首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The presence and distribution of neurons immunoreactive against antibodies to serotonin (5-HT) and gastrin/cholecystokinin (gastrin/CCK) has been studied in the larval retrocerebral complex of the blowfly Calliphora erythrocephala, a composite structure which consists of the corpus cardiacum, the corpus allatum, the thoracic gland and a portion of the cephalic aorta. Immunoreactive material was found in all these elements except in the corpus allatum. Six to eight cell bodies in the corpus cardiacum and four to eight cell bodies in the thoracic gland were 5-HT immunoreactive (5-HTi). These 5-HTi cell bodies send processes to the neuropil of the corpus cardiacum and to neurohemal sites in the cephalic aorta, corpus cardiacum and ventral part of the thoracic gland. Six to eight cell bodies in the corpus cardiacum and four to six cell bodies in the thoracic gland reacted with antibodies against gastrin/CCK. These cell bodies send processes to the neuropil of the corpus cardiacum and to neurohemal sites in the corpus cardiacum and the cephalic aorta in a pattern resembling that of the 5-HTi fibers. Additional gastrin/CCK-like immunoreactive fibers were shown to come from the central nervous system via the two nervi corporis cardiaci. An electron-microscopical analysis was performed to analyze further the morphological features revealed by the light-microscopic immunocytochemical technique. This confirmed the existence of neurosecretory-like terminals among the gland cells of the thoracic glands and the existence of neurohemal sites in several regions of the larval retrocerebral complex. Some functional aspects of the retrocerebral complex are discussed on the basis of the presented data.  相似文献   

2.
Summary Production of sex pheromone in several species of moths has been shown to be under the control of a neuropeptide termed pheromone-biosynthesis-activating neuropeptide (PBAN). We have produced an antiserum to PBAN from Helicoverpa zea (Lepidoptera: Noctuidae) and used it to investigate the distribution of immunoreactive peptide in the brain-suboesophageal ganglion complex and its associated neurohemal structures, and the segmental ganglia of the ventral nerve cord. Immunocytochemical methods reveal three clusters of cells along the ventral midline in the suboesophageal ganglion (SOG), one cluster each in the presumptive mandibular (4 cells), maxillary (12–14 cells), and labial neuromeres (4 cells). The proximal neurites of these cells are similar in their dorsal and lateral patterns of projection, indicating a serial homology among the three clusters. Members of the mandibular and maxillary clusters have axons projecting into the maxillary nerve, while two additional pairs of axons from the maxillary cluster project into the ventral nerve cord. Members of the labial cluster project to the retrocerebral complex (corpora cardiaca and cephalic aorta) via the nervus corpus cardiaci III (NCC III). The axons projecting into the ventral nerve cord appear to arborize principally in the dorsolateral region of each segmental ganglion; the terminal abdominal ganglion is distinct in containing an additional ventromedial arborization in the posterior third of the ganglion. Quantification of the extractable immunoreactive peptide in the retrocerebral complex by ELISA indicates that PBAN is gradually depleted during the scotophase, then restored to maximal levels in the photophase. Taken together, our findings provide anatomical evidence for both neurohormonal release of PBAN as well as axonal transport via the ventral nerve cord to release sites within the segmental ganglia.Abbreviations A aorta - Br-SOG brain-suboesophageal ganglion complex - CC corpus cardiacum - PBS phosphate-buffered saline - PLI PBAN-like immunoreactivity - TAG terminal abdominal ganglion - VNC ventral nerve cord  相似文献   

3.
Social Hymenoptera such as ants or honeybees are known for their extensive behavioral repertories and plasticity. Neurons containing biogenic amines appear to play a major role in controlling behavioral plasticity in these insects. Here we describe the morphology of prominent serotonin-immunoreactive neurons of the antennal sensory system in the brain of an ant, Camponotus japonicus. Immunoreactive fibers were distributed throughout the brain and the subesophageal ganglion (SOG). The complete profile of a calycal input neuron was identified. The soma and dendritic elements are contralaterally located in the lateral protocerebrum. The neuron supplies varicose axon terminals in the lip regions of the calyces of the mushroom body, axon collaterals in the basal ring but not in the collar region, and other axon terminals ipsilaterally in the lateral protocerebrum. A giant neuron innervating the antennal lobe has varicose axon terminals in most of 300 glomeruli in the ventral region of the antennal lobe (AL) and a thick neurite that spans the entire SOG and continues towards the thoracic ganglia. However, neither a soma nor a dendritic element of this neuron was found in the brain or the SOG. A deutocerebral projection neuron has a soma in the lateral cell-body group of the AL, neuronal branches at most of the 12 glomeruli in the dorsocentral region of the ipsilateral AL, and varicose terminal arborizations in both hemispheres of the protocerebrum. Based on the present results, tentative subdivisions in neuropils related to the antennal sensory system of the ant brain are discussed.  相似文献   

4.
In this study we employed the expression of the astrocyte-specific enzyme glutamine synthetase, in addition to the glia-specific marker Repo, to characterize glia cell types associated with the embryonic development of the central complex in the grasshopper Schistocerca gregaria. Double labeling experiments reveal that all glutamine synthetase-positive cells associated with the central complex are also Repo-positive and horseradish peroxidase-negative, confirming they are glia. Early in embryogenesis, prior to development of the central complex, glia form a continuous population extending from the pars intercerebralis into the region of the commissural fascicles. Subsequently, these glia redisperse to envelop each of the modules of the central complex. No glial somata are found within the central complex neuropils themselves. Since glutamine synthetase is expressed cortically in glia, it allows their processes as well as their soma locations to be visualized. Single cell reconstructions reveal one population of glia as directing extensive ensheathing processes around central complex neuropils such as the central body, while another population projects columnar-like arborizations within the central body. Such arborizations are only seen in central complex modules after their neuroarchitecture has been established suggesting that the glial arborizations project onto a prior scaffold of neurons or tracheae.  相似文献   

5.
The peptidome of the central nervous system of adult cabbage root fly, Delia radicum (L) was investigated using matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Over twenty neuropeptides were identified from three different tissue sources, the combined brain/suboesophageal ganglion (SOG), the retrocerebral complex, and the thoracic-abdominal ganglion (TAG). A number of peptides were identified in all three tissues, including allatostatins, short neuropeptide F-like peptides, corazonin, a pyrokinin, and a myosuppressin. Adipokinetic hormone was restricted to the retrocerebral complex. Other peptides, including FMRFamides and sulfakinins were detected only in the brain/SOG and TAG. Some peptides, notably myoinhibitory peptides and tachykinins, which have been identified in other fly species, were not detected in any tissue sample. This study has structurally characterized for the first time, the neuropeptides from adult D. radicum.  相似文献   

6.
The aim of this study was to investigate the secretion of brain‐derived neurotrophic factor (BDNF)‐like neuropeptide in the silkworm, Bombyx mori , by using immunocytochemical techniques on the brain and retrocerebral complex of fifth instar larvae. In the brain, four pairs of median neurosecretory cell (MNC) bodies and six pairs of lateral neurosecretory cell (LNC) bodies had distinct immunoreactivities to this peptide, suggesting that this peptide is produced from two types of brain neuron. These reactivities were much stronger in the MNC than in the LNC. Labeled MNC projected their axons into the contralateral corpora allata, to which axons of labeled MNC were eventually innervated, through decussation in the median region, contralateral nerve corporis cardiaci I and nerve corpora allata I. Labeled LNC extended their axons into the ipsilateral corpora allata to be innervated through the ipsilateral nerve corporis cardiaci II and nerve corpora allata I. These results suggest that BDNF is secreted as a neurohormone from MNC and LNC of the brain into the corpora allata.  相似文献   

7.
The anatomy of the neurosecretory cells in the brain-subesophageal ganglion complex of female European corn borer moth Ostrinia nubilalis (Lepidoptera: Pyralidae) was studied using histological and cobalt backfilling techniques. Histological staining revealed the presence of 2 median and one lateral neurosecretory cell groups in the brain. These brain neurosecretory cells are made up of mainly type A cells with a few type B cells in the median group. Three type C neurosecretory cell clusters occupy the apparent mandibular, maxillary, and labial neuromeres at the ventral median aspect of the subesophageal ganglion. Axonal pathways of the neurosecretory cell groups were delineated by retrograde cobalt filling from the corpora cardiaca. Fibers of the 3 brain neurosecretory cell groups merged to form a distinct axonal tract that exits the brain via the fused nervi corporis cardiaci-1 + 2. Cobalt backfilling from the corpora cardiaca filled 4 groups of cell bodies in the subesophageal ganglion. The presence in the subesophageal ganglion of extensive dendritic arborizations derived from the brain suggests interactions between neurosecretory cell groups in the 2 head ganglia.  相似文献   

8.
Allatotropin (AT) is a neuropeptide originally isolated from the brain of Manduca sexta and then characterized in several insect species. It acts as a neurohormone, as well as a neuromodulator. While it was primarily characterized on the basis of its ability to stimulate the secretion of juvenile hormones, it was also found that it acts as a cardioaccelerator and myostimulator. The presence of AT in IV instar larvae of T. infestans was previously described at the level of the Malpighian tubules. In the present study we report the presence of the peptide at the level of the brain, retrocerebral complex, as well as in the anterior midgut and aorta. The presence of AT at the corpora allata suggests that the peptide is acting on the gland during the first days of the moulting cycle. Neural processes at the level of the aorta and the anterior midgut suggests that, like in adults, the hormone is acting as a cardioaccelerator and myostimulator. The peptide was also found in open-type cells of the midgut. Finally the presence of allatotropic neurons in the optical lobe of the brain suggests that as in other species, the peptide is related with the control of circadian rhythms.  相似文献   

9.
Summary The distribution of FMRFamide-irmunoreactive cell bodies in the brain and retrocerebral complex of the locust, Schistocerca gregaria, is described. Most of the immunoreactive cell bodies are found in the pars intercerebralis and in the optic lobes. Many, but not all, of the cell bodies also react with an antiserum raised against bovine pancreatic polypeptide, but this antiserum also reveals another population of cells that stain selectively with this antiserum. In addition to the cell bodies, numerous immunoreactive processes are revealed by both antisera in neuropilar regions of the brain. The results of blocking experiments suggest that a differential distribution of three locust antigens can be determined from the examination of alternate serial sections stained with the two antisera used.  相似文献   

10.
Electrophysiologically identified cells of the cockroach pars intercerebralis (Periplaneta americana) were injected with the dye Lucifer Yellow for morphological examination and with horseradish peroxidase for ultrastructural marking. In addition to this, uninjected cells were also studied to elaborate the findings from the injected material. The two electrophysiologically distinct classes of cells (type I and type II) correspond to two distinct morphological and ultrastructural classes. Type I cells are the medial neurosecretory cells of the pars intercerebralis, which project their axons to the retrocerebral neuro-hemal complex. Their cell bodies have a mean diameter of 17 microns, and they contain neurosecretory granules 200 nm in diameter. Arborizations emanate from the axon in the anterior part of the protocerebral neuropil. The type II cell bodies are larger (38 microns in diameter). Their axons project into the contralateral circumesophageal connective. These cells were usually multipolar, having somatic arborizations in the anterior portocerebral neuropil. The cell bodies contain vesicles 40 nm in diameter, numerous trophospongia, and a multi-layered glial envelope.  相似文献   

11.
12.
In the female turnip moth, Agrotis segetum, a pheromone biosynthesis activating neuropeptide (PBAN) stimulates sex pheromone biosynthesis which exhibits a daily rhythm. Here we show data supporting a circadian rhythm in PBAN release from the corpora cardiaca, which we propose regulates the endogenous rhythm in sex pheromone biosynthesis. This conclusion is drawn as the observed daily rhythm in PBAN-like immunoreactivity in the hemolymph is persistent in constant darkness and is phase-shifted by an advanced light:dark cycle. PBAN-like immunoreactivity was found in the brain, the optic lobe, the suboesophageal ganglion and in the retrocerebral complex. In each hemisphere ca. 10 immunopositive neurons were observed in the pars intercerebralis and a pair of stained somata in the dorso-lateral protocerebrum. A cluster of cells containing PBAN-like immunoreactive material was found in the tritocerebrum and three clusters of such cells were found in the SOG. Their processes reach the corpora cardiaca via nervi corporis cardiaci and the dorsal surface of the corpora allata via the nervi corporis allati.  相似文献   

13.
Summary Brain, corpora cardiaca (CC)-corpora allata (CA) complex, suboesophageal ganglion, thoracic and abdominal ganglia of adults, larvae and embryos of Locusta migratoria have been immunohistochemically screened for gastrin cholecystokinin (CCK-8(s))-like material. In adult, numerous immunoreactive neurons and nerve fibres are located, with a marked symmetry, in various parts of the brain and throughout the ventral nerve cord. In the median part of the brain, cell bodies belonging neither to cellular type A1 nor A2 (following Victoria blue-paraldehyde fuchsin staining) are immunopositive; their processes terminate in the upper protocerebral neuropile. In lateral parts of the brain, external cell bodies send axons into CC and some up to CA, other internal have processes which terminate in the neuropile of the brain. Two of these latter cells react also with methionine-enkephalin antiserum. In the ventral nerve cord, in addition to numerous perikarya, immunore-active arborizations terminate in the neuropile or in close association with the sheath, at the dorsal part of all ganglia.This CCK-8(s) distribution pattern is observed only at the two last larval instars, but is precociously detected in the abdominal nerve cord of embryos, one day before hatching.  相似文献   

14.
The closely related crickets Dianemobius nigrofasciatus and Allonemobius allardi exhibit similar circadian rhythms and photoperiodic responses, suggesting that they possess similar circadian and seasonal clocks. To verify this assumption, antisera to Period (PER), Doubletime (DBT), and Cryptochrome (CRY) were used to visualize circadian clock neurons in the cephalic ganglia. Immunoreactivities referred to as PER-ir, DBT-ir, and CRY-ir were distributed mainly in the optic lobes (OL), pars intercerebralis (PI), dorsolateral protocerebrum, and the subesophageal ganglion (SOG). A system of immunoreactive cells in the OL dominates in D. nigrofasciatus, while immunoreactivities in the PI and SOG prevail in A. allardi. Each OL of D. nigrofasciatus contains 3 groups of cells that coexpress PER-ir and DBT-ir and send processes over the frontal medulla face to the inner lamina surface, suggesting functional linkage to the compound eye. Only 2 pairs of PER-ir cells (no DBT-ir) were found in the OL of A. allardi. Several groups of PER-ir cells occur in the brain of both species. The PI also contains DBT-ir and CRY-ir cells, but in A. allardi, most of the DBT-ir is confined to the SOG. Most immunoreactive cells in the PI and in the dorsolateral brain send their fibers to the contralateral corpora cardiaca and corpora allata. The proximity and, in some cases, proven identity of the PER-ir, DBT-ir, and CRY-ir perikarya are consistent with presumed interactions between the examined clock components. The antigens were always found in the cytoplasm, and no diurnal oscillations in their amounts were detected. The photoperiod, which controls embryonic diapause, the rate of larval development, and the wing length of crickets, had no discernible effect on either distribution or the intensity of the immunostaining.  相似文献   

15.
Summary Intracellular recordings were made from interneurons in the subesophageal ganglion (SEG) of Sarcophaga bullata while stimulating the labellar lobes with solutions of sucrose, NaCl and with distilled water. Neurons that responded to sucrose did not respond to NaCl and vice versa, while sucrose-sensitive neurons often responded weakly to water. Several of the recorded neurons were filled with Lucifer Yellow, and their morphology was reconstructed. Most showed extensive arborizations within the SEG, suggesting that they were local interneurons involved in the early stages of gustatory processing. Some of the filled neurons had extensive projections to the brain, in addition to arborizations in the SEG. This is the first published record of gustatory interneurons in the higher flies.Abbreviations LY lucifer yellow - SEG subesophageal ganglion  相似文献   

16.
Summary The central projections of the lateral ocellar neurons of the dragonfly were examined using whole nerve cobalt iontophoresis, supplemented by sectioning of the nerve and brain for inspection in the light and electron microscopes. At E.M. level the presence of cobalt in filled axon profiles and cell bodies was confirmed by analysis of X-ray energy spectra in the microscope.The pathways, cell body sites and terminal arborizations of four large (7–25 m diameter) lateral ocellar neurons are described. Two of these fibers arborize in the ipsilateral posterior neuropil of the protocerebrum and two cross the brain and arborize in the contralateral posterior neuropil. Within each half of the posterior neuropil, two spatially separated regions of ocellar input have been identified. These regions receive median ocellar input plus input from either the ipsi- or contralateral ocellus, but not both. The arborizations of the contralateral fibers are more extensive than those of the ipsilateral fibers.One of the contralateral neurons crosses the brain in the region of the protocerebral bridge giving off a collateral in that region before descending to the posterior neuropil. This collateral arborizes almost immediately in a region receiving input from arborizations of a number of small ocellar neurons (those less than 5 m in diameter) from the ipsilateral ocellar nerve, together with small neurons from the median ocellar nerve, forming a region in each half of the brain which receives input from all three ocelli. The small lateral ocellar neurons associated with these arborizations have cell bodies adjacent to the lateral ocellar tracts.This work was supported in part by National Institute of Health Grants 2 RO1 EY-00777 and 1 KO4 EY-00040  相似文献   

17.
Summary Serotonin-immunoreactivity is mapped in wholemounts and slices of the suboesophageal ganglion (SOG) of larval Manduca sexta by means of immunocytochemistry. An extensive meshwork of serotonin-immunoreactive nerve fibres on some peripheral nerves of the SOG has been demonstrated. This meshwork appears to belong to a serotonergic neurohemal system, probably supplied by two pairs of bilateral serotonin-immunoreactive neurons with big cell bodies on the dorsal side near the midline in the mandibular neuromere. Intracellular recording and staining revealed their physiology and morphology. These neurons produce long lasting (50 msec) action potentials, which suggest that they are neurosecretory cells. Two pairs of bilateral serotonin-immunoreactive interneurons similar to those of other insects are stained in the labial and maxillar neuromeres, but not in the mandibular neuromere. Their ventrolaterally located cell bodies project through a ventral commissure into the contralateral hemiganglion and then cross back again through a dorsal commissure. The axons project into the contralateral circumoesophageal connective.  相似文献   

18.
The ultrastructure of the retrocerebral endocrine-aortal complex of the earwig, Euborellia annulipes has been studied. The space between the inner and outer stromal layers of the aorta is occupied by numerous axon terminals and pre-terminals containing large electron dense granules (NS-I) of approximately 100 to 220 nm and a few axon terminals having small granules (NS-II) of approximately 40 to 90 nm; the former appear to belong to medial neurosecretory A-cells, and the latter to the B-cells of the brain. The corpora cardiaca consist of intrinsic cells with mitochondria and multivesicular bodies. Granules of type NS-II and NS-III are observed in the axon terminals and pre-terminals in the corpora cardiaca. The NS-II are identical to those found in the aorta and are probably the secretions of the lateral B-cells. Granules of type NS-III are 40 to 120 nm and electron dense, and are intrinsic in origin. Similar granules occur in the intrinsic cells of the corpora cardiaca. E M studies have confirmed the rôle of the aorta as a neurohaemal organ for the medial neurosecretory cells, and the corpora cardiaca for the lateral neurosecretory cells of the brain. The corpora cardiaca also act as a reservoir for the intrinsic secretion. The corpus allatum is a solid body consisting of parenchymal cells with prominent nuclei, mitochondria, and endoplasmic reticulum. In between its cells are occasional glial cells and also neurosecretory as well as non-neurosecretory axons. The gland is devoid of A-cell NSM.  相似文献   

19.
20.
Mas-allatotropin (Mas-AT) and Lom-accessory gland-myotropin I (Lom-AG-MTI) are two members of a conserved family of insect neuropeptides, collectively termed allatotropins, which have diverse functions, ranging from stimulation of juvenile hormone secretion to myotropic effects on heart and hindgut. In addition, allatotropins appear to be abundant within the nervous system, suggesting neuroactive roles. To identify neurons in the insect brain suitable for a neurophysiological analysis of the roles of allatotropins, we used antisera against Mas-AT and Lom-AG-MTI to map allatotropin-immunoreactive neurons in the brain of a suitable insect, the locust Schistocerca gregaria. Both antisera revealed basically identical staining patterns throughout the locust brain with more than 12,500 immunostained interneurons per brain hemisphere. Neurosecretory cells were not labeled, and the retrocerebral complex was devoid of immunostaining. Prominent immunoreactive cell types include about 9,600 lamina monopolar neurons, medulla to lobula interneurons, local neurons of the antennal lobe, a giant interneuron of the mushroom body, projection neurons of the glomerular lobe to the mushroom body, and three systems of tangential neurons of the central complex. Several groups of neurons showed colocalization of Mas-AT- and -aminobutyric acid immunostaining. Mass spectrometric analysis identified a peptide with a molecular mass identical to Lom-AG-MTI in all major parts of the locust brain but not in the retrocerebral complex. This study strongly suggests that Lom-AG-MTI is highly abundant in the locust brain, and is likely to play a neuroactive role in many brain circuits including all stages of sensory processing, learning and memory, and higher levels of motor control.This work was supported by DFG grant HO 950/14 to U.H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号