首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Associations between mites and leaf domatia have been widely reported, but little is known about their consequences for either plants or mites. By excising domatia from leaves of the laureltinus, Viburnum tinus L. (Caprifoliaceae), in the garden and laboratory, we showed that domatia alter the abundance, distribution, and reproduction of potential plant mutualists. Over 4 months, leaves with domatia on six garden shrubs had 2–36 times more predatory and microbivorous mites, and more mite eggs than leaves without domatia. However, this effect varied among plants and was weaker on one shrub with few mites on its leaves. Domatia also influenced the distribution of mites on leaves. A significantly higher fraction of mites, representing all life stages, was found in vein axils of leaves with domatia than in vein axils on leaves without domatia. Single-leaf experiments in the laboratory showed that domatia enhanced reproduction by the predatory mite, Metaseiulus occidentalis, especially at low relative humidity (30–38%). When domatia were removed, oviposition was reduced significantly only at low relative humidity, suggesting that domatia provide mites with refuge from environmental extremes on the leaf surface. Moreover, the use of domatia by predatory mites may reduce the impact of some plant enemies. In two experiments where prey consumption was measured, M. occidentalis ate significantly higher percentages of the eggs of the two-spotted spider mite (Tetranychus urticae). Our results are consistent with the viewpoint that mite-domatia associations are mutualistic. By directly aiding and abetting the third trophic level, plants with leaf domatia may increase the efficiency of some predaceous and microbivorous mites in consuming plant enemies.  相似文献   

2.
Plant morphology may be shaped, in part, by the third trophic level. Leaf domatia, minute enclosures usually in vein axils on the leaf underside, may provide the basis for protective mutualism between plants and mites. Domatia are particularly frequent among species of trees, shrubs, and vines in the temperate broadleaf deciduous forests in north Asia where they may be important in determining the distribution and abundance of mites in the forest canopy. In lowland and montane broadleaf deciduous forests at Kwangn;akung and Chumbongsan in Korea, we found that approximately half of all woody species in all forest strata, including many dominant trees, have leaf domatia. Pooling across 24 plant species at the two sites, mites occupied a mode of 60% (range 20-100%) of domatia and used them for shelter, egg-laying, and development. On average, 70% of all active mites and 85% of mite eggs on leaves were found in domatia; over three-quarters of these were potentially beneficial to their hosts. Further, mite abundance and reproduction (expressed as the proportion of mites at the egg stage) were significantly greater on leaves of species with domatia than those without domatia in both forests. Effects of domatia on mite abundance were significant only for predaceous and fungivorous mite taxa; herbivore numbers did not differ significantly between leaves of species with and without domatia. Comparable patterns in broadleaf deciduous forest in North America and other biogeographic regions suggest that the effect of leaf domatia on foliar mite abundance is general. These results are consistent with several predictions of mutualism between plants and mites, and indicate that protective mutualisms may be frequent in the temperate zone.  相似文献   

3.
Aim To investigate distributional patterns and derivation of skates in the Australasian realm. Location Australasia. Methods Genus‐group skate taxa were defined for this region for the first time and new systematic information, as well as bathymetric and geographical data, used to identify distribution patterns. Results The extant skate fauna of Australasia (Australia, New Zealand, New Caledonia and adjacent subAntarctic dependencies) is highly diverse and endemic with sixty‐two species from twelve currently recognized, nominal genus‐group taxa. These include the hardnose skate (rajin) groups Anacanthobatis, Amblyraja, Dipturus, Okamejei, Rajella and Leucoraja, and softnose skate (arhynchobatin) genera Arhynchobatis, Bathyraja, Insentiraja, Irolita, Pavoraja and Notoraja. Additional new and currently unrecognized nominal taxa of both specific and supraspecific ranks also occur in the region. The subfamily Arhynchobatinae is particularly speciose in Australasia, and the New Zealand/New Caledonian fauna is dominated by undescribed supraspecific taxa and species. The Australian fauna, although well represented by arhynchobatins, is dominated by Dipturus‐like skates and shows little overlap in species composition with the fauna of New Zealand and New Caledonia. Similarly, these faunas exhibit no overlap with the polar faunas of the Australian subAntarctic dependencies (Heard and Macdonald Islands) to the south. Skates appear to be absent from the Macquarie Ridge at the southern margin of the New Zealand Plateau. Their absence off New Guinea probably reflects inadequate sampling and the subsequent poor knowledge of that region's deepwater fish fauna. Main conclusions Skates appear to have existed in the eastern, Australasian sector of Gondwana before fragmentation in the late Cretaceous. The extant fauna appears to be derived from elements of Gondwanan origin, dispersal from the eastern and western Tethys Sea, and intraregional vicariance speciation.  相似文献   

4.
Many island plants are characterized by unique morphology. For example, the high branching angles and small leaves of divaricate plants are a common feature of the New Zealand flora. The divaricate growth form may be an adaptation to deter browsing by extinct avian herbivores (moa); alternatively aspects of the insular climate may be responsible. However, our understanding of the selective pressures responsible for the high branching angles and small leaves of divaricate plants is incomplete. Here, I tested for differences in traits associated with the divaricate growth form between plants from Chatham Island and the New Zealand mainland. Moa never reached the Chatham Islands and its flora is derived from plants on mainland New Zealand. Therefore, I predicted Chatham Island plants to have lost morphological adaptations that may have deterred moa herbivory. Traits were quantified on 316 individuals in the field, allowing for 12 island‐mainland taxonomic comparisons. Chatham Island plants consistently produced smaller branching angles, larger leaves, shorter internodes and larger stems than related mainland plants. Results are therefore consistent with the hypothesis that selection for small leaves and high angled branching may be relaxed on the Chatham Islands due to an absence of moa. Smaller branching angles and larger leaves may offer a competitive advantage to Chatham Island plants.  相似文献   

5.
植物表面的毛对螨类的影响及其对害螨生防的启示   总被引:2,自引:1,他引:2  
郑兴国  洪晓月 《昆虫知识》2009,46(2):210-215
植物表面的毛可分为单细胞毛和多细胞毛(一般是腺毛)两大类。它们对植物上的螨类有直接或间接的影响。植物表面毛的作用可分为物理作用和化学作用:物理作用有影响活动、提供附着物(防止从叶面脱落)、提供隐蔽环境(防止捕食者捕食)、改善微环境(主要是维持叶面湿度)或捕捉并维持补充食物量(如花粉、菌类孢子)等形式;化学作用是毛本身所含的或受害螨为害后被诱导产生的化学物质对螨的生长发育和存活产生的影响,或作为有害螨存在的信号对捕食螨发挥作用。关于植物表面的毛对螨类的影响,国内研究得很少。国外的研究多数集中于各种植物上的毛对二斑叶螨Tetranychusurticae等害螨和智利小植绥螨Phytoseiuluspersimilis等捕食性螨的影响。植物表面的毛对螨类的影响很复杂。充分理解各种植物上的毛对螨类的影响可以获得关于害螨生物防治的重要启示。  相似文献   

6.
Leaf domatia, specialized structures on the undersides of leaves, appear to promote mutualism between plants and those mites that protect leaves from pathogenic fungi and small herbivorous arthropods. Their occurrence was surveyed on 425 plant species (368 native species and 57 species introduced from other regions of northeastern Asia), comprising 177 genera and 59 families of woody Dicotyledonae in the Korean flora. Domatia, primarily of tuft or pocket forms (84% of species), were present in vein axils on leaves of 152 species (36%) within 66 genera (37%) and 39 families (66%). Overall, we report leaf domatia in nine new families and 25 additional genera. Mites, primarily from families or suborders (e.g., Acaridida, Phytoseiidae, Tydeidae) in which arboreal representatives are primarily fungivorous or predaceous, were found in domatia on leaves of 78% of all species sampled. Domatia frequency depended upon both growth form and habit of species. They were especially common among tree species (55%), but less so on shrubs (20%) and woody vines (22%). Domatia were much more frequent on species of deciduous plants (40% of those sampled) than on evergreen species, of which only 10% had leaf domatia. This difference was consistent across a number of local deciduous and broadleaf evergreen forests in South Korea. The high frequency of leaf domatia in this survey indicates that plant-mite mutualism may be widespread in Korean plant communities. The floristic affinities of plants with domatia in Korea to those in other regions of East Asia, eastern North America, and Europe suggest that these plant-mite associations characterize the temperate broadleaf deciduous forest biome in the Northern Hemisphere.  相似文献   

7.
The Australasian region contains a significant proportion of worldwide Poa diversity, but the evolutionary relationships of taxa from this region are incompletely understood. Most Australasian species have been placed in a monophyletic Poa subgenus, Poa supersection Homalopoa section Brizoides clade, but with limited resolution of relationships. In this study, phylogenetic relationships were reconstructed for Australasian Poa, using three plastid (rbcL and matK genes and the rpl32‐trnL intergenic spacer) and two nuclear [internal/external transcribed spacer (ITS/ETS)] markers. Seventy‐five Poa spp. were represented (including 42 Australian, nine New Guinean, nine New Zealand and three Australian/New Zealand species). Maximum parsimony, maximum likelihood and Bayesian inference criteria were applied for phylogenetic reconstruction. Divergence dates were estimated using Bayesian inference, with a relaxed clock applied and rates sampled from an uncorrelated log‐normal distribution. Australasian Poa spp. are placed in three lineages (section Brizoides, section Parodiochloa and the ‘X clade’), each of which is closely related to non‐Australasian taxa or clades. Section Brizoides subsection Australopoa is polyphyletic as currently circumscribed. In Australasia, Poa has diversified within the last 4.3 Mya, with divergence dating results broadly congruent with fossil data that record the appearance of vegetation with a prominent grassland understorey or shrubland/grassland mosaic vegetation dating from the mid‐Pliocene. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 523–552.  相似文献   

8.
We observed the number of predatory mites (Phytoseiidae:Typhlodromus caudiglans) on the foliage of 20 North American species of grapes (Vitis spp) plus the domesticated EuropeanVitis vinifera, all grown in a common garden. We found relatively few phytophagous mites. The numbers of phytophagous mites were not correlated with the plant characteristics that we measured. We found approximately five times as many predatory mites as phytophagous mites and the numbers of these phytoseiid predators were not affected by the availability of prey. Similarly, numbers of phytoseiids were unaffected by plant gender and, hence, the availability of pollen, another source of food. The numbers of phytoseiids were not clustered according to the taxonomic grouping of the tested plant species. Leaf surface characteristics explained over 25% of the variance in the numbers of phytoseiids. Numbers of phytoseiids were positively associated with the density of vein hairs, the density of bristles in leaf axils, and the presence of leaf domatia. These results suggest that sheltered habitats rather than food availability may limit the numbers of phytoseiid mites on grapevines.  相似文献   

9.
The Australasian archipelago is biologically extremely diverse as a result of a highly puzzling geological and biological evolution. Unveiling the underlying mechanisms has never been more attainable as molecular phylogenetic and geological methods improve, and has become a research priority considering increasing human‐mediated loss of biodiversity. However, studies of finer scaled evolutionary patterns remain rare particularly for megadiverse Melanesian biota. While oceanic islands have received some attention in the region, likewise insular mountain blocks that serve as species pumps remain understudied, even though Australasia, for example, features some of the most spectacular tropical alpine habitats in the World. Here, we sequenced almost 2 kb of mitochondrial DNA from the widespread diving beetle Rhantus suturalis from across Australasia and the Indomalayan Archipelago, including remote New Guinean highlands. Based on expert taxonomy with a multigene phylogenetic backbone study, and combining molecular phylogenetics, phylogeography, divergence time estimation, and historical demography, we recover comparably low geographic signal, but complex phylogenetic relationships and population structure within R. suturalis. Four narrowly endemic New Guinea highland species are subordinated and two populations (New Guinea, New Zealand) seem to constitute cases of ongoing speciation. We reveal repeated colonization of remote mountain chains where haplotypes out of a core clade of very widespread haplotypes syntopically might occur with well‐isolated ones. These results are corroborated by a Pleistocene origin approximately 2.4 Ma ago, followed by a sudden demographic expansion 600,000 years ago that may have been initiated through climatic adaptations. This study is a snapshot of the early stages of lineage diversification by peripatric speciation in Australasia, and supports New Guinea sky islands as cradles of evolution, in line with geological evidence suggesting very recent origin of high altitudes in the region.  相似文献   

10.
Australia's flora and fauna have long been considered unique, but whether this applies to its grasses is less known. This study characterises the Australasian grass flora biogeographically. We investigate the distribution of C3 and C4 grass genera across four continents and construct broad profiles of their grass flora. We use endemism to examine global patterns of specialisation, and inter-continental distributions as indicators of dispersal, using databases constructed over twenty years. We examined Australasian patterns with regard to endemicity and shared groups and categorised all of the region's genera into four age classes, from Australia's separation from Gondwana to the present. Globally, each continent presented a unique profile and C4 grasses were more widely shared than C3. Australasia's grasses equally comprise C3 and C4 genera; it shared two thirds of its C4 types with other continents, whereas C3 types split evenly between shared and endemic. Australasia shared relatively few genera with just one neighbour (7% C3, 13% C4), primarily with EurAsia. Australasian grass genera and species were either endemic or globally widespread, and 88% of C3 and 93% of C4 species were derived from lineages that originated elsewhere. We conclude Southeast Asia was the gateway for dispersal into Australasia, akin to rainforest taxa exchanges which increased from c12 Ma, with about 65% of Australasia's grass genera arriving in the past 3.5 Ma. The strong presence of C4 grasses in Australasia implies they have infiltrated a wide range of ecosystems, many probably occupied by ancient taxa with which they had not co-evolved.  相似文献   

11.
Abstract

The distribution and movements of Buller's albatross in Australasian seas are analysed using results of shipborne surveys (13 238 10‐min counts), counts from trawlers, banding data, recoveries on beaches and fishing vessels, and records from the literature. Patterns of marine distribution are documented by monthly accounts and maps. During the breeding season, highest abundances are recorded over shelves and slopes off southern New Zealand (The Snares shelf to 41–43°S off the South Island, D. b. bulleri), around the Chatham Islands and over oceanic subtropical waters east of New Zealand (probably D. b. platei), with marked seasonal variations observed off southern New Zealand. Both subspecies disperse mostly outside Australasian waters during the non‐breeding season. Birds banded on The Snares were recovered off south‐eastern New Zealand (Stewart Island to Cook Strait) and in the eastern tropical Pacific. Immatures accounted for only 0.25% of birds censused during the ship‐borne surveys; they are recorded around the New Zealand mainland in August‐October and February‐May, off south‐eastern Australia and in the Tasman Sea in November‐December, February, and June‐July. Around New Zealand, males predominate among birds recovered along the eastern seaboard, whereas the sex ratio in south‐western waters tends to vary according to water depth and season. Distribution patterns and movements in New Zealand and Australian seas are discussed in relation to breeding events and breeding status.  相似文献   

12.
The seasonal cycle and population dynamics of Schizotetranychus nanjingensis Ma and Yuan, Aponychus corpuzae Rimando (Tetranychidae), Aculus bambusae Kuang (Eriophyidae) and their natural enemy Typhlodromus bambusae Ehara (Phytoseiidae) were studied during 1996–1998 in moso bamboo forests in Nanping, Fujian, China. Damage to bamboo leaves was often caused by mixed populations of the three phytophagous species, which displayed different seasonal dynamics: S. nanjingensis fed actively and reproduced in May and from late July to late October (aestivating from June to mid July), Ap. corpuzae was active and reproduced from mid July to late November, and Ac. bambusae from July to next February. During Spring S. nanjingensis was the dominant species with the greatest niche width, but in Summer Ac. bambusae and Ap. corpuzae became dominant and had greater niche widths. In Autumn, Ac. bambusae decreased but both S. nanjingensis and Ap. corpuzae mites increased and the latter became dominant. In winter all species decreased sharply in number. The two spider mite species (S. nanjingensis and Ap. corpuzae) had high niche overlaps in all four seasons. Niche overlaps between the eriophyid Ac. bambusae and the two spider mites were similarly high except during the spring when Ac. bambusae was absent. The predatory mite (T. bambusae) had higher niche overlap with Ap. corpuzae than with others during Autumn and Winter, but during Spring and Summer niche overlap was higher with S. nanjingensis.  相似文献   

13.
The water mites of running waters in The Netherlands have been surveyed for the period 1987–1992. The aims were to investigate their present distribution, to make a comparison with historical data and to identify differences in water mite assemblages on a regional scale. The investigation covered 821 sites in eight different drainage areas. In spite of the scarcity of historical data, it may be concluded that in the course of this century about 40% of rheophilic water mites have become extinct. In canalized streams lentic species are dominant. In springs and spring streams, lotic species can survive, but the assemblages consist mainly of euryoecious water mite species.Multivariate techniques were used to show regional differences. These differences are mainly determined by stream hydraulics. The area of Zuid-Limburg can easily be demarcated by its relatively high number of rheophilic species. The man-made streams (sprengen) at the east side of the Veluwe area are characterized by a number of species which indicate undisturbed circumstances. The response of water mites to pollution of running waters is discussed.  相似文献   

14.
Potentially, pathogenic bacteria are one of the main infective agents against which a battery of chemical and physical barriers has evolved in animals. Among these are the secretions by the exocrine uropygial gland in birds. The antimicrobial properties of uropygial secretions may prevent colonization and growth of microorganisms on feathers, skin and eggshells. However, uropygial gland secretions also favour the proliferation of feather mites that feed on secretions and microorganisms living on feathers that would otherwise reach eggshells during incubation if not consumed by feather mites. Therefore, at the interspecific level, uropygial gland size (as an index of volume of uropygial secretion) should be positively related to eggshell bacterial load (i.e. the risk of egg infection), whereas eggshell bacterial loads may be negatively related to abundance of feather mites eating bacteria. Here, we explore these previously untested predictions in a comparative framework using information on eggshell bacterial loads, uropygial gland size, diversity and abundance of feather mites and hatching success of 22 species of birds. The size of the uropygial gland was positively related to eggshell bacterial loads (mesophilic bacteria and Enterobacteriaceae), and bird species with higher diversity and abundance of feather mites harboured lower bacterial density on their eggshells (Enterococcus and Staphylococcus), in accordance with the hypothesis. Importantly, eggshell bacterial loads of mesophilic bacteria, Enterococcus and Enterobacteriaceae were negatively associated with hatching success, allowing us to interpret these interspecific relationships in a functional scenario, where both uropygial glands and mutualistic feather mites independently reduce the negative effects of pathogenic bacteria on avian fitness.  相似文献   

15.
Insectivorous plants and ant-fed plants represent the two ways in which plants have evolved to utilize directly nutrients derived from animals. This paper addresses the limitations under which selection acts to favour the evolution of one or the other of these nutrient-gathering tactics. Both tactics have evolved independently at least six times under similar ecological conditions, indicating that the evolutionary solutions to ecological problems are limited by the historical make-up of communities and are, to some extent, predictable. Both insectivorous and ant-fed plants evolve in environments with very low levels of availability of nutrients in the substrate; the primary use of the animal-food is probably nitrogen; the vast majority of species are perennial, and most species are tropical or subtropical, although some insectivorous genera are primarily temperate.
Although these two nutrient-gathering tactics evolve in response to similar ecological problems, whether plants evolve an insectivorous habit or the ant-fed habit depends on the growth forms of the plants and the habitats in which they grow. Most insectivorous plants evolve as herbs in wet, sterile soils or in sterile aquatic habitats; ant-fed plants evolve as epiphytes on trees in open-canopied habitats. These kinds of animal-plant interactions are relatively rare because the environments in which they are favoured by selection are uncommon.  相似文献   

16.
This revision addresses two Southern Hemisphere genera in the family Buccinidae. Buccipagoda kengrahami (Ponder, 1982) and B. ponderi n. sp. are recognised from off southern Australia and B. achilles n. sp. from off New Zealand. Sagenotriton n. gen. is introduced for S. ajax n. sp. from off New Zealand, and S. bathybius (Bouchet & Warén, 1986) and S. bonaespei (Barnard, 1963) from off South Africa.  相似文献   

17.
Aim and location New Zealand began to separate from Gondwana c. 85 Ma, and has been isolated from the nearest large landmass, Australia, by some 2000 km of the Tasman Sea since c. 60 Ma. Given New Zealand's long geographical isolation, there has been considerable interest in explaining the origins of its different biotic elements. Here we investigate the biogeography of the fern genus Polystichum from temperate Australasia. Six species are found in New Zealand, four in Australia, and two on Lord Howe Island. Methods The evolutionary relationships between the twelve Polystichum species found in temperate Australasia were inferred from phylogenetic analyses of two molecular data sets: DNA sequence from the chloroplast rps4–trnS spacer locus; and AFLP DNA‐fingerprinting. The timing of the separation between Australian and New Zealand Polystichum was estimated by using the fossil record to temporally calibrate the rbcL sequence differentiation between representative species from these regions. Results Species of Polystichum from New Zealand appear to comprise a monophyletic group. This suggests that Polystichum crossed the Tasman only once. Temporal calibration of the rbcL sequence differentiation between Australian and New Zealand Polystichum indicates that a vicariant explanation for their separation can be rejected in favour of trans‐oceanic dispersal. Main conclusions The extant diversity within New Zealand Polystichum appears to have been derived from a single, trans‐oceanic dispersal event (within the last c. 20 Myr), followed by a relatively extensive in situ ecological radiation.  相似文献   

18.
Evolutionary Ecology - Allometry—the study of proportional growth of body parts, and the relationship of body size to an organism’s morphology, physiology and behaviour—is a...  相似文献   

19.
Abstract  Closterocerus cruy (Girault) is newly recorded, both from New Zealand and as a parasitoid of lepidopteran leafminers. The species is redescribed from the Girault type and from New Zealand material. Diagnostic character states are provided for the separation of C. cruy from the closely related Australian agromyzid parasitoid C. mirabilis Edwards and LaSalle.  相似文献   

20.
Genomic imprinting in plants: observations and evolutionary implications   总被引:17,自引:2,他引:17  
The epigenetic phenomenon of genomic imprinting occurs among both plants and animals. In species where imprinting is observed, there are parent-of-origin effects on the expression of imprinted genes in offspring. This review focuses on imprinting in plants with examples from maize, where gene imprinting was first described, and Arabidopsis. Our current understanding of imprinting in plants is presented in the context of cytosine methylation and imprinting in mammals, where developmentally essential genes are imprinted. Important considerations include the structure and organization of imprinted genes and the role of regional, differential methylation. Imprinting in plants may be related to other epigenetic phenomena including paramutation and transgene silencing. Finally, we discuss the role of gene structure and evolutionary implications of imprinting in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号