首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant–pollinator interactions are potential drivers of evolution in floral traits. Because nectar chemical composition is known to mediate both plant–pollinator interactions and plant reproductive success, it can be expected that chemical composition of nectar is subjected to strong pollinator‐mediated selective forces. However, the extent of natural selection on different nectar components has not been studied so far. Using the Lepidoptera pollinated fragrant orchid Gymnadenia conopsea as a model species, we used high‐performance anion‐exchange chromatography (HPAEC) to characterize the sugar and amino acid composition of floral nectar in three calcareous grassland populations of G. conopsea. We then measured phenotypic selection on nectar composition and on other plant and floral traits through applying both linear regression and structural equation modelling. We demonstrate phenotypic selection on plant height, inflorescence height and on specific nectar amino acids, whereas spur length, total sugar and amino acid concentration were not direct targets of selection. Chemical nectar composition is thus indeed under selective pressure but nectar amino acids are much more important to fitness of G. conopsea, as compared to nectar sugars. Furthermore, as we found no evidence of selection on the total amino acid concentration, it is unlikely that amino acids increase pollinator attraction because they are a pollinator nitrogen source. To further unravel the evolutionary ecology of floral nectar, behavioural experiments with pollinators exposed to different nectar components and studies experimentally identifying the selective agents are recommended.  相似文献   

2.
Nectar is the most common floral pollinator reward. In dichogamous species, floral nectar production rates can differ between sexual phases. We studied the structure of nectaries located on the stylopodium and nectar production in protandrous umbellifer Angelica sylvestris. Our study species produced nectar in both floral sexual phases. Nectar sugar concentration was low (on average 22 ± 11 %, mean ± SD) and the nectar hexose rich and composed of sucrose, glucose, fructose and a small amount of amino acids, including β-alanine, a non-protein amino acid. Although nectar composition and sugar concentration varied little between floral sexual phases, nectar production showed a threefold reduction during the stigma receptive period. This is in contrast to other studies of Apiaceae that have reported female-biased nectar production, but in the direction predicted by plant sexual selection theory, suggesting that in pollen-unlimited species, floral rewards mainly enhance male reproductive success. The structure of the nectary was similar at the two sexual stages investigated, and composed of a secretory epidermis and several layers of nectariferous and subsecretory parenchyma. The nectary cells were small, had large nuclei, numerous small vacuoles and dense, intensely staining cytoplasm with abundant endoplasmic reticulum, mitochondria and secretory vesicles. They contained abundant resin-like material that may potentially act as defence against microbes. Starch was rarely observed in the nectary cells, occurring predominantly at the female stage and mainly in guard and parenchyma cells in close proximity to stomata, and in subsecretory parenchyma. The main route of nectar release in A. sylvestris seems to be via modified stomata.  相似文献   

3.
The composition of the floral nectar sugars and amino acids of four species of Passiflora (P. foetida, P. caerulea, P. suberosa, and P. misera) included in different infrageneric taxa and with distinct pollination mechanisms has been studied. The effect of weather and floral age on nectar volume, existence, and total and relative amounts of the various compounds was explored. The proportion of sugars was rather constant within a given species whereas the composition, number, and total quantity of amino acids showed great intraspecific and intra-plant variability; these nectar properties were independent of floral stage or meteorological conditions. Species belonging to the same subgenus displayed equivalent sugar ratios and similar total amount of amino acids, so these characteristics might be conservative in the genus. For all species, the amino acid concentration surpassed known values for their respective pollination syndromes, viz. bee and wasp-pollinated flowers. No relationship emerged between pollinators with different glossa length and nectars with distinct sugar ratios. Rather, nectar chemical composition seems to reflect taxonomic relationships.  相似文献   

4.
Amino acids are the most abundant class of compounds in nectar after sugars. Like its sugar concentration, the amino acid concentration of nectar has been linked to pollinator type, and it has been suggested that amino acid concentrations are high in the floral nectars of plant species pollinated by passerine birds compared to those pollinated by hummingbirds. We investigated the feeding response of whitebellied sunbirds (Nectarinia talatala) to the inclusion of amino acids in artificial nectar (0.63 M sucrose solution). The response to asparagine, glutamine, phenylalanine, proline, serine and valine, amino acids commonly found in floral nectars, was tested individually and using a mixture of all six amino acids, at two different concentrations (2 and 15 mM). Sunbirds showed no significant preference for amino acids in nectar, or avoided them, especially at the higher concentration. We discuss these findings in the light of the nitrogen requirements of nectarivorous birds and data on amino acids in floral nectars.  相似文献   

5.
P. G. Willmer 《Oecologia》1980,47(2):270-277
Summary The floral nectar of angiosperms is primarily a solution of simple sugars, but contains detectable amounts of other solutes, particularly amino acids. These have been regarded as diagnostic, for phylogenetic and taxonomic purposes, and their mean concentrations may be significant in relation to the pollination syndrome of a plant species. However, in several temperate flowers the amino acid concentration varied by an order of magnitude when measured at intervals through a single day. In open, cup-shaped flowers, this was partly due to post-secretory equilibration with the varying humidity of the air. But the effects of floral visitation by insects on nectar amino acids were also important, both in open flowers and in those with long corollas and more enclosed nectar. Visitors could add amino acids to nectar by direct contact, by salivation, by damaging the neighbouring tissues causing cell leakage, and by dislodging pollen into the nectar; the importance of each of these effects varied according to corolla morphology and the spectrum of visitors.  相似文献   

6.
Sarracenia purpurea L. (northern pitcher plant) is an insectivorous plant with extrafloral nectar that attracts insects to a water-filled pitfall trap. We identified and quantified the amino acids in extrafloral nectar produced by pitchers of S. purpurea. Nectar samples were collected from 32 pitchers using a wick-sampling technique. Samples were analyzed for amino acids with reverse-phase high-performance liquid chromatography with phenylisothiocyanate derivatization. Detectable amounts of amino acids were found in each of the 32 nectar samples tested. Mean number of amino acids in a nectar sample was 9 (SD = 2.2). No amino acid was detected in all 32 samples. Mean amount of amino acids in a nectar sample (i.e., amount per wick) was 351.4 ng (SD = 113.2). Nine amino acids occurred in 20 of the 32 samples (aspartic acid, cysteine, glutamic acid, glycine, histidine, hydroxyproline, methionine, serine, valine) averaging 263.4 ng (SD = 94.9), and accounting for ~75% of the total amino acid content. Nectar production may constitute a significant cost of carnivory since the nectar contains amino acids. However, some insects prefer nectar with amino acids and presence of amino acids may increase visitation and capture of insect prey.  相似文献   

7.
花蜜是虫媒植物提供给传粉者最有效的报酬,对花蜜特征介导的植物-传粉者相互关系的研究已成为当今传粉生物学研究中最活跃的领域之一。开花植物分泌的原始花蜜是无菌的,不过一些微生物可经由空气传播至花蜜或(和)通过与传粉者的喙接触而聚集于花蜜中,并利用花蜜中的营养物质进行快速繁殖。花蜜的高渗透压环境导致花蜜中微生物(酵母菌,细菌)的物种多样性相对较低。此外,某些生物(传粉者组成,微生物间的竞争)与非生物因素(渗透压,糖组成,次生代谢物质,抗菌化合物,可利用氮源,温度,pH)也可影响花蜜中微生物群落的形成。花蜜中微生物的代谢活动能够改变花蜜物理(温度,粘度)与化学(pH,H_2O_2含量,糖组成和浓度,氨基酸组分和浓度,以及气味)特性,进而影响传粉者的访花行为与植物的繁殖适合度。因而,对花蜜中微生物及其生态功能的研究近年来颇受传粉生物学家的关注。在总结已发表研究成果的基础上,提出今后的研究有必要结合分子生物学与化学分析技术,以进一步揭示影响花蜜中微生物群落的潜在因素的作用机制,同时对花蜜微生物改变花蜜的物理、化学特性及植物-传粉者之间相互作用的可能原因进行更详尽的阐释,特别是对花蜜微生物在生态系统中所发挥的生态功能进行进一步的研究与认识。  相似文献   

8.
Plants produce nectar to attract pollinators in the case of floral nectar (FN) and defenders in the case of extrafloral nectar (EFN). Whereas nectars must function in the context of plant-animal mutualisms, their chemical composition makes them also attractive for non-mutualistic, exploiting organisms: nectar robbers and nectar-infesting microorganisms. We reviewed the chemical composition of both FNs and EFNs and found that nectar composition appears tailored to fulfil these ambivalent roles. Carbohydrates and amino acids usually function in the attraction of mutualists and appear adapted to the physiological needs of the respective mutualists. Volatiles are a further group of compounds that serves in the attractive function of nectars. By contrast, secondary compounds such as alkaloids and phenols serve the protection from nectar robbers, and most nectar proteins that have been characterised to date protect FN and EFN from microbial infestation. Nectar components serve both in attraction and the protection of nectar.Key words: extrafloral nectar, floral nectar, indirect defence, mutualism, pollination  相似文献   

9.
  • Floral nectar is considered the most important floral reward for attracting pollinators. It contains large amounts of carbohydrates besides variable concentrations of amino acids and thus represents an important food source for many pollinators. Its nutrient content and composition can, however, strongly vary within and between plant species. The factors driving this variation in nectar quality are still largely unclear.
  • We investigated factors underlying interspecific variation in macronutrient composition of floral nectar in 34 different grassland plant species. Specifically, we tested for correlations between the phylogenetic relatedness and morphology of plants and the carbohydrate (C) and total amino acid (AA) composition and C:AA ratios of nectar.
  • We found that compositions of carbohydrates and (essential) amino acids as well as C:AA ratios in nectar varied significantly within and between plant species. They showed no clear phylogenetic signal. Moreover, variation in carbohydrate composition was related to family-specific structural characteristics and combinations of morphological traits. Plants with nectar-exposing flowers, bowl- or parabolic-shaped flowers, as often found in the Apiaceae and Asteraceae, had nectar with higher proportions of hexoses, indicating a selective pressure to decelerate evaporation by increasing nectar osmolality.
  • Our study suggests that variation in nectar nutrient composition is, among others, affected by family-specific combinations of morphological traits. However, even within species, variation in nectar quality is high. As nectar quality can strongly affect visitation patterns of pollinators and thus pollination success, this intra- and interspecific variation requires more studies to fully elucidate the underlying causes and the consequences for pollinator behaviour.
  相似文献   

10.
野外定位观测刺五加(Eleutherococcus senticosus)、短梗五加(E.sessiliflorus)的花蜜分泌节律、访花者的多样性,室内分析其花蜜的主要成分。结果表明,刺五加雄株的花杂在开花1-3(4)d分泌花蜜,雌株在开花5-7,6-8或7-9d分泌花蜜;短梗五加以及刺五加两性株的部分花杂,在开花后有两次分泌花蜜的过程:第1次与花药开裂散粉时间一致,第2次与柱头具可授性的时间一致。而且,刺五加和短梗五加都由动物帮助传粉,花蜜分泌的时间与多数访花者的访花时间一致,在一天之中,散出花粉的花朵分泌花蜜的时间早于接受花粉的花杂,这种时间差异应该是植物控制该 花者流向并导致传粉成功的关键。短梗五加与刺五加之间以及刺五加不同性别的植株之间,花蜜的成分及相对含量各有特点,但都以果糖和葡萄糖为主。在刺五加、短梗五加花朵上记录到的访花昆明分别为50余种和40余种,多数隶属于膜翅目、鳞翅目、鞘翅目和半翅目。其中膜翅目的胡蜂、马蜂、熊蜂,双翅目的食蚜蝇、寄蝇等是刺五加、短梗五加的常见访花者。  相似文献   

11.
12.
For a new, more complex floral form to become established in a population it must overcome the problem of frequency-dependent constancy to successfully attract pollinators. This may be achieved by complex floral forms offering absolute greater rewards than the simpler forms, or by complex flowers offering a higher probability of being rewarding because fewer pollinators are able to visit them. In this paper we examine the effect of three pollinator foraging strategies on the ratio of flights within and between floral morphs and hence on the probability of a new morph establishing in a population without offering a greater reward. We incorporate pollinator behaviour based around observations of two pollinator species systems into three models of competition for pollinators. In the first model the constancy of the pollinator of the new floral morph is a function only of the foraging strategy of the existing pollinator of the original floral morph. In the next model the constancy of the second pollinator is determined by the number of rewarding flowers of each floral morph left by the original pollinator and in the third model it is determined by the ratio of rewarding flowers of each morph left by the original pollinator. The results demonstrate that under conditions of intense competition for pollinators, new, more complex floral forms are indeed able to attract high levels of constant pollinators without offering intrinsically higher rewards. However, for this to occur constancy in one of the pollinators must be a function of the ratio of rewarding to non-rewarding flowers of both floral forms. One prediction from our results is that sympatric speciation of floral complexity based on a higher probability of reward is more likely to occur in flowers offering rewards of pollen rather than nectar. This is because the cost of visiting non-rewarding flowers is usually higher where the reward is pollen rather than nectar. We also predict that complex flowers occurring at low frequency, which offer rewards of nectar, may need intrinsically greater rewards if they are to successfully attract pollinators.  相似文献   

13.
Pollinators make foraging decisions based on numerous floral traits, including nectar and pollen rewards, and associated visual and olfactory cues. For insect‐pollinated crops, identifying and breeding for attractive floral traits may increase yields. In this study, we examined floral trait variation within cultivated sunflowers and its effects on bee foraging behaviours. Over 2 years, we planted different sunflower inbred lines, including male‐fertile and male‐sterile lines, and measured nectar volume, nectar sugar concentration and composition, and corolla length. During bloom, we recorded visits by both managed honey bees and wild bees. We then examined consistency in relative nectar production by comparing field results to those from a greenhouse experiment. Sunflower inbred lines varied significantly in all floral traits, including the amount and composition of nectar sugars, and in corolla length. Both wild bee and honey bee visits significantly increased with nectar sugar amount and decreased with corolla length, but appeared unaffected by nectar sugar composition. While wild bees made more visits to sunflowers providing pollen (male‐fertile), honey bees preferred plants without pollen (male‐sterile). Differences in nectar quantity among greenhouse‐grown sunflower lines were similar to those measured in the field, and bumble bees preferentially visited lines with more nectar in greenhouse observations. Our results show that sunflowers with greater quantities of nectar sugar and shorter corollas receive greater pollination services from both managed and wild bees. Selecting for these traits could thus increase sunflower crop yields and provide greater floral resources for bees.  相似文献   

14.
Wolff D 《Annals of botany》2006,97(5):767-777
BACKGROUND AND AIMS: This study investigates 47 taxonomically related species (Gentianales), all native to a tropical montane forest in southern Ecuador, in terms of nectar chemistry and nectar volumes in relation to pollination biology. METHODS: Nectar volumes of covered (24-h production) and uncovered (standing crop) flowers were measured in the natural habitat. Sucrose, fructose and glucose were quantified in the nectar using high performance liquid chromatography. Flower visitors were observed. KEY RESULTS: Nectar sugar concentration did not differ significantly among the pollination syndromes. Regarding sugar composition, the only significant differences were found in chiropterophilous and myiophilous flowers, which had a significantly lower sugar ratio than sphingophilous flowers. A separation of chiropterophilous and myiophilous flowers from the other pollination syndromes is further substantiated by non-linear multidimensional scaling using the chord-normalized expected species shared index of dissimilarity based on nectar sugar compositions. The matrix test revealed no correlation of observed floral visitors to nectar concentrations; however, a weak significant correlation was found between floral visitors and nectar sugar compositions. The nectar volumes of covered and uncovered flowers are related to, and differ significantly among, pollination syndromes. Matrix tests revealed correlation between floral visitors and nectar volume of covered flowers and, to a lesser extent, of uncovered flowers. CONCLUSIONS: Sucrose is the predominant floral nectar sugar in the order Gentianales, suggesting that nectar sugar composition is a conservative characteristic. However, some degree of an adaptive convergence of floral nectar compositions to principal pollinator type within the constraints set by phylogenetic history is likely. The driving force to visitation appears to be the volume of nectar the visitor can expect to consume.  相似文献   

15.
Nectar samples were collected from Silene colorata Poiret (Caryophyllaceae), in three different populations from south-western Spain: Zahara de la Sierra (Cádiz), Bornos (Cádiz) and Bormujos (Seville). Samples were analysed for amino acids by reverse-phase high-performance liquid chromatography with precolumn phenylisotiocyanate (PITC) derivatization. The method has the advantage of being highly sensitive, capable of detecting nanogram (ng) quantities of amino acids. Eighteen amino acids were identified and quantified. The mean number of amino acids in a nectar sample was 14 (SD = 2.8). Six amino acids (threonine, alanine, arginine, proline, tyrosine and methionine) were detected in all samples, accounting for 83% of the total amino acids content; proline and arginine were the most abundant amino acids, accounting for 40% and 20% of the total amino acids, respectively. The mean amounts of amino acids in nectar samples per population were 824, 782 and 356 µ m in Zahara de la Sierra, Bornos and Bormujos, respectively. Environmental variations such as temperature and sunlight are factors influencing the metabolic processes of nectar production. Our results may contradict the theory that the chemical constituents of floral nectar vary according to the kinds of pollinators.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 155 , 49–56.  相似文献   

16.
Sucrose, glucose, and fructose are the three sugars that commonly occur in floral nectar and fruit pulp. The relative proportions of these three sugars in nectar and fruit in relation to the sugar preferences of pollinators and seed dispersers have received considerable attention. Based on the research of Herbert and Irene Baker and their collaborators, a dichotomy between sucrose‐dominant hummingbird‐pollinated flowers and hexose‐dominant passerine flowers and fruits was proposed. Data on sugar preferences of several hummingbird species (which prefer sucrose) vs. a smaller sample of passerines (which prefer hexoses) neatly fitted this apparent dichotomy. This hummingbird–passerine dichotomy was strongly emphasized until the discovery of South African plants with sucrose‐dominant nectars, which are pollinated by passerines that are able to digest, and prefer sucrose. Now we know that, with the exception of two clades, most passerines are able to assimilate sucrose. Most sugar preference studies have been conducted using a single, relatively high, sugar concentration in the nectar (ca 20%). Thus, we lack information about the role that sugar concentration might play in sugar selection. Because many digestive traits are strongly affected not only by sugar composition, but also by sugar concentration, we suggest that preferences for different sugar compositions are concentration‐dependent. Indeed, recent studies on several unrelated nectar‐feeding birds have found a distinct switch from hexose preference at low concentrations to sucrose preference at higher concentrations. Finally, we present some hypotheses about the role that birds could have played in molding the sugar composition of plant rewards.  相似文献   

17.
1. Competition alters animal foraging, including promoting the use of alternative resources. It may also impact how animals feed when they are able to handle the same food with more than one tactic. Competition likely impacts both consumers and their resources through its effects on food handling, but this topic has received little attention. 2. Bees often use two tactics for extracting nectar from flowers: they can visit at the flower opening, or rob nectar from holes at the base of flowers. Exploitative competition for nectar is thought to promote nectar robbing. If so, higher competition among floral visitors should reduce constancy to a single foraging tactic as foragers will seek food using all possible tactics. To test this prediction, field observations and two experiments involving bumble bees visiting three montane Colorado plant species (Mertensia ciliata, Linaria vulgaris, Corydalis caseana) were used under various levels of inter- and intra-specific competition for nectar. 3. In general, individual bumble bees remained constant to a single foraging tactic, independent of competition levels. However, bees that visited M. ciliata in field observations decreased their constancy and increased nectar robbing rates as visitation rates by co-visitors increased. 4. While tactic constancy was high overall regardless of competition intensity, this study highlights some intriguing instances in which competition and tactic constancy may be linked. Further studies investigating the cognitive underpinnings of tactic constancy should provide insight on the ways in which animals use alternative foraging tactics to exploit resources.  相似文献   

18.
Abstract Ants (Hymenoptera: Formicidae) consume a broad spectrum of liquid food sources including nectar and honeydew, which play a key role in their diet especially in tropical forests. This study compares carbohydrates and amino acids from a representative spectrum of liquid sources used by ants in the canopy and understorey of a tropical rainforest in northern Queensland, Australia. Eighteen floral nectars, 16 extrafloral nectars, two wound sap and four homopteran honeydew sources were analysed using high performance liquid chromatography. Wounds comprised flower abscission scars on Normanbya normanbyi L. H. Bailey and bitemarks on Cardwellia sublimis F. Muell. where ants were actively involved in wounding. Discriminant analysis was performed to model differences between food sources in sugar and amino acid concentration and composition. All characteristics varied significantly among plant species. Honeydew contained a broader spectrum of sugars (including melezitose, raffinose, melibiose, lactose and maltose) than nectar (sucrose, glucose, fructose), but certain extrafloral nectars had similar amino acid profiles and, like honeydew sources, were often monopolized by ants. Most common amino acids across the sources were proline, alanine and threonine among 17 α‐amino acids identified. Interspecific variability concealed characteristic differences in sugar and amino acid parameters between nectar, honeydew and wound sap across all plants, but these types differed significantly when found on the same plant. Among all sources studied, only a few flower nectars were naturally not consumed by ants and they were significantly less attended than sugar controls in feeding trials. These nectars did not differ in sugars and amino acids from ant‐attended flower nectars, suggesting the activity of repellents. Apart from these exceptions, variability in amino acids and carbohydrates is proposed to play a key role in ant preferences and nutrition.  相似文献   

19.

Background and Aims

Variation in the composition of floral nectar reflects intrinsic plant characteristics as well as the action of extrinsic factors. Micro-organisms, particularly yeasts, represent one extrinsic factor that inhabit the nectar of animal-pollinated flowers worldwide. In this study a ‘microbial imprint hypothesis’ is formulated and tested, in which it is proposed that natural community-wide variation in nectar sugar composition will partly depend on the presence of yeasts in flowers.

Methods

Occurrence and density of yeasts were studied microscopically in single-flower nectar samples of 22 animal-pollinated species from coastal xeric and sub-humid tropical habitats of the Yucatán Peninsula, Mexico. Nectar sugar concentration and composition were concurrently determined on the same samples using high-performance liquid chromatography (HPLC) methods.

Key Results

Microscopical examination of nectar samples revealed the presence of yeasts in nearly all plant species (21 out of 22 species) and in about half of the samples examined (51·8 % of total, all species combined). Plant species and individuals differed significantly in nectar sugar concentration and composition, and also in the incidence of nectar yeasts. After statistically controlling for differences between plant species and individuals, nectar yeasts still accounted for a significant fraction of community-wide variance in all nectar sugar parameters considered. Significant yeast × species interactions on sugar parameters revealed that plant species differed in the nectar sugar correlates of variation in yeast incidence.

Conclusions

The results support the hypothesis that nectar yeasts impose a detectable imprint on community-wide variation in nectar sugar composition and concentration. Since nectar sugar features influence pollinator attraction and plant reproduction, future nectar studies should control for yeast presence and examine the extent to which microbial signatures on nectar characteristics ultimately have some influence on pollination services in plant communities.  相似文献   

20.
The floral nectar chemical composition and nectary structureof some Argentinean Bromeliaceae were studied, including fieldobservations on pollinators. Twenty species belonging to eightgenera from the three subfamilies were analysed. The nectarcomponents report is mostly new since no comprehensive studyhas been carried out on the family previously. Sugars were alwayspresent, while alkaloids, lipids, phenols, and proteins werenot detected in any sample. Reducing acids were found in threespecies. Amino acids were detected in a very low concentrationin only about half the samples. Pitcairnioideae species showa mean balanced disaccharide/monosaccharide nectar sugar composition,Bromelioideae had hexose-rich nectars and Tillandsioideae saccharose-dominantones. Nectar concentration ranged from 16 to 48 %. All taxabear septal nectaries with many common features. Pitcairnioideaeand Tillandsioideae members have half-inferior ovaries, a featuremostly overlooked in previous studies. Three types of nectaryarchitecture were recognized in both subfamilies. Bromelioideaehave inferior ovaries and possess comparable nectaries. Hummingbirdsconstitute the main flower pollinators of many species but butterfliesand bees were occasionally seen in two species, cropping nectarand pollen, respectively. Argentinean Bromeliaceae,, floral nectar, nectary structure, pollinators, alkalinity, abromeitiella, Aechmea, Bromelia, Deuterocohnia, Dyckia, puya, Tillandsia, vriesea  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号