共查询到20条相似文献,搜索用时 10 毫秒
1.
Paul D. N. Hebert Margaret J. Beaton Steven S. Schwartz David J. Stanton 《Evolution; international journal of organic evolution》1989,43(5):1004-1015
There is growing evidence that transitions from sexual to asexual reproduction are often provoked by internal genetic factors rather than extrinsic selection pressures. In the cladoceran crustacean Daphnia pulex, the shift to asexuality has been linked to sex-limited meiosis suppression. Most populations of this species reproduce by obligate parthenogenesis, but cyclically parthenogenetic populations persist in the southern portion of its range. The meiosis-suppressor model predicts that asexuality in D. pulex has polyphyletic origins and that the coexistence of cyclically parthenogenetic lines with male-producing obligately asexual clones should be unstable. For the present study, we examined the genotypic structure of D. pulex populations from a region in which there is an abrupt microgeographical shift in breeding system. Populations in Michigan largely reproduce by cyclic parthenogenesis, while those in Ontario are obligately asexual. Allozyme studies on 77 populations from this area revealed 50 obligately asexual clones, divisible into two groups: one derived from a single parent species and the other derived via interspecific hybridization. Although nearly 50% of the clones retained male production, there was, as predicted, no evidence of coexistence between cyclically parthenogenetic populations and male-producing obligately asexual clones. The survey did, however, reveal a low incidence of cyclically parthenogenetic populations in Ontario. The high genotypic diversity of these populations suggests that they are not only resistant to meiosis suppression, but able to rework genetic variation gained from asexual clones into a sexual breeding system. 相似文献
2.
Michael Lynch Ken Spitze Teresa Crease 《Evolution; international journal of organic evolution》1989,43(8):1724-1736
In the midwestern United States the Daphnia pulex complex consists of a mosaic of sexual and asexual populations, providing a useful model system for studying the evolutionary forces underlying the maintenance of sex. One asexual and two sexual populations were surveyed for genetic variation for isozymes, mitochondrial DNA, and life-history characters. While the sexual populations exhibited substantial levels of genetic variance for fitness characters, no variation was detected in the asexual population at any level. However, a parallel survey among asexual clones derived from other ponds revealed large amounts of quantitative variation among clones, even among those with the same molecular profile. As a group, the asexuals are more variable for life histories than are the sexual populations. The molecular data indicate a relatively recent origin for the extant asexual D. pulex. The polyphyletic origin of these clones, combined with their microevolutionary potential, provides an explanation for their broad geographic distribution. The distribution of sex in the complex cannot be explained with the standard models that assume an invariant asexual population in reproductive isolation from the parental species. Although the frequency of asexuality may be driven by the spread of a sex-limited meiosis suppressor through sexual populations, the complete displacement of sexuality may be prevented by ecological distinctions between the two classes of individuals. On average, the asexuals are larger but produce smaller clutches than the sexuals. 相似文献
3.
Paul D. N. Hebert Robert D. Ward Lawrence J. Weider 《Evolution; international journal of organic evolution》1988,42(1):147-159
Some individuals of the cladoceran crustacean, Daphnia pulex, reproduce by cyclic parthenogenesis, while others are obligate parthenogens. Cyclic parthenogenesis is the primitive breeding system; the transition to obligate parthenogenesis has been linked to sex-limited meiosis-suppression. Detailed study of patterns of breeding-system distribution and clonal diversity is justified because D. pulex is the first species in which the loss of sex has been related to this mechanism. The present study investigated the genotypic characteristics of 10 D. pulex populations from each of 22 sites in the Great Lakes watershed. This analysis revealed that populations reproducing by cyclic parthenogenesis were uncommon and restricted to southern sites. Most populations reproduced by obligate parthenogenesis, with the electrophoretic survey revealing an average of three clones per pond and 145 unique clones over the watershed. A combinatorial analysis was used to examine the relationships between clone discovery in the asexual populations and both sample size and genetic-sampling intensity. This analysis showed that the few clones found in individual ponds were readily discriminated, while diversity on a regional scale was underestimated. These methods provide a quantitative basis for assessing the level of clonal diversity in asexual populations and in asexually transmitted segments of the genome. 相似文献
4.
5.
Ken Spitze John Burnson Michael Lynch 《Evolution; international journal of organic evolution》1991,45(5):1081-1090
The genetic covariance structure for life-history characters in two populations of cyclically parthenogenetic Daphnia pulex indicates considerable positive correlation among important fitness components, apparently at odds with the expectation if antagonistic pleiotropy is the dominant cause of the maintanence of genetic variation. Although there is no genetic correlation between offspring size and offspring number, present growth and present reproduction are both strongly positively correlated genetically with future reproduction, and early maturity is genetically correlated with larger clutch size. Although the ubiquity of antagonistic pleiotropy has been recently questioned, there are peculiarities of cyclical parthenogenesis that could lead to positive life-history covariance even when negative covariance would be expected in a similar sexual species. These include the influence of nonadditive gene action on evolution in clonally reproducing organisms, and the periodic release of hidden genetic variance within populations of cyclical parthenogens. Examination of matrix similarity, using the bootstrap for distribution-free hypothesis testing, reveals no evidence to suggest that the genetic covariance matrices differ between the populations. However, there is considerable evidence that the phenotypic and environmental covariance matrices differ between populations. These results indicate approximate stability of the genetic covariance matrix within species, an important assumption of many phenotypic evolution models, but should caution against the use of phenotypic in place of genetic covariance matrices. 相似文献
6.
Samuel M. Scheiner David Berrigan 《Evolution; international journal of organic evolution》1998,52(2):368-378
In a heterogeneous world, the optimal strategy for an individual is to continually change its phenotype to match the optimal type. However, in the real world, organisms do not behave in this fashion. One potential reason why is that phenotypic plasticity is costly. We measured production and maintenance costs of plasticity in the freshwater crustacean Daphnia pulex (Cladocera: Crustacea) in response to the presence of chemical signals from a predator, the insect Chaoborus americanus. We looked at three changes in juvenile body size and shape: body length, body depth, and tailspine length. Fitness costs were measured as changes in adult growth and fecundity, and summarized as the intrinsic rate of increase (r) for individuals reared in the presence or absence of Chaoborus extract. The cost of plasticity was measured as a multiple regression of mean clone fitness against trait and trait plasticity. We found scant evidence for either production or maintenance costs of plasticity. We also failed to find direct costs of these juvenile structures, which is surprising, as others have found such costs. We attribute the lack of measurable direct or plasticity costs to a decrease in metabolic rates in the presence of the Chaoborus extract. This decrease in metabolic rate may have compensated for any cost increases. We call for more extensive measures of the costs of plasticity, especially under natural conditions, and the incorporation of costs into evolutionary models. 相似文献
7.
David J. Innes Paul D. N. Hebert 《Evolution; international journal of organic evolution》1988,42(5):1024-1035
Sex in Daphnia is environmentally determined, and some obligately parthenogenetic clones of D. pulex have retained the ability to produce males. In the present study, males from 13 such clones were crossed to sexual females from closely related cyclical parthenogens both to determine whether the males were capable of producing viable hybrids and to determine the mode of reproduction of the hybrids. A total of 178 genetically confirmed hybrids were produced, with each of the 19 attempted crosses resulting in some viable hybrids. On average, only 34% of the hybrid eggs that initiated development survived to the reproductive stage, suggesting some incompatibility between the parents. The absence of any association between survivorship and parental or hybrid genotype indicated, however, that there is no specific genetic incompatibility associated with the marker loci used. The inability of most hybrids to produce normal resting eggs is further evidence of a general genomic incompatibility between the parents. Ten of the hybrids produced viable resting eggs, permitting tests to determine their mode of reproduction. Six of the 10 hybrids reproduced by cyclical parthenogenesis, like their maternal parent. The remaining four hybrids reproduced by obligate parthenogenesis, like their paternal parent, demonstrating that the genes suppressing meiosis can be transmitted by the male parent. These results support a model for the generation of new clones that involves the spread of genes suppressing meiosis and provide evidence that the high genotypic diversity observed in obligately parthenogenetic populations of D. pulex is a result of the multiple origin of new clones from the cyclical parthenogens. Evidence was also obtained suggesting that the obligately parthenogenetic clones carry a load of recessive deleterious genes. 相似文献
8.
Lawrence J. Weider Margaret J. Beaton Paul D. N. Hebert 《Evolution; international journal of organic evolution》1987,41(6):1335-1346
Based largely on analogy with latitudinal trends in species diversity, it has been proposed that levels of genotypic (clonal) diversity in parthenogenetic populations from high latitudes should be lower than those in populations from the temperate zone or the tropics. Prior studies have shown that low-arctic populations of obligately asexual Daphnia pulex are less clonally diverse than temperate-zone populations. To test for the existence of a latitudinal trend, an allozymic survey of obligately parthenogenetic populations of D. pulex was conducted at a site in the Canadian high-arctic. The study revealed the presence of 75 clones in 179 tundra ponds that were surveyed. On average, 4.5 clones coexisted in single ponds with a range of 1–14 clones. These diversity values are as great (or greater) than those observed in more southerly populations and conflict with the notion of reduced levels of genetic variation in arctic populations. Mechanisms that may influence genetic (clonal) diversity in apomictic complexes are discussed. 相似文献
9.
10.
Lawrence J. Weider Anders Hobk John K. Colbourne Teresa J. Crease France Dufresne Paul D. N. Hebert 《Evolution; international journal of organic evolution》1999,53(3):777-792
Pleistocene glacial cycles undoubtedly altered the evolutionary trajectories of many taxa, yet few studies have examined the impact of such events on genetic differentiation and phylogeography at large geographic scales. Here we present the results of a circumarctic survey of mitochondrial DNA diversity in members of the Daphnia pulex complex. The analysis involved the survey of restriction site polymorphisms in a 2100-bp fragment of the NADH-4 (ND4) and NADH-5 (ND5) genes for 276 populations representing the two major groups (tenebrosa and pulicaria) in this complex across their Holarctic range. A comparison of the distribution patterns for seven clades in this complex revealed very clear phylogeographic structuring. Most notably, pulicaria group lineages were restricted primarily to the Nearctic, with some colonization of formerly glaciated portions of northern Europe. This group was not detected from vast expanses of northern Eurasia, including the Beringian glacial refuge. In contrast, tenebrosa group haplotypes showed considerable intercontinental divergence between Eurasian and North American lineages, but were absent from Greenland and Iceland, as well as the Canadian arctic archipelago. Dispersal in Eurasia was primarily in a westerly direction from Beringia, whereas dispersal in the Nearctic followed proglacial drainage patterns. Long-distance dispersal of certain lineages was observed in both groups, and variation in haplotype richness and nucleotide diversity allowed us to make inferences about the positioning of putative glacial refugia. Overall, the phylogeographic pattern of diversification in this arctic complex is characterized by the apparently unique postglacial histories for each clade, indicating that even closely allied taxa can respond independently to the allopatric effects of glacial cycles. This is in sharp contrast to other phylogeographic studies of species assemblages from more southern (unglaciated) latitudes, which are often characterized by concordant patterns. 相似文献
11.
Ken Parejko Stanley I. Dodson 《Evolution; international journal of organic evolution》1991,45(7):1665-1674
Ponds containing the parthenogenetic zooplankter Daphnia pulex with and without chaoborid predators were sampled over the course of a season. A significant (P < 0.05) Spearman rank correlation was found between predator density and the expression of an antipredator defense (neckteeth) by the Daphnia. The reaction norms (percent induction of a single genotype versus predator density) of clones isolated from predator-free and predator-rich habitats were determined in a laboratory setting. There was a statistically significant different response among the six clones tested (P < 0.05). Clones isolated from chaoborid ponds showed significantly greater sensitivity to the presence of predator than clones from predator-free ponds (P < 0.05). In the laboratory, food levels under which prey were cultured affected induction of the antipredator response. Highest induction was found at the lowest food level used. 相似文献
12.
Jeffry L. Dudycha Alan J. Tessier 《Evolution; international journal of organic evolution》1999,53(6):1744-1756
The evolutionary theory of senescence predicts that high extrinsic mortality in natural populations should select for accelerated reproductive investment and shortened life span. Here, we test the theory with natural populations of the Daphnia pulex-pulicaria species complex, a group of freshwater zooplankton that spans an environmental gradient of habitat permanence. We document substantial genetic variation in demographic life-history traits among parent and hybrid populations of this complex. Populations from temporary ponds have shorter life spans, earlier and faster increases of intrinsic mortality risk, and earlier and steeper declines in fecundity than populations from permanent lakes. We also examine the age-specific contribution to fitness, measured by reproductive value, and to expected lifetime reproduction; these traits decline faster in populations from temporary ponds. Despite having more rapid senescence, pond Daphnia exhibit faster juvenile growth and higher early fitness, measured as population growth rate (r). Among populations within this species complex we observed negative genetic correlations between r and indices of life-history timing, suggesting trade-offs between early- and late-life performance. Our results cannot be explained by a trade-off between survival and fecundity or by nonevolutionary theories of senescence. Instead, our data are consistent with the evolutionary theory of senescence because the genetic variation in life histories we observed is roughly congruent with the temporal scale of environmental change in the field. 相似文献
13.
14.
Ken Spitze 《Evolution; international journal of organic evolution》1991,45(1):82-92
The effect of predation by the aquatic dipteran larva Chaoborus americanus on genetic diversity and life-history evolution in the cladoceran Daphnia pulex was investigated in large replicate laboratory populations. Instantaneous daily loss rates of clonal diversity and genetic variance for fitness indicate that 93–99% of initial genetic diversity can be removed from populations during the 8–12 generations of clonal reproduction that occur each year in natural populations. In the absence of predation, the principal evolved changes in mean population life history were smaller immature body size and increased and earlier fecundity. In the presence of size-selective Chaoborus predation, populations evolved toward larger body size and increased and earlier reproduction. The difference between these two trajectories is an estimate of the direct additive effect of Chaoborus predation. This effect was manifested as evolution toward larger body size with a trend toward earlier and increased reproduction. 相似文献
15.
Stuart K. J. R. Auld Kai H. Edel Tom J. Little 《Evolution; international journal of organic evolution》2012,66(10):3287-3293
In invertebrate–parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host–parasite system with a well‐established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host–parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity. 相似文献
16.
The epibiotic flagellate Colacium vesiculosum Pringsheim attaches to planktonic species of Daphnia in freshwater habitats. Previous studies found that prevalence (percentage of substrate organisms carrying attached epibionts) and intensity (number of attached epibionts on a given substrate organism) are low early in the Daphnia intermolt period and are high late in the intermolt period. We tested the hypothesis that increases of Colacium cells attached to Daphnia occur both by rapid initial and continuous colonization and by cell reproduction. Epibiont prevalence and intensities were determined at successive intermolt stages of Daphnia pulex Leydig collected from freshwater ponds in Colorado. Colonization was continuous throughout the intermolt period and was most important to epibiont population increase at the beginning of the intermolt period. Cell division was the major contributor to epibiont increase at the end of the intermolt period. 相似文献
17.
18.
Graham P. Wallis J. W. Arntzen 《Evolution; international journal of organic evolution》1989,43(1):88-104
The crested newt has a widespread European distribution and encompasses four taxa recently elevated to full species: Triturus cristatus, T. carnifex, T. dobrogicus, and T. karelini. These are distinct on morphological, chromosomal, and isozymic grounds and have fairly sharp transition zones. A widespread survey (12 countries, 49 geographic sites, 210 individuals) of mtDNA variation (20–27 restriction enzyme sites mapped per individual) was made in order to 1) correlate mtDNA variation with morphological features defining the species, 2) determine the degree of differentiation within and among species, and 3) detect any introgression among species. The mtDNAs of these species were clearly differentiated (d = 3.9–7.1%). Additionally, geographic structuring was observed within T. carnifex and T. karelini, each displaying two divergent mitochondrial genome types (d = 3.5% and 4.7%, respectively). The other two (more northerly distributed) species were genetically homogeneous over most (T. cristatus) or all (T. dobrogicus) of their ranges. In the case of T. cristatus, one may infer bottlenecking as a result of Pleistocene glaciation events. This may also apply in part to T. dobrogicus, but high population connectedness and gene flow in this lowland river species may alone be sufficient for homogenization of mtDNA. Patterns of mtDNA variation were largely concordant with morphology; some interspecific mitochondrial gene flow was observed, but only close to or in the transition zones. Analyses of mapped restriction-site data by UPGMA and parsimony methods (using the closely related T. marmoratus as an outgroup) produce very similar dendrograms. The levels of divergence found concur with the systematics of the group, but the differentiation within T. carnifex and T. karelini is notable. 相似文献
19.
20.
Diarmaid
Foighil Michael J. Smith 《Evolution; international journal of organic evolution》1995,49(1):140-150
The marine clam genus Lasaea is unique among marine bivalves in that it contains both sexual and asexual lineages. We employed molecular tools to infer intrageneric relationships of geographically restricted sexual versus cosmopolitan asexual forms. Polymerase chain reaction primers were used to amplify and sequence homologous 624 nucleotide fragments of COIII from polyploid, asexual, direct-developing individuals representing northeastern Pacific, northeastern Atlantic, Mediterranean, southern Indian Ocean, and Australian populations. DNA sequences also were obtained from the two known diploid congeners, the Australian sexual, indirect developer, Lasaea australis, and an undescribed meiotic Australian direct developer. Estimated tree topologies did not support monophyly for polyploid asexual Lasaea lineages. A robust dichotomy was evident in all phylogenetic trees and each of the two main branches included one of the diploid meitoic Australian congeners. Lasaea australis clustered with two of the direct-developing, polyploid asexual haplotypes, one from Australia, the other from the northeastern Atlantic. Monophyly is supported for the diploid Australian direct-developing lineage together with the remaining polyploid asexual lineages from the northeastern Pacific, northeastern Atlantic, Mediterranean, and southern Indian Ocean. These results indicate that asexual Lasaea lineages are polyphyletic and may have resulted from multiple hybridization events. The high degree of genetic divergence of asexual lineages from co-clustering meiotic congeners (16%–22%) and among geographically restricted monophyletic clones (9%–11%) suggests that asexual Lasaea lineages may be exceptionally long lived. 相似文献