposure of the peptide backbone around the cleavage site, remarkably substitutions of residues with bulkier amino acids result in significantly improved in vivo stability. Together, these results have implications for the mechanism of in vivo clearance of the protein in humans. Proteins 2015; 83:1813–1822. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Ubiquitin, hormones and biotic stress in plants   总被引:21,自引:0,他引:21  
  相似文献   

13.
14.
目的:探讨肝癌中泛素相关蛋白样因子2(UBAP2L)的表达水平与预后的关系及其对肝癌细胞侵袭、转移能力的影响。方法:挖掘oncomine数据库,提取UBAP2L在肝癌与正常组织转录水平的变化及相关临床资料,采用Kaplan-Meier法分析UBAP2L表达水平与肝癌患者预后的关系。采用实时定量PCR、Western blot检测HCCLM3、MHCC97H、Hep3B、Huh7肝癌细胞株及正常肝细胞LO2中UBAP2L mRNA及蛋白水平,免疫组织化学染色法检测本院80例肝癌组织与癌旁组织中UBAP2L的表达水平加以验证。通过慢病毒载体使UBAP2L高表达的肝癌细胞株HCCLM3表达下调,采用克隆形成和划痕实验检测UBAP2L对肝癌细胞增殖能力和侵袭、转移的影响。结果:UBAP2L在oncomine数据库大多数队列呈高表达。UBAP2L在肝癌细胞株中的mRNA和蛋白的表达水平显著高于正常肝细胞(P0.05)。肝癌组织中UBAP2L阳性、强阳性表达率高于癌旁组织(P0.05),下调UBAP2L表达可明显抑制HCCLM3肝癌细胞的克隆形成能力和运动能力(P0.05)。UBAP2L高表达组的中位生存时间与UBAP2L低表达组比较差异无统计学意义(P0.05)。结论:UBAP2L在肝癌组织中呈高表达,下调UBAP2L表达可抑制肿瘤增殖和侵袭、转移表型,其可能成为肝癌早期诊断的生物标志物和治疗的潜在靶点。  相似文献   

15.
This account presents the views of the author on the functional and regulatory aspects of respiratory metabolism in higher plants: Control of metabolism (by enzymes) and the interaction of respiration with the other physiological functions in the living plant (metabolic control). This concept, formulated in the early fifties (ref. 47), was presented in part in 1965 (ref. 2) based on experiments performed mostly by the author and his colleagues and by his co-workers in this country. After an interruption of a decade, during which his work was discontinued, a more complete formulation of his views are given here based on results reported by workers in this field in other countries during that period. The more complete view can now be 'summarized as follows: Respiratory metabolism is the process whereby a part of the material stored in the plant (organism) is converted into biological work (function) for maintaining its state of being alive, while the other part of the same material is converted into substances of higher degrees of orderliness (negative entropy) in the form of structure and organization. Within limits imposed by the genetic potential, these processes are controlled by enzymes which in turn are regulated by internal and external factors. The above statement is essentially a special expression of a general view on the functional aspects of living organisms given in the author’s earlier book, Green Thral- dom (Alien & Unwin, London, 1949). If the above theme finds acceptance, it follows, as stated earlier (ref. 14), that: 1. Respiratory metabolic pathways must be multiple ("multilineal") and multi- directional; 2. They must be interacting, not only with themselves, but also with other functions in the plant, alternatingly in time and separately in space (compartmentation); 3. There must be mutual interactions among the pathways and func- tions regulated by enzymes which in turn are regulated through external and internal factors. This functional and regulatory concept of respiratory metabolism in higher plants are now summarized by the following expressions: 1. CH2O + O2→>Xl→X2→H2O + CO2 + E ↓↓ Y1 Y2 in which E = Energy, X1, X2 etc. represent intermediate products, and Y1, Y2 etc. represent anabolic products of different composition and different degrees of complexity. 2. Borrowing from the second law of thermodynamics, the free energy △G deri- ved from process 1 is used for performance of physiological work (function) during which part of the energy is given off in the form of heat (△H), and the other part is concerned with the change of materials of lower orderliness into form and structure with a decrease in entropy (△S): △G = △H - T△S in which T is temperature (in K). This equation may or may not be directly applicable without qualifications in our case. But the decrease in entropy with the change of degree of orderliness in the process of tissue and organ formation from formless materials holds true. 3. The third expression presents the fundamental aspects of our concept of control of metabolism by enzymes and metabolic control of physiological functions. This may be given as: Fuction Gene→ Enzymes→Metabolism→ Structurc State→ Time cource (Solid arrows denote Control) .Experimental evidences selected from the numerous published experimental results, mostly from those of our own, in support of the above scheme at the substrate level oxidation in addition to those given in an earlier account (ref. 2) are presented here. Evidences based on experiments during the past decade on multiple pathways in NADH oxidation through the electron transport chain gathered in the literature (ref. 37) during the period when our work was interrupted completes the formula- tion of our concept on respiratory metabolism at both the substrate and terminal oxidation levels. The use of this generalized concept on the functional and regulatory aspects of respiratory metabolism in higher plants for guiding further research on plant respiration and on other physiological processes, as well as the application of this concept to practical physiological and biological problems are discussed.  相似文献   

16.
高等植物赤霉素的代谢与信号转导   总被引:1,自引:0,他引:1  
赤霉素是一种重要的二萜类植物激素,有着广泛而复杂的生物学功能,调节植物整个生命周期不同阶段的生长和发育。本文在分子生物学水平上对高等植物中的赤霉素代谢以及信号转导的最新研究进展进行了总结。  相似文献   

17.
18.
19.
20.
泛素/26S蛋白酶体途径及其在植物生长发育中的功能   总被引:1,自引:0,他引:1  
泛素/26S蛋白酶体途径是一种蛋白高效降解途径,主要负责真核细胞内蛋白的选择性降解.泛素分子主要通过泛素活化酶E1、泛素结合酶E2和泛素-蛋白连接酶E3将靶蛋白泛素化,泛素化的蛋白最后被26S蛋白酶体识别和降解.本文介绍了泛素/26S蛋白体介导的特异性蛋白质降解途经,并对其在植物激素信号、光形态建成、植物衰老、自交不亲和反应、细胞周期调控、花的发育、生物钟节律和非生物胁迫响应中的功能最新研究进展进行了综述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号