首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional structure of the flagellar apparatus in Woloszynskia sp. was determined. This recently discovered dinoflagellate possesses two basal bodies that are offset from one another and lie at an angle of approximately 110°. The transverse basal body is associated with a striated fibrous root assemblage that consists of two differently staining fibrous portions with identical striation periodicity. Unlike the transverse striated fibrous roots reported in other dinoflagellates, this assemblage extends to the cell's right beyond the proximal end of the transverse basal body. The striated fibrous root complex is attached to the anterior end of the longitudinal microtubular root by a broad striated fibrous connective. The longitudinal basal body is also associated with the longitudinal microtubular root. The flagellar opening of each emerging axoneme is surrounded by a striated collar. The striated collars are linked to one another by a striated fibrous, striated collar connective. The variations and similarities of the flagellar apparatus and the ventral ridge/striated collar connective in Woloszynskia sp. are compared to similar components in other dinoflagellates.  相似文献   

2.
The three-dimensional structure of the flagellar apparatus in the gonyaulacoid dinoflagellate. Ceratium hirundinella var. furcoïdes (Schröder) Hub.-Pest. was determined using serial section electron microscopy. The flagellar apparatus is quite large and consists of several components. The two basal bodies nearly abut at their proximal ends and are separated by an angle of approximately 120° The broad longitudinal microtubular root extends from the cell's left edge of the longitudinal basal body and bends around the sulcal/cingular depression into the cell's left antapical horn. A transverse striated fibrous root is associated with the transverse basal body and a narrow electron dense extension is present along the anterior edge of the transverse basal body. This study revealed severa1 hitherto unreported fibrous components of the flagellar apparatus that link the various microtubular and fibrous components to themselves and to the two striated collars. A large striated fibrous connective links the two striated collars to one another. This fibrous connective is linked to another striated fibrous connective that originates from the longitudinal basal body and lies perpendicular to the longitudinal microtubular root. The readily identifiable and numerous components of the Ceratium flagellar apparatus are comparable to those of other dinoflagellates. The combined presence of well dpveloped striated collars, a striated collar connective, and a basal body angle of approximately 120° indicates that this flagellar apparatus is most like that described for Peridinioid dinoflagellates. Important similarities are also noticeable between this flagellar apparatus and that of Oxyrrhis marina.  相似文献   

3.
The three-dimensional structure of the flagellar apparatus in the dinoflagellate Oxyrrhis marina has been reinvestigated and found to consist of several previously unknown components and component combinations that appear strikingly similar to those of some gymnodinoid taxa. The flagellar apparatus of this dinoflagellate is asymmetric and extremely complex consisting of a longitudinal and a transverse basal body that gives rise to eight structurally different components. The only posteriorly directed component is the large microtubular root that consists of 45–50 microtubules at its origin and is attached proximally to a perpendicularly oriented striated fibrous component. Arising from each basal body, two striated fibrous roots with different periodicities extend to the cell's left. A single stranded microtubular root with associated electron dense material emanates from the transverse basal body and also extends to the cell's left. A striated fibrous connective arises from the longitudinal basal body and extends toward the cell's right ventral surface and terminates near the sub-thecal microtubular system. A compound root consisting of microtubules and electron dense material also originates from the longitudinal basal body and extends ventrally into the anterior region of the tentacle. Structural similarities between the parallel striated fibrous roots of Oxyrrhis and Polykrikos are discussed as are flagellar apparatus similarities among other gymnodinoid dinoflagellates. A diagrammatic reconstruction of the Oxyrrhis flagellar apparatus is also presented.  相似文献   

4.
Gymnodinium acidotum Nygaard is a freshwater dinoflagellate that is known to harbor a cryptomonad endosymbiont whose chloroplasls give the organism an overall blue-green color. The ultrastructure of G. acidotum was examined with particular attention being given to the three dimensional nature of the flagellar apparatus. The fiagellar apparatus is composed of two functional basal bodies that are slightly offset and lie at an angle of approximately 90° to one another. As in other dinoflagellates the transverse basal body is associated with a striated, fibrous root that extends from the proximal end of the basal body to the transverse flagellar opening. At least one microtubular root extends from the proximal end of the transverse basal body, and a multi-membered longitudinal microtubular root is associated with the longitudinal basal body. The most striking feature of the flagellar apparatus of G. acidotum is the large fibrous connective that extends from the region of the proximal ends of the basal bodies to the cingulum on the dorsal side of the cell. A similar structure has been reported from only one other dinoflagellate, Amphidinium cryophilum Wedemayer, Wilcox, and Graham. The presence of this structure as well as similarities in external morphology suggest thai these two species may be more closely related to each other than either is to other gymnodinioid taxa. The taxonomic importance of dinoflagellate flagellar apparatus components is discussed.  相似文献   

5.
The ultrastructure of Woloszynskia limnetica Bursa was examined using serial thin section electron microscopy. Sections of W. limnetica reveal numerous chloroplast profiles without any obvious pyrenoids. The extensive pusular complex consists of a "smooth" part and a part lined with electron-dense particles. The nucleus is located in the episome. A stigma (= eyespot) consisting of numerous electron-dense globules is situated beneath the amphiesmal vesicles of the sulcal groove. The longitudinal microtu-bular root extends between the stigma and the amphiesma vesicles. Subthecal fibers occur in conjunction with the microtubules and the stigma. Both flagellar exit apertures are encircled by a broad striated collar, each giving rise to a fiber that extends along the pusular canal opening. The striated collars are interconnected by the ventral ridge fiber. The basal part of the transverse flagellum has, in addition to the normal paraxonemal rod (= striated strand or fiber), a semicircular structure consisting of fibrils. The flagellar apparatus is complex but possesses components typically found in the Dinophyceae. The longitudinal mi-crotubular root is broad and is connected to both striated collars. The transverse basal body gives rise to the transverse microtubular root, which in turn is associated with microtubules that extend to the interior of the cell and with the transverse striated root. The transitional region of both basal bodies possesses a distinctive fibrous ring attached to each microtubular triplet by short fibers that collectively appear as spokes of a wheel. Not unexpectedly, the flagellar apparatus of Woloszynskia limnetica is much like that of the related Woloszynskia sp.; however, some dif ferences were discovered. A phylogenetic relationship between Woloszynskia limnetica, W. coronata ( Wolosz.) Thompson, and W. sp. is indicated based on similarities in pusule and stigma structure .  相似文献   

6.
The flagellar apparatus of Pyrobotrys has a number of features that are typical of the Chlorophyceae, but others that are unusual for this class. The two flagella are inserted at the apex, but they extend to the side of the cell toward the outside of the colony, here designated as the ventral side. Four basal bodies are present, two of which extend into flagella. Four microtubular rootlets alternate between the functional and accessory basal bodies. In each cell, the two ventral rootlets are nearly parallel, but the dorsal rootlets are more widely divergent. The rootlets alternate between two and four microtubules each. A striated distal fiber connects the two functional basal bodies in the plane of the flagella. Two additional, apparently nonstriated, fibers connect the basal bodies proximal to the distal fiber. Another striated fiber is associated with each four-membered rootlet near its insertion into the flagellar apparatus. A fine periodic component is associated with each two-membered rootlet. A rhizoplast-like structure extends into the cell from each of the functional basal bodies. The arrangement of these components does not reflect the 180° rotational symmetry that is usually present in the Chlorophyceae, but appears to be derived from a more symmetrical ancestor. It is suggested that the form of the flagellar apparatus is associated with the unusual colony structure of Pyrobotrys.  相似文献   

7.
Peranema trichophorum (Ehrenberg) Stein, a colorless phagotrophic euglenoid flagellate, has a typically euglenoid microtubular root complement. Striated root components, relatively uncommon in euglenoids, are connected to the basal bodies and to a microtubular root. The flagellar system of Peranema consists of three unequal microtubular roots which extend anteriorly beneath the reservoir membrane, and narrow-band striated roots (periodicity = 29–33 nm) which connect one of the four basal bodies to the movable rodorgan of the feeding apparatus. An inter basal body striated fiber forms a three-way connection between one particular microtubular root, a flagellar basal body, and the striated roots. A striated fibril (periodicity = 18–25 nm), which may be an extension of the striated root system, extends beneath the reservoir membrane. Associated with the striated fibril and the striated roots are cisternae of smooth endoplasmic reticulum.  相似文献   

8.
ABSTRACT. The external and internal ultrastructure of the harmful unarmored dinoflagellate Cochlodinium polykrikoides Margalef has been examined with special reference to the apical groove and three‐dimensional structure of the flagellar apparatus. The apical groove is U‐shaped and connected to the anterior sulcal extension on the dorsal side of the epicone. The eyespot is located dorsally and composed of two layers of globules situated within the chloroplast. A narrow invagination of the plasma membrane is associated with the eyespot. The nuclear envelope has normal nuclear pores similar to other eukaryotes but different from the Gymnodinium group with diagnostic nuclear chambers. The longitudinal and transverse basal bodies are separated by approximately 0.5–1.0 μm and interconnected directly by a striated basal body connective and indirectly by microtubular and fibrous structures. Characteristic features of the flagellar apparatus are as follows: (1) a nuclear extension projects to the R1 (longitudinal microtubular root) and is connected to the root by thin fibrous material; (2) fibrillar structures are associated with the longitudinal and transverse flagellar canal; and (3) a striated ventral connective extends toward the posterior end of the cell along the longitudinal flagellar canal. We conclude, based on both morphological and molecular evidence, that Cochlodinium is only distantly related to Gymnodinium.  相似文献   

9.
Summary Modern microscopical approaches have allowed more accurate investigations of the three-dimensional nature of the dinoflagellate flagellar apparatus (FA) and several other cytoskeletal protein complexes. Our presentation overviews the nature of the dinoflagellate FA and cytoskeleton in a number of taxa and compares them with those of other protists. As with other protists, the FA of the dinoflagellates can be characterized by the presence of fibrous and microtubular components. Our studies and others indicate that the dinoflagellate FA can be expected to possess a striated fibrous root on the basal body of the transverse flagellum and a multimembered microtubular root on the basal body of the longitudinal flagellum. Two other features that appear widespread in the group are the transverse striated root associated microtubule (tsrm) and the transverse microtubular root (tmr). The tsrm extends at least half the length of the transverse striated root while the tmr extends from the transverse basal body toward the exit aperture of the transverse flagellum. In most cases, the tmr gives rise to several cytoplasmic microtubules at a right angle. The apparent conserved nature of these roots leads us to the conclusion that the dinoflagellate FA can be compared to the FA of the cryptomonads, chrysophytes, and the ciliates for phylogenetic purposes. Of these groups, the chrysophytes possess an FA with the most structures in common with the dinoflagellates. Our immunomicroscopical investigations of the microtubular, actin and centrin components of the dinoflagellate cytoskeleton point to the comparative usefulness of these cytological features.Abbreviations aptb apical transverse microtubular band - FA flagellar apparatus - Imr longitudinal microtubular root - mls multilayered structure - tmr transverse microtubular root - tmre transverse microtubular root extension - tsr transverse striated fibrous root - tsrm transverse striated root associated microtubule  相似文献   

10.
The unusual tetrahedral shape of Hydrurus foetidus (Vill.) Trev. zoospores is associated with a complex skeletal system of microtubules extending from a broad flagellar root (up to 19 microtubules) into each of three, pointed anterior processes. The posterior end, also pointed and supported by a separate set of microtubules, contains a single large chloroplast with a prominent posterior furrow containing mitochondrial elements. A large immersed pyrenoid is penetrated by paired thylakoids. There is no eyespot. Numerous large Golgi bodies occur immediately anterior to the nucleus and up to 5–6 contractile vacuoles lie near the cell surface at the anterior end. Two terminally inserted flagella extend from the cell surface, a long one serving for cell locomotion, and the other vestigial with an axonemal pattern of 9+0. The flagellar root system consists of: (1) a thin, striated rhizoplast extending from the basal body of the long flagellum and ramifying over the surface of a conspicuous, anteriorly directed, conical projection of the nucleus; (2) a broad microtubular root which emanates from near the basal body of the long flagellum and appears to function as a MTOC; (3) a compound root, consisting of a striated fiber and two associated microtubules, which runs alongside the basal body of the stubby flagellum before terminating at the cell surface; and (4) a short two-membered microtubular root, also associated with the basal body of the stubby flagellum. Other components of the flagellar apparatus include a large dense body near the proximal end of the basal body of the short flagellum, and a small, dense, core-like structure closely associated with one of its triplet fibers. The flagellar apparatus of H. foetidus is remarkably similar in ultrastructure to that of Chrysonebula holmesii Lund.  相似文献   

11.
The flagellar apparatus in male gametes of the siphonaceous green alga, Bryopsis maxima Okamura, was studied and compared with that of other green biflagellate cells. The proximal portions of two basal bodies are connected by a single striated proximal band, unique among the biflagellate reproductive cells of green algae studied. Anterior to the flagellar bases is a pair of distal bands different from the single structure in other biflagellate cells. These bands which arise from the distal portion of each basal body, extend upward in the papilla and curve down toward the lower edges of the basal bodies. They seem to have no direct association with each other. Two pairs of distinct flagellar roots, one consisting of 3–5 microtubules and the other of a partially striated fiber of undetermined numbers of microtubules, diverge from the basal body region and extend towards the cell posterior. Their component microtubules are disorganized into single or smaller groups midway over the cell length. The uniqueness of the flagellar apparatus is briefly discussed.  相似文献   

12.
The detailed structure of the flagellar apparatus has been determined in a small dinoflagellate of the genus Gymnodinium. Although diminutive, this dinoflagellate possesses a complex flagellar apparatus consisting of a posteriorly directed microtubular root, a transverse striated fibrous root, several striated fibrous connectives that attach the basal bodies to one another as well as to the different roots, and a conspicuous non-striated fibrous connective that directly links the posteriorly directded microtubular root with the extended lobe of the nucleus. This represents the second discovery of a nuclear connective linked to the flagellar apparatus in the Dinophyceae but is the first report to elucidate the spatial relationships of the connective with the flagellar apparatus and the cell. A detailed diagrammatic reconstruction is provided and the similarities between these flagellar apparatus features are compared with those known for other dinoflagellates. Additionally, the structure and displacement of the nuclear connective are compared with nuclear connectives described in other protists.  相似文献   

13.
The flagellar apparatus and reservoir cytoskeleton of Cryptoglena pigra Ehrenberg are described. Three flagellar roots are associated with the two basal bodies. The four-membered dorsal root arises from the dorsal basal body and extends anteriorly following the reservoir membrane. At the base of the reservoir the dorsal root nucleates a large microtubular group termed the dorsal band. The dorsal band continues anteriorlhy between the reservoir and eyespot and is continuous with the microtubules of the canal and ultimately the pellicle. The ventral basal body is associated with two roots. The four-membered intermediate root proceeds anteriorly and extends the length of the reservoir. The seven-to eight-membered ventral root projects anteriorly along the reservoir membrane and bends away from the reservoir. At this point, the microtubules of the ventral root line a cytoplasmic pocket and are termed the MTR (reinforcing microtubules). The canal region is composed of longitudinal microtubules surrounded by two semicircles of microtubles. Ultimately, the fifteen ridges of the canal give rise to the pellicular ridges.  相似文献   

14.
The major components of the internal flagellar apparatus of Chilomonas paramecium Ehr. are two large microtubular roots and a striated root paralleled by three microtubules. The two microtubular roots overlap at the basal bodies. One microtubular root follows a curved path in the anterior of the cell, and the other extends straight to the posterior passing through a groove in the nucleus. The striated root extends laterally from the basal bodies. Except that it is smaller, the posteriorly directed root bears a strong resemblance to the axostyle of oxymonads. The overall arrangement and structure of the flagellar roots is similar to the pelta, axostyle and costa of trichomonads and the pelta and axostyle of oxymonads, groups of mitochondrion-less, largely parasitic or symbiotic protozoans. An affinity between cryptomonads and oxymonads or trichomonads would have many phylogenetic implications, some of which are discussed.  相似文献   

15.
Phacus pleuronectes (O. F. Müller) Dujardin is a phototrophic euglenoid with small discoid chloroplasts, a flat rigid body, and longitudinally arranged pellicular strips. The flagellar apparatus consisted of two basal bodies and three flagellar roots typical of many phototrophic euglenoids but also had a large striated fiber that connected the two basal bodies and associated with the ventral root. The three roots, in combination with the dorsal microtubular band, extended anteriorly and formed the major cytoskeletal elements supporting the reservoir membrane and ultimately the pellicle. A cytoplasmic pocket arose in the reservoir/canal transition region. It was supported by the ventral root and a C-shaped band of electron-opaque material that lined the cytoplasmic side of the pocket. A large striated fiber extended from this C-shaped band toward the reservoir membrane. The striated fibers in the basal apparatus and associated with the microtubule-reinforced pocket in P. pleuronecte s appear to be similar to those of the phagotrophic euglenoids.  相似文献   

16.
The chlorococcalean algae Dictyochloris fragrans and Bracteacoccus sp. produce naked zoospores with two unequal flagella and parallel basal bodies. Ultrastructural features of the flagellar apparatus of these zoospores are basically identical and include a banded distal fiber, two proximal fibers, and four cruciately arranged microtubular rootlets with only one microtubule in each dexter rootlet. In D. fragrans, each proximal fiber is composed of two subfibers, one striated and one nonstriated, and each sinister rootlet is composed of five microtubules (4/1), decreasing to four away from the basal bodies. In Bracteacoccus sp., each proximal fiber is a single unit, the sinister rootlets are four (3/1) or rarely five (4/1) microtubules, and each basal body is associated with an unusual curved structure. The basic features of the flagellar apparatus of the zoospores of these two algae resemble those of Heterochlamydomonas rather than most other chlorococcalean algae that have equal length flagella, basal bodies in the V-shape arrangement, and clockwise absolute orientation. It is proposed that these algae with unequal flagella and parallel basal bodies have a shared common ancestry within the green algae.  相似文献   

17.
The flagellar apparatus of Urospora penicilliformis (Roth) Aresch. is unique, or at least very unusual among green algae. The flagellar axonemes are rigid, and contain wing-like projections. There are no central microtubules in the most proximal part of the axoneme. The transition region contains a series of electron dense transverse lamellae rather than a single septum, and lacks a stellate pattern. There is no cartwheel pattern in the proximal part of the basal bodies. The latter are associated with four different types of fibrous elements: ascending striated fibers that attach to an electron dense plate in the papillar center, lateral striated fibers that parallel microtubular roots, fibrous elements that link adjacent basal bodies, and finally two massive striated fibers that descend into the cell, passing closely along the nucleus (system II fibers, or rhizoplasts). Each of the four microtubular flagellar roots is sandwiched between two system I striated structures. The roots are probably equal; they contain proximally four, and distally up to eight microtubules. Based on the zoospore flagellar apparatus, it is concluded that the multinucleate U. penicilliformis is related to the Ulvaphyceae. Finally, a possible explanation in functional terms is given for the peculiar external morphology and behavior of the zoospore.  相似文献   

18.
The ultrastructure of the flagellar apparatus in the biflagellate female gametes of the green algaBryopsis lyngbyei has been studied in detail. In the flagellum and basal body, microtubule septations occur in some of the B-tubules. The transition region of the flagellum is extremely long (260–290 nm), exhibits a stellate pattern in cross section but lacks the transverse diaphragm. The two basal bodies form an angle of 180° and overlap at their proximal ends. They are connected by a compound non-striated capping plate. Terminal caps associated with the capping plate partially close the proximal end of each basal body. A cruciate flagellar root system with three different types of microtubular roots is present, i. e. the flagellar apparatus does not show 180° rotational symmetry. One root type contains 2 microtubules which are connected to an elaborate cylindrical structure, presumably a mating structure. The opposite root exhibits 3 microtubules over its entire length and is not associated with a cylindrical structure. In their proximal parts both roots are linked to an underlying crescent body. The other two microtubular roots are probably identical and consist of 4 (or 5) microtubules which show configurational changes. These two identical roots insert into the capping plate and link to the inner side (i. e. the side adjacent to the other basal body) of each basal body, whereas the other two roots attach to the outer sides of each basal body. System I striated fibres are probably associated with each of the four roots, while system II fibres have not been observed. The flagellar apparatus of female gametes ofB. lyngbyei shows many unique features but in some aspects resembles that of ulvalean algae. Functional and phylogenetic aspects of cruciate flagellar root systems in green algae are discussed.  相似文献   

19.
M A Farmer  R E Triemer 《Bio Systems》1988,21(3-4):283-291
The flagellar apparatus of euglenoids consists of two functional basal bodies, three unequal microtubular roots subtending the reservoir, and a fourth band of microtubules nucleated from one of the flagellar roots and subtending the reservoir membrane. The flagellar apparatus of some euglenoids may contain additional basal bodies, striated roots ("rhizoplasts"), fibrous roots, striated connecting fibers between basal bodies, layered structures, or various electron-dense connective substances. With the possible exception of Petalomonas cantuscygni, nearly all euglenoids are biflagellate although the length of one flagellum may be highly reduced. The flagellar transition zone and number of basal bodies are highly variable among species. In recent years a cytoplasmic pocket that branches off from the reservoir has been discovered. The microtubules of the ventral flagellar root are continuous with the microtubules which line this pocket. Based on positional and structural similarities, this structure is believed to be homologous with the MTR/cytostome of bodonids. Coupled with other ultrastructural and biochemical data, the fine structure of the flagellar apparatus supports the belief that the euglenoid flagellates are descendant from bodonid ancestors.  相似文献   

20.
Sphaerodinium cracoviense was collected near Cracow, Poland, and analysed by light microscopy, scanning electron microscopy, and serial-section transmission electron microscopy. Thecae showed a peridinioid type of plate arrangement with unusual numbers in the anterior intercalary and postcingular plate series: 4 and 6, respectively. The apical pore of S. cracoviense differed from the typical arrangement seen in many thecate forms and included a furrow with knob-like protuberances reminiscent of the apical area of some woloszynskioids. The flagellar apparatus included the three microtubular roots that extend to the left of the basal bodies and a striated root connective between the transverse striated root and the longitudinal microtubular root. Both the single-stranded root that associates with the right side of the longitudinal basal body in peridinioids and gonyaulacoids, and the layered connective typical of peridinioids were absent. The eyespot was formed by a layer of vesicle-contained crystal-like units underlain by layers of variably fused globules not bounded by membranes, and represents a novel type. The pusular system included a long canal with a dilated inner portion with radiating tubules. Bayesian and maximum likelihood analyses based on large subunit rDNA placed Sphaerodinium as a sister taxon to a group of woloszynskioids and relatively far from Peridinium and its allies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号