首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lichenized Physolinum Printz and free-living Physolinum from a dimly lit cave were studied from fresh collections and cultures, preserved specimens fixed in situ, and cultures that had persisted for 5 years in an environmental chamber. The branched filamentous association consists of a phycobiont and a characteristic ascomycetous mycobiont of one layer that completely ensheathes the algal partner. Epiphytic blue-green algae commonly occur attached to the mycobiont. The phycobiont, Physolinum monilia (De Wildem.) Printz, produces thick-walled, green spiny cells, some of which enlarge and contact the sheathing mycobiont cells; the phycobiont and mycobiont may then develop into new lichenized filaments. The hyaline mycobiont cells extend haustoria bound by the fungus wall deeply into the phycobiont chloroplasts. The epiphytes, Synechocystis-like colonies, are firmly attached to the outer walls of the mycobiont and are associated with several-celled extensions of the fungus beyond the apical phycobiont cells. Free-living Physolinum monilia filaments are branched and moniliform; the search-containing uninucleate cells are spherical to pyriform and have walls of cellulose. Each cell has a single massive chloroplast with plastoglobuli among tightly packed thylakoids. Except for their larger cells, P. monilia filaments appear to be identical to the phycobiont of lichenized Physolinum.  相似文献   

2.
The tissue of Cystoseira osmundacea (Turn.) C. Ag. (Fucales, Phaeophyta) undergoes pronounced developmental changes when in association with the fungus Haloguignardia irritans (Setchell et Estee) Cribb et Cribb (Sphaeriales, Ascomycotina). Nonmeristematic cortical cells are induced to divide and ultimately form a structure composed of tightly packed club-shaped projections. Each projection contains a single fungal ascocarp or spermogonium. A protective multilayered algal tissue surrounds the fungal reproductive structures. This association significantly alters algal morphology to the apparent protective advantage of the fungus.  相似文献   

3.
As the closest relatives of embryophytes, the charophycean green algae (sensu Mattox and Stewart) may reveal the evolutionary history of characters in this lineage. Recent molecular phylogenetic analysis indicates that the little‐known species Entransia fimbriata Hughes is a member of the charophycean order Klebsormidiales. In this study LM and EM were used to identify and describe additional structural characters of Entransia so that comparisons could be made with Klebsormidium and with other charophycean algae outside the order Klebsormidiales. Features that Entransia shares with various members of the genus Klebsormidium include cylindrical cells in unbranched filaments that may spiral, parietal chloroplasts that cover only part of the circumference of the cell, H‐shaped cross walls, and vegetative reproduction by both fragmentation and formation of zoospores or aplanospores. Among the characteristics that distinguish Entransia from Klebsormidium are a highly lobed chloroplast with multiple pyrenoids; a single large vacuole; short cells that die and collapse, apparently facilitating filament fragmentation; and germinating filaments with condensed adhesive at the base and a tapering spine at the tip. Although Entransia has sometimes been tentatively considered to be a member of the Zygnemataceae, the presence of a flagellate life history stage distinguishes Entransia from this group. The pyrenoids of Entransia are typical of those of charophycean algae in having traversing membranes and surrounding starch. Presence of multiple such pyrenoids in each chloroplast of Entransia supports the hypothesis that the common ancestor of charophycean algae and embryophytes had a single chloroplast with multiple pyrenoids.  相似文献   

4.
5.
In the present investigation fractioned cellular components like intact pigment bearing thylakoids/chloroplasts, carotenoids, protein, polysaccharides were extracted from the cyanobacterium Anabaena sphaerica and green alga Chlorococcum infusionum. Each of these extracts was used separately in search for efficient reducing agents during gold nanoparticle (GNP) production in pro‐ and eukaryotic algal cell systems. The whole biomass and extracted compounds or cellular structures were exposed in 25 mg L?1 aqueous hydrogen tetrachloroaurate solutions separately at room temperature. Isolated viable chloroplasts from C. infusionum and thylakoids from A. sphaerica were found to be able to reduce gold ions. The protein extracts of both strains were also able to synthesize GNP at 4°C. Extracted polysaccharides of the two strains responded differently. Polysaccharides from A. sphaerica showed positive response in GNP synthesis, whereas no change was observed for C. infusionum. The carotenoids extracts from both strains acted like an efficient reducing agent. Initially the reducing efficiency of these extracted components was confirmed by the appearance of purple color in biomass or in experimental media. The GNPs, synthesized within the biomass were extracted by sonication with sodium citrate. The UV–vis spectroscopy of extracted purple colored suspensions and media showed the absorption bands at approximately 530–540 nm indicating a strong positive signal of GNP synthesis. Transmission electro n microscopy determined the size and shapes of the particles. The X‐ray diffraction study of the synthesized GNP revealed that the 2θ values appeared at 38.2°, 44.5°, 64.8° and 77.8°. Amongst all, isolated thylakoids and chloroplast showed only spherical GNP production with variable size range at pH 4. Monodisperse GNPs were also synthesized by isolated thylakoids and chloroplast at pH 9. A detailed morphological change of gold treated biomass was revealed employing scanning electron microscopy. The fluorescent property of gold loaded cells was studied by fluorescence microscopy.  相似文献   

6.
Spirogyra sp. Link was found to be parasitized by filamentous fungi tentatively identified as Saprolegnia asterophora de Bary and Pythium gracile Schenk, in field samples and when maintained in unaltered pond water in an 18 h fluorescent light–6 h dark regime at 18 ± 2°C. Collections were made periodically between March 1978, and November 1979, from a pond in Mill Seek Sanctuary near Oyster Bay, Nassau Co., Long Island, New York. Initially, less than 1% of the total field population of Spirogyra sp. was infected by either fungal parasite with Saprolegnia asterophora being the dominant parasite present generally alone in most samples or present in 80–95% of the total number of infected algal filaments when occurring concurrently with P. gracile. However, in the laboratory, approximately 100% of the Spirogyra sp. filaments in any given sample became infected by Saprolegnia asterophora and/or P. gracile within a 1—2 wk and 3–4 wk period, respectively, with vegetative hyphae involved in the spread of infection to neighboring algal filaments. Infection of algal filaments occurred at random points with cell to cell hyphal extension within the filament causing disruption of host cells. Development of S. asterophora, and possibly P. gracile, sexual reproductive structures was common in relation with the host with asexual sporangial production not observed. Saprolegnia asterophora and P. gracile were cultured on glucose, yeast extract, malt extract (GYM) medium from infected Spirogyra sp. filaments, with infection of healthy algal filaments using these cultures by Saprolegnia asterophora, but not by P. gracile, induced in the laboratory. Growth responses and tropic responses of the fungi to the algal host could not be demonstrated.  相似文献   

7.
Five species of cultured Trebouxia—T. anticipata, T. decolorans, T. erici, T. gelatinosa, and T. impressa—were examined with the electron microscope. A comparative examination of their pyrenoids revealed pyrenoglobuli associated with single pyrenoid thylakoids. The pyrenoids of T. decolorans, T. erici, and T. gelatinosa possess single thylakoids that cross or deeply penetrate the pyrenoid matrix and are often disposed in parallel arrays. T. anticipata possesses both single and double pyrenoid thylakoids within the matrix. T. impressa possesses vesiculate invaginations of thylakoid membranes into the pyrenoid matrix. The phycobiont. T. erici was examined in detail at the light and electron microscopic levels for pyrenoid alterations associated, with varied environmental regimes and with cell division. A greater amount of starch is present in cells grown in organic culture at 215 lux light intensity than in cells of similar size grown at 1075 or 3600 lux. Pyrenoglobuli are present throughout the life cycle and occur both in aplanospores and in zoospores.  相似文献   

8.
Heribaudiella fluviatilis (Aresch.) Sved. is a freshwater brown alga distributed in Europe and Japan, but known only from one questionable record in eastern North America. It is now reported as present in western Canada, approximately 250 km from any marine water. Ultrastructural features prove its phaeophycean character. Each cell contains several discoid chloroplasts with thylakoids in triplets and an encircling triplet adjacent to the chloroplast envelope. Voluminous osmiophilic substances presumed to be physodes (phenolics) are present, as well as a single nucleus associated with dictyosomes and a pair of centrioles. The cell walls are perforated by plasmodesmata, which are considered of importance in cohesion of filaments.  相似文献   

9.
Cover     
The calcofluor white‐stained filaments of Zygogonium ericetorum, a streptophycean green alga from an alpine habitat in Austria. The right side of the image shows the cellulosic walls of vegetative filaments and the filament on the left side contains the characteristic ovoid shaped aplanospores. Photo by Rosalina Stancheva and Robert Sheath. [Vol. 50, No. 5, pp. 790–803]  相似文献   

10.
Abstract: Morphological and reproductive features and cell wall ultrastructure and biochemistry of Proterozoic acritarchs are used to determine their affinity to modern algae. The first appearance datum of these microbiota is traced to infer a minimum age of the divergence of the algal classes to which they may belong. The chronological appearance of microfossils that represent phycoma‐like and zygotic cysts and vegetative cells and/or aplanospores, respectively, interpreted as prasinophyceaen and chlorophyceaen microalgae is related to the Viridiplantae phylogeny. An inferred minimum age of the Chlorophyte origin is before c. 1800 Ma, the Prasinophyceae at c. 1650 Ma and the Chlorophyceae at c. 1450 Ma. These divergence times differ from molecular clock estimates, and the palaeontological evidence suggests that they are older.  相似文献   

11.
Calcium may function directly in several aspects of photosynthesis. It appears to modulate activity of the phosphatase enzymes in the carbon reduction cycle and also to regulate chloroplast NAD+ kinase activity through a calmodulin-like protein. Some evidence supports a calcium function in the water-splitting complex, and other evidence indicates a reaction center function in photosystem II. Calcium in reaction center II may be tightly bound in chloroplasts and weakly bound in blue-green algal thylakoids. Free calcium concentration in stroma is probably <10–6 M, although the absolute concentration is not yet known. Intrathylakoid calcium content is likely very high. Stromal calcium may regulate several enzyme activities, while intrathylakoid calcium may promote photosystem II constitutively. Results to date demonstrate the need for more attention to cation composition in studies of both light and dark reactions of photosynthesis, and the need to identify free calcium levels in chloroplasts.  相似文献   

12.
The epiphytic lichens Hypogymnia physodes (L.) W. Wats, and Bryoria capillaris (Ach.) Brodo & D. Hawksw. growing on spruce branches were transplanted from a clean rural area to the environment of a fertilizer plant and a pulp mill in central Finland. The common major pollutants in these environments are SO2, NOx and ammonia but the fertilizer plant also emits fluorides. In the transmission electron microscope two main types of cellular injuries were observed both in algal and fungal cells in both species and in both environments. The first type, characterized by rapid degeneration of cell organelles, was an apparently acute injury leading to plasmolysis and rapid death of the cells. The second type was considered chronic injury and involved changes in chloroplast shape, swelling of mitochondria and increased density of cytoplasm in algal cells, and increased vacuolization and appearance of dark vacuolar accumulations in fungal cells. The cytoplasmic storage droplets decreased gradually in size both in algae and fungi. The acute injury was mainly seen in the lichens transplanted to sites with higher pollution levels near the sources, and was more usual in algal than in fungal cells. B. capillaris was more susceptible to acute injury than H. physodes. An additional injury type was detected in algal cells of both lichen species in the vicinity of the fertilizer plant. This type was characterized by severe swelling of thylakoids and their interspaces and granulation of thylakoid membranes, and was suspected to be related to the effects of fluorides. The injuries as seen in light microscope, and expressed as increased proportion of dead algae and visible bleaching of thallus, were usually observable simultaneously. The injuries as seen in the electron microscope always preceded other injuries; they were clearly observable already after one week of transplantation in the more polluted sites but developed more slowly in the less polluted ones. The time lack between these injuries and the visible ones was 2–3 weeks in the more polluted sites, but several months or even years in the less polluted ones.  相似文献   

13.
Two species of the crustose red algal genus Peyssonnelia (Gigartinales, Peyssonneliaceae) are reported from Japanese waters for the first time. These species share the following combination of vegetative and reproductive features: thalli with appressed margins, perithallial filaments arising from the whole upper surface of each hypothallial cell (the Peyssonnelia rubra‐type anatomy), unicellular rhizoids, hypobasal calcification and spermatangia that are produced in double chains (the Peyssonnelia harveyana‐type spermatangial filament). However, they differ obviously from each other in the hypothallus orientation as seen from below, the perithallus structure in relation to the consistency of the crust, the origin of gonimoblasts and the elevation of the nemathecia. Peyssonnelia armorica is characterized by: (i) hypothallial filaments comprising a polyflabellate layer; (ii) easily separable perithallial filaments in a gelatinous matrix; (iii) gonimoblasts originating exclusively from the auxiliary cell; and (iv) semi‐immersed (slightly elevated) nemathecia. Peyssonnelia harveyana is characterized by: (i) hypothallial filaments arranged in parallel rows; (ii) closely packed perithallial filaments in a firm matrix; (iii) gonimoblsts originating from both the auxiliary cell and the connecting filament; and (iv) conspicuously elevated nemathecia.  相似文献   

14.
The composition of algal species and pigments and the structural and functional characteristics of the algal community were investigated in an acid stream of southwestern Spain, the Río Tinto. The algal community had low diversity and showed few seasonal differences. It was mainly made up of Klebsormidium flaccidum Kütz. (Silva, Mattox & Blackwell) that produced long greenish or purplish filaments, Pinnularia acoricola Hust. (producing brown patches) and Euglena mutabilis Schmitz. The algal filaments made up a consistent biofilm that also included fungal hyphae, iron bacterial sheaths, diatoms, and mineral particles. HPLC analyses on Río Tinto samples showed that undegraded chl accounted for 67% of the total chl in the filamentous patches but were a minority in the brown patch (2.6%). The brown patch had a concentration of carotenoids eight times lower than that observed in the green patch. When chl concentrations were weighted for the proportion of the different patches on the streambed, undegraded chl a accounted for 89.2 mg chl a·m ? 2 of stream surface area (5.4 g C·m ? 2). This high algal biomass was supported by relatively high nutrient concentrations and by a high phosphatase activity (Vmax = 137.7 nmol methylumbelliferyl substrate·cm ? 2·h ? 1 1 Received 15 July 2002. Accepted 17 February 2003. , Km = 0.0045 μM). The remarkable algal biomass in Río Tinto potentially contributed to the bacterial–fungal community and to the macroinvertebrate community and emphasizes the role that the algae may have in the organic matter cycling and energy flow in extreme systems dominated by heterotrophic microorganisms.  相似文献   

15.
A coccoid green alga, Hemiflagellochloris kazakhstanica S. Watanabe, S. Tsujimura, T. Misono, S. Nakamura et H. Inoue, gen. et sp. nov., was described from soil samples of a saline irrigation land in Ili River basin, Kazakhstan. This alga had a parietal chloroplast with a pyrenoid, which was covered with starch segments and penetrated with thylakoid membranes. Reproduction occurred by the formation of aplanospores and zoospores. The aplanospores frequently formed tetrad aggregations in a mother cell. The zoospores were covered by a single‐layered cell wall and lacked stigmata. The zoospores had two flagella of considerably unequal lengths; the longer flagellum was 17–19 lm in length and the shorter one was 9–10 lm. The flagellar apparatus architecture was of the clockwise orientation group type in the Chlorophyceae. Molecular phylogenetic analysis using 18S and 28S rDNA sequence data resolved this organism in a separate clade from the green algae that had flagella of slightly unequal lengths. It was suggested that features such as inequality in flagellar lengths, parallel exsertion of basal bodies, and subapical position of the flagellar apparatus were sporadically evolved.  相似文献   

16.
The taxonomic status of Cryptoglena pigra Ehrb., interpreted from observations based on bright-field microscopy, has been uncertain. Examination with the electron microscope of a clone of C pigra isolated by E. G. Pringsheim reveals certain features which, collectively, are distinctly euglenoid: periplast associated with muciferous bodies and subpellicular microtubules; canal and reservoir with microtubules; one flagellum with a swelling and emergent through a canal, and a second flagellum without a swelling and nonremergent; stigma (eyetpot) closely apprrssed to but not part of the chloroplast; nucleus with permanently condensed chromosomes attached to the inner nuclrar membrane; mitochondria with disc-shaped cristae constricted at the base; chloroplast with thylakoids often in triplets; and paramylon grains in the cytoplasm. Unlike most euglenoids, C. pigra possesses a single chloroplast that in transverse thin sections is U-shaped.  相似文献   

17.
The green amoeboid cells of Chlorarachnion reptans Geitler are completely naked and each contains a central nucleus, several bilobed chloroplasts each with a central projecting pyrenoid enveloped by a capping vesicle, several Golgi bodies, mitochondria with tubular cristae, extensive rough ER, and a distinct layer of peripheral vesicles. Complex extrusome-like organelles occur rarely in both the amoeboid and flagellate stages. The only organelles entering the reticulopodia are mitochondria, but microtubules are also present. The chloroplasts contain chlorophylls a and b, but histochemical tests suggest that the carbohydrate storage product probably is not a starch. The chloroplast lamellae are composed of one to three thylakoids or form deep stacks. A girdle lamella and interlamellar partitions are absent. Each chloroplast is bounded by either four separate membranes, a pair of membranes with vesicular profiles between them, or three membranes; all three arrangements may occur in the same chloroplast. A periplastidal compartment occurs near the base of the pyrenoid where there are always four surrounding membranes. The compartment has a relatively dense matrix and contains ribosome-like particles and small dense spheres; it extends over and into a deep invagination in the pyrenoid where its contents are enclosed in a double-membraned envelope which is penetrated by wide pores. The zoospores are ovoid and each bears a single laterally inserted flagellum which appears to be wrapped helically around the cell body during swimming. The flagellum lies in a groove in the cell surface and bears fine lateral hairs. Neither a second flagellum or vestige of one, nor an eyespot, is present. A single microtubular root and a larger homogeneous root run from the flagellar base parallel to the emerging flagellum, between the nuclear envelope and the plasmalemma. In the simple flagellar transition region, fine filaments connect adjacent axonemal doublets. A detailed comparison of C. reptans with all other algal taxa results in the conclusion that it must be segregated in the new class Chlorarachniophyceae, the only class in the new division Chlorarachniophyta. The possibility that C. reptans evolved from a symbiosis between a colorless amoeboid cell and a chlorophyll b- containing eukaryote is considered, but the possible affinities of the symbiont remain enigmatic. The implications of the unique chloroplast structure of C. reptans for current hypotheses concerning the origin of chloroplasts are discussed.  相似文献   

18.
We investigated the protection from photoinhibition by different developmental stages of Haematococcus lacustris [Girod] Rostafinski using chlorophyll fluorescence measurements of single cells and suspensions. An overall correlation between higher cellular content of secondary carotenoids and the capacity to withstand excessive irradiation was observed in flagellated cells and aplanospores of H. lacustris. Low-light-reversible spreading of extra-chloroplastic secondary carotenoids occurred in the periphery of the cell during strong irradiation. This process resulted in increased shading of the cup-shaped chloroplast as demonstrated by a decrease in chlorophyll fluorescence. Extrachloroplastic accumulation of secondary carotenoids in H. lacustris can be interpreted as a specific adaptation to habitats that exhibit strong insolation.  相似文献   

19.
Parapodia of the sacoglossan slug Elysia timida were preserved by high-pressure cryofixation during feeding experiments and investigated with transmission electron microscopy. This slug has been known for its long-term retention of active chloroplasts and photosynthesis. We observed different stages of phagocytosis of chloroplast components from ingested algal food by slug digestive gland cells. Thylakoid stacks and stroma of chloroplasts were engulfed by the slug cells. In the slug cells thylakoids were surrounded by one membrane only. This membrane is interpreted as having been generated by the mollusk during phagocytosis. It is inferred to be eukaryotic in origin and unlikely, therefore, to be endowed with the translocons system ordinarily regulating import of algal gene-encoded plastid preproteins. Our structural findings suggest that chloroplast components in the slug cells are thylakoid stacks with chloroplast stroma only.  相似文献   

20.
Summary The green algaScenedesmus quadricauda (Turp.) Bréb. was cultivated in the presence or absence of orthophosphate and synchronized daughter or mother cells were cytochemically stained. Forin situ capturing of water soluble phosphates Ca2+ and Mg2+ ions were added to the ice-cold glutaraldehyde fixative to form a polymeric metal-phosphate complex which was equivalent to the energy-rich condensed polyphosphates in staining by alkaline lead acetate. The X-ray microanalysis of the extensive stained deposits proved the presence of phosphorus. In orthophosphate-supplied daughter cells cytoplasmic vacuoles contained round stained bodies; a layer of phosphate-containing paracrystals encompassing some starch grains and a fine stained layer delineating the chloroplast envelope were also observed. In the equivalent mother cells only the material inside theloculi of stacked thylakoids was stained. In orthophosphate starved daughter cells filamentous phosphate-containing paracrystals filled extensive cytoplasmic vacuoles. A stained layer covered the chloroplast envelope and continuous stained layers appeared inside theloculi of stacked thylakoids. Mother cells that develop from these daughter cells were filled with starch grains and showed only peripheral stained deposits. The results are compared with the biochemical evidence of phosphate turnover in algal cells.Abbreviations ADP adenosine diphosphate - ATP adenosine triphosphate - ATPase adenosine triphosphatase - EDAX energy dispersive analysis of X-rays - Pi orthophosphate - PPi pyrophosphate - PP polyphosphate - PhAR photosynthetic active radiation - TCA trichloroacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号