首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The walnut oil (Juglans regia L.) total lipids (TL) were extracted by the Bligh-Dyer method and the lipid classes have been isolated by chromatographic techniques and they were analyzed by high performance thin layer chromatography (HPTLC)/FID and GC-MS. The oil was found to be rich in neutral lipids (96.9% of total lipids) and low in polar lipids (3.1% of total lipids). The neutral lipid fraction consisted mainly of triacylglycerides whereas the polar lipids mainly consisted of sphingolipids. GC-MS data showed that the main fatty acid was linoleic acid. Unsaturated fatty acids were found as high as 85%, while the percentage of the saturated fatty acids was found 15%. Two types of liposomes were prepared from the isolated walnut oil phospholipids and characterized as new formulations. These formulations may have future applications for encapsulation and delivery of drugs and cosmetic active ingredients.  相似文献   

2.
A procedure for isolating the carotenoid-containing oil droplets of cone retinal photoreceptors of Gallus domesticus is described. The oil droplets, composed almost entirely of neutral lipids and carotenoids, have been separated into ten chromatographic components. Similar separations have been carried out on the total retinal neutral lipids for comparison. The neutral lipids represented 26.1% of the total retinal lipid. Cholesterol, cholesterol ester, mono-, di- and triacylglycerols represented 92.6% of the total neutral lipid. Each of these and other minor neutral lipid components were also present in the lipids extracted from the isolated oil droplets in correspondingly similar concentrations. However, the concentrations of carotenoids were greatly enriched in the neutral lipids of the oil droplets. Each of the major fatty acyl-containing neutral lipids from the chromatography of oil droplet lipids is greatly enriched in polyunsaturated fatty acids when compared with the corresponding component from the total neutral lipid chromatography. In the acylglycerols and free fatty acid fraction from the oil droplets, linoleic and arachidonic acid together represented 52-83% of the total polyunsaturated fatty acids present. The remainder was generally distributed about equally among six other acids. Except for the diacylglycerol fraction, linoleic acid was usually the most enriched acid in a specific oil droplet fraction when compared with any other polyunsaturated fatty acids. A similar pattern of polyunsaturated fatty acid enrichment observed in the fatty acids of the outer segment phospholipids relative to the corresponding total phospholipid fractions of this cone rich retina (Johnston, D. and Hudson, R.A. (1974) Biochim. Biophys. Acta 369, 269) suggest possible metabolic relationships between the oil droplet neutral lipids and the outer segment membrane phospholipids of the cone photoreceptors. A mechanism for the accumulation of the carotenoids in the oil droplets is also discussed.  相似文献   

3.
Normal phase, isocratic high-performance liquid chromatography methods are described for the separation of neutral lipid and fatty acid classes using low wavelength detection. Prior to high-performance liquid chromatography, methods were developed and are described for the separation of phospholipids from neutral lipids and fatty acids using small (600 mg) silica Sep-PaksTM. Recoveries of cholesteryl esters, triglycerides, fatty acids, and phospholipids from the silica columns were greater than 95%. Two mobile phases are described for lipid class separation by high-performance liquid chromatography. The first mobile phase, hexane-2-propanol-acetic acid 100:0.5:01, resulted in incomplete separation of cholesteryl ester and triglyceride but excellent separations of fatty acids and cholesterol. The second mobile phase, hexane-n-butyl chloride-acetonitrile-acetic acid 90:10:1.5:0.01, resulted in complete separation of the four lipid classes. This mobile phase also separated individual triglycerides and fatty acids based on the number of double bonds. Recoveries of radiolabeled lipids for the four lipid classes from high-performance liquid chromatography was greater than 95% with both mobile phases.  相似文献   

4.
The seeds of the almond tree [(Prunus dulcis (Mill.) D. A. Webb. (syn. Prunus amygdalus)] were collected in two different periods of maturity and were studied for their lipid content. The total lipids (TL) were extracted by the Bligh-Dyer method and the lipid classes have been isolated by chromatographic techniques and were analyzed by HPTLC coupled with a flame ionization detector (HPTLC/FID) and GC-MS. The oils were found to be rich in neutral lipids (89.9% and 96.3% of total lipids) and low in polar lipids (10.1% and 3.7% of total lipids) for the immature and mature seed oils, respectively. The neutral lipid fraction consisted mainly of triacylglycerides whereas the polar lipids mainly consisted of phospholipids. GC-MS data showed that the main fatty acid for both oils was 9-octadecenoic acid (oleic acid). The unsaturated fatty acids were found as high as 89.4% and 89.7%, while the percentage of the saturated fatty acids was found 10.6% and 10.3% for the immature and mature seed oils, respectively. Liposomes were prepared from the isolated phospholipids using the thin lipid film methodology, and their physical properties were characterized. Cytotoxicity was found absent when assayed against normal and cancerous cell lines. These new formulations may have future applications for encapsulation and delivery of drugs and cosmetically active ingredients.  相似文献   

5.
The purpose of the study reported here was to develop a method for the determination of lipid classes in intestinal fluids, including bile acids (BAs). A solid-phase extraction (SPE) method using C18 and silica columns for the separation of BAs, phospholipids (PLs), and neutral lipids (NLs), including free fatty acids, has been developed and validated. Fed-state small intestinal fluid collected from humans was treated with orlistat to inhibit lipolysis and mixed with acetic acid and methanol before SPE to maximize lipid recoveries. BAs, PLs, and NLs were isolated using lipophilic and polar solvents to promote elution from the SPE columns. The different lipid classes were subsequently analyzed using three separately optimized HPLC methods with evaporative light-scattering detectors. High recoveries (>90%) of all lipids evaluated were observed, with low coefficients of variation (<5%). The HPLC methods developed were highly reproducible and allowed baseline separation of nearly all lipid classes investigated. In conclusion, these methods provide a means of lipid class analysis of NLs, PLs, and BAs in human fed-state small intestinal fluid, with potential use in other fluids from the intestinal tract and animals.  相似文献   

6.
Phospholipid-derived fatty acids (PLFAs) are commonly used to characterize microbial communities in situ and the phylogenetic positions of newly isolated microorganisms. PLFAs are obtained through separation of phospholipids from glycolipids and neutral lipids using silica column chromatography. We evaluated the performance of this separation method for the first time using direct detection of intact polar lipids (IPLs) with high-performance liquid chromatography–mass spectrometry (HPLC-MS). We show that under either standard or modified conditions, the phospholipid fraction contains not only phospholipids but also other lipid classes such as glycolipids, betaine lipids, and sulfoquinovosyldiacylglycerols. Thus, commonly reported PLFA compositions likely are not derived purely from phospholipids and perhaps may not be representative of fatty acids present in living microbes.  相似文献   

7.
A method for the maximum recovery of prostaglandins from brain tissue with simultaneous recovery of neutral lipids and phospholipids was developed. Hexane:2-propanol was used to extract lipids from bovine brain. This method, which does not require a washing step to remove nonlipid contaminants, was compared to extraction according to Folch et al. [(1957) J. Biol. Chem. 226, 497-509] for efficiency of lipid extraction. Recoveries of prostaglandins were 12-37% greater with hexane:2-propanol than with the Folch extraction procedure with washing. The ratios of cholesterol to lipid phosphorus and absolute phospholipid recoveries were comparable for the two methods. A new elution sequence was devised for separation of lipid classes on silicic acid columns. The elution sequence was chloroform (neutral lipids and free fatty acids), methyl formate (prostaglandins and cerebrosides), acetone (remaining glycolipids), and methanol (phospholipids). Reverse-phase HPLC of the methyl formate fraction was used to separate the prostaglandins. The method permits simultaneous quantitative recovery of prostaglandins and phospholipids (which contain the 20:4(n-6) precursor for prostaglandin synthesis), and therefore allows changes in phospholipid composition and prostaglandin synthesis to be studied in the same tissue sample.  相似文献   

8.
Methods are described for the rapid separation of the major individual phospholipids and neutral lipids of tissues by thin-layer chromatography on small glass plates (75 × 75 mm), and for the specific microchemical estimation of separated lipids and for determination of fatty acid composition and radioactivity. The overall method, involving tissues extraction, thin-layer chromatographic separation and assay has been evaluated using pure standards and biological samples and gives good reproducibility and almost complete recovery of lipids.  相似文献   

9.
Lipids from cultured cells, leaves and seeds of two varieties each of soybean (Glycine max) and oil seed rape (Brassica napus) were separated into neutral lipids, glycolipids and phospholipids and their fatty acids were analysed. Usually, the fatty acid composition differed between corresponding fractions from cultured cells, leaves and seeds. Differences were least marked in (i) the phospholipids from cultured cells and leaves of soybean and (ii) the neutral lipids from cultured cells and seeds of rape. In the cultured cells, the fatty acid composition of the phospholipids differed from that of the glycolipids and neutral lipids, and fatty acids of chain length greater than C18 comprised a large proportion of the fatty acids of the glycolipids.  相似文献   

10.
An improved straight-phase HPLC method for the separation and quantification of lipid classes is described. Two binary gradient solvent systems were used, one for polar and one for neutral lipids, and detection was performed with a light-scattering detector. The developed HPLC methods were highly reproducible and allowed base-line separation of all investigated polar lipid classes (phosphatidic acid, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingomyelin, phosphatidylserine, phosphatidylinositol and lysophosphatidylcholine) and neutral lipid classes (triacylglycerol, free fatty acid, diacylglycerol, cholesterol and monoacylglycerol) except of cholesterol ester and wax ester. Application of the chromatographic systems demonstrated that the methods are suitable for quantitative analysis of the major lipid classes present in lipid extracts from livers and eggs of Atlantic salmon (Salmo salar).  相似文献   

11.
A relatively simple method to determine hepatic neutral lipids and free fatty acids by highperformance liquid chromatography is described. This method involves the preparation of a chloroform extract of the total liver lipids, followed by removal of the phospholipids by adsorption onto silicic acid and elution of neutral lipids and free fatty acids with 50% diethyl ether in hexane. This fraction is then subjected to liquid-solid chromatography with a solvent system of 2,2,4-trimethylpentane (isooctane):tetrahydrofuran:formic acid (90:10:0.5) and is detected by refractive index. Cholesterol esters, fatty acids, cholesterol, and diglycerides each elute as single peaks, easily quantitated by comparison to appropriate standards. Baseline separation of triglycerides from cholesterol esters is also achieved.  相似文献   

12.
We studied: (1) concentrations and fatty acid compositions of plasma non-esterified fatty acids, neutral lipids, and phospholipids, and (2) fatty acid composition of flight muscle phospholipids in wintering, premigratory, and spring and fall migrating western sandpipers ( Calidris mauri). Plasma neutral lipid and phospholipid levels were elevated in migrants, reflecting high rates of fat deposition. An important role of phospholipids in fattening is suggested by the fact that the amount of fatty acids in plasma phospholipids was similar to, or in spring as much as twice, that of neutral lipids. Changes in the ratio of plasma neutral lipids to phospholipids may indicate seasonal changes in triacylglycerol stores of invertebrate prey. Monounsaturation and total unsaturation of plasma neutral lipids and phospholipids increased during migration. Muscle phospholipids were more monounsaturated in spring and fall, but total unsaturation was reduced in fall. Arachidonic acid [20:4(n-6)] was especially abundant in muscle phospholipids in winter (29%) and declined during migration (19-22%), contributing to a decline in the ratio of n-6 to n-3 fatty acids. The abundance of plasma phospholipids and variability of neutral lipid to phospholipid ratio indicates that measurement of plasma phospholipids will improve methods for assessment of fattening rates of birds. The functional significance of changes in muscle phospholipids is unclear, but may relate to depletion of essential n-6 fatty acids during exercise.  相似文献   

13.
The inability of silicic acid to completely separate the neutral lipids from phospholipids has been reported by several investigators (1,2). Hornstein et al. (3) increased the polarity of the solvent system and reported a clean separation of the phospholipid fraction by adsorption on activated silicic acid. Studies on bovine lipids by Hood and Allen (2) utilized acid-washed Florisil to separate the lipid fractions claiming that silicic acid incompletely separates the free fatty acids from the phospholipids. Work performed in this laboratory (4) on bovine lipids confirmed that phospholipids could be effectively separated from free fatty acids by adsorption on silicic acid by incorporating the solvent system described by Hornstein et al. (3). The liquid-liquid partition procedure of Hamilton and McDonald (5) was also found to be sensitive enough to partition the extremely small amount of free fatty acids from the esterified fatty acids. This paper provides evidence for the effectiveness of these methods in separating the frec fatty acids by incorporating an internal standard [1-14C]palmitic acid.  相似文献   

14.
Cladosporium (Amorphotheca) resinae was grown in shake culture on glucose, n-dodecane, or n-hexadecane. Growth was most rapid on glucose, and more acid accumulated in the medium than in n-alkane-grown cultures. Neutral lipid was the major lipid fraction and triglycerides were the only extracellular neutral lipids detected. Dodecanoic (lauir) acid was the predominant fatty acid (greater than 60%) in neutral lipids from all three media, with lesser amounts of tetradecanoic, hexadecanoic, and octadecanoic acids. Extracellular phospholipids identified were phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, and cardiolipin or a cardiolipin-like compound. Phospholipids from all three media contained dodecanoic acid as their principle fatty acid. Dodecanoic acid was the only extracellular free fatty acid detected. Glucose medium contained acetic, glyoxylic, and glycolic acids and an unidentified organic acid which may contribute to the lower pH in cultures after growth on glucose. In all classes of extracellular lipids the fatty acids do not correspond to the fatty acids previously determined to be associated with cellular lipids. Moreover, the fatty acids of extracellular lipids do not reflect the chain length of the n-alkane growth substrate.  相似文献   

15.
Phospholipid Metabolism in Ferrobacillus ferrooxidans   总被引:15,自引:9,他引:6       下载免费PDF全文
The lipid composition of the chemoautotroph Ferrobacillus ferrooxidans has been examined. Fatty acids represent 2% of the dry weight of the cells and 86% of the total are extractable with organic solvents. About 25% of the total fatty acids are associated with diacyl phospholipids. Polar carotenoids, the benzoquinone coenzyme Q-8, and most of the fatty acids are present in the neutral lipids. The phospholipids have been identified as phosphatidyl monomethylethanolamine (42%), phosphatidyl glycerol (23%), phosphatidyl ethanolamine (20%), cardiolipin (13%), phosphatidyl choline (1.5%), and phosphatidyl dimethylethanolamine (1%) by chromatography of the diacyl lipids, by chromatography in four systems of the glycerol phosphate esters derived from the lipids by mild alkaline methanolysis, and by chromatographic identification of the products of acid hydrolysis of the esters. No trace of phosphatidylserine (PS), glycerolphosphorylserine, or serine could be detected in the lipid extract or in derivatives of that extract. This casts some doubt on the postulated involvement of PS in iron metabolism. After growth in the presence of (14)C and (32)P, there was essentially no difference in the turnover of either isotope in the glycerolphosphate ester derived from each lipid in cells grown at pH 1.5 or 3.5.  相似文献   

16.
We describe a comprehensive approach to the separation, quantitation, and characterization of phospholipids and lysophospholipids present in complex biological samples. The central feature is a normal-phase HPLC separation of individual phospholipid and lysophospholipid classes. In this single chromatographic step, phospholipids and lysophospholipids are separated and recovered for quantitation by organic phosphate assay and characterization by acyl-group composition. Recovery of phospholipids and lysophospholipids from HPLC averages 80-90%. Isolated phospholipid and lysophospholipid fractions are available for separation of individual molecular species by second-dimension reverse-phase HPLC and characterization of individual molecular species by mass spectrometry.  相似文献   

17.
Haemophilus parainfluenzae was capable of synthesizing 22 fatty acids. These fatty acids were equivalent to 4% of the bacterial dry weight. These fatty acids were localized in the membrane-wall complex, which contained the respiratory pigments, the quinone, and the phospholipids. The fatty acids which could be extracted with organic solvents comprised 86% of the total fatty acids of the cell. These fatty acids were distributed as 98% in the phospholipids and 1.9% in the neutral lipids, of which 0.5% were free fatty acids. Palmitic, palmitoleic, oleic, and vaccenic acids comprised 72% of the total fatty acids and were found almost exclusively in the phospholipids. The phospholipids also contained the cyclopropane fatty acids. The neutral lipids contained significant proportions of the odd-numbered branched and straight-chain fatty acids. The principal free fatty acids were n-dodecanoic and pentadecenoic acids. The nonextractable wall complex contained 14% of the total fatty acids. These wall fatty acids were rendered soluble only after saponification. The wall fraction contained all of the beta-hydroxymyristic acid and most of the myristoleic and pentadecenoic acids. The significance of the distribution of fatty acids between nonesterified, neutral lipid, phospholipid, and nonextractible wall remains to be determined.  相似文献   

18.
Protoplasts isolated from callus cells of Petunia hybrida L. and Parthenocissus tricuspidata L. crown gall were used in order to correlate the fatty acid and lipid contents and composition during culture with the ability or unability of the cells to divide. Freshly isolated protoplasts were characterized by a decrease in fatty acids, galactoli-pids and phospholipids, an increased saturation of the fatty acids of the phospholipids and higher weight percentages of neutral lipids and phosphatidic acid. During culture, fatty acids and phospholipid increased in dividing protoplast of Petunia but not in non-dividing protoplasts of Parthenocissus. The findings may imply a two-stage response to isolation stresses: the first step being lipid degradation and the second lipid biosynthesis.  相似文献   

19.
The zoospores of Blastocladiella emersonii, when derived from cultures grown on solid media, contain about 11% total lipid. This lipid was separated chromatographically on silicic acid into neutral lipid (46.6%), glycolipid (15.8%), and phospholipid (37.6%). Each class was fractionated further on columns of silicic acid, Florisil, or diethylaminoethyl-cellulose, and monitored by thin-layer chromatography. Triglycerides were the major neutral lipids, mono- and diglycosyldiglycerides were the major glycolipids, and phosphatidylcholine and phosphatidylethanolamine were the major phospholipids. Other neutral lipids and phospholipids detected were: hydrocarbons, free fatty acids, free sterols, sterol esters, diglycerides, monoglycerides, lysophosphatidylcholine, lysophosphatidylethanolamine, phosphatidic acid, phosphatidylserine, and phosphatidylinositol. Palmitic, palmitoleic, stearic, oleic, gamma-linolenic, and arachidonic acids were the most frequently occurring fatty acids. When B. emersonii was grown in (14)C-labeled liquid media, lipid again accounted for 11% of both mature plants and zoospores released from them. The composition of the lipid extracted from such plants and spores was also the same; however, it differed markedly from that of the lipid in spores harvested from solid media, consisting of 28.3% neutral lipid, 12.0% glycolipid, and 59.7% phospholipid. The major lipids were again triglycerides for neutral lipids, mono- and diglycosyldiglycerides for glycolipids, and phosphatidyl choline and phosphatidylethanolamine for phospholipids.  相似文献   

20.
The aim of this work was to recover lactic acid in undissociated form from grass silage juice. For this aim, chromatographic separation using neutral polymeric resin Amberlite XAD1600 was investigated. Up to now, there is no hint in the literatures about using neutral polymeric resin for lactic acid separation from a mixture. Important factors (flow-rate, concentration of feed and loaded volume) that affect separation performance were firstly investigated with model solutions. The obtained results showed that lactic acid solutions with the purity varying from 93.2% to 99.9% could be obtained at the recovery yields over 99.4%. After that, trials with silage juice were carried out. Due to the complex composition of the feed, the purity of products decreased to 94% at a recovery yield of 97%. Although 99% of inorganic salts and sugars were separated from lactic acid organic acids in general and acetic acid in particular caused a purity problem. It seems that organic acids could not be separated from lactic acid by neutral resin Amberlite XAD1600. Besides the organic acid problem, some amino acids were remained in the products as impurities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号