首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Changes in the environmental conditions experienced by naturally occurring populations are frequently accompanied by changes in adaptive traits allowing the organism to cope with environmental unpredictability. Phenotypic plasticity is a major aspect of adaptation and it has been involved in population dynamics of interacting species. In this study, phenotypic plasticity (i.e., environmental sensitivity) of morphological adaptive traits were analyzed in the cactophilic species Drosophila buzzatii and Drosophila koepferae (Diptera: Drosophilidae) considering the effect of crowding conditions (low and high density), type of competition (intraspecific and interspecific competition) and cacti hosts (Opuntia and Columnar cacti). All traits (wing length, wing width, thorax length, wing loading and wing aspect) showed significant variation for each environmental factor considered in both Drosophila species. The phenotypic plasticity pattern observed for each trait was different within and between these cactophilic Drosophila species depending on the environmental factor analyzed suggesting that body size‐related traits respond almost independently to environmental heterogeneity. The effects of ecological factors analyzed in this study are discussed in order to elucidate the causal factors investigated (type of competition, crowding conditions and alternative host) affecting the election of the breeding site and/or the range of distribution of these cactophilic species.  相似文献   

2.
Abstract.
  • 1 A method of separating the effects of two important determinants of body size in natural populations, temperature of larval development and level of larval nutrition, by making measurements of thorax length and wing length of adult flies is investigated.
  • 2 I show that at any given time variation in body size of Drosophila buzzatii from two sites in eastern Australia is determined primarily by variation in the quality of nutrition available to larvae.
  • 3 Throughout the year adult flies are consistently at least 25% smaller in volume than predicted for optimal nutrition at their predicted temperature of larval development.
  • 4 Nutritional stress is therefore a year-round problem for these flies.
  • 5 Measurements of adult flies emerging from individual breeding substrates (rotting cactus cladodes) show that there is substantial variation among these substrates in the nutrition available to larvae.
  • 6 This method will allow study of spatial and temporal variation in the temperature of larval substrates and in the nutritional resources available to flies in natural populations.
  相似文献   

3.
For terrestrial vertebrates, gliding imposes unique constraints on the interaction of body mass and structural size, particularly with reference to minimizing wing loading. Females of gliding animals experience increases in wing loading during pregnancy or gravidity, and selection may favour increased structural size to compensate for the added mass. We tested whether pregnant southern flying squirrels Glaucomys volans had similar wing loading as males, and whether females with lower wing loading bore heavier litters, than those with greater wing loading. Males had greater wing loading than females, regardless of the latter's reproductive state (males: 38.4±3.62 N m−2, pregnant females: 30.7±4.21 N m−2 and non-pregnant females: 26.8±5.13 N m−2). The slope of the linear relationship between planar surface area and body mass was similar between pregnant females and males, however ( F =0.383, P =0.322). Thus female flying squirrels may optimize their litter mass to minimize wing loading during pregnancy. Contrary to our prediction, females with greater wing loading had heavier litters than those with lower wing loading, which suggests reproductive output may be influenced by other ecological factors.  相似文献   

4.
5.
Most ectotherms follow a pattern of size plasticity known as the temperature‐size rule where individuals reared in cold environments are larger at maturation than those reared in warm environments. This pattern seems maladaptive because growth is slower in the cold so it takes longer to reach a large size. However, it may be adaptive if reaching a large size has a greater benefit in a cold than in a warm environment such as when size‐dependent mortality or size‐dependent fecundity depends on temperature. I present a theoretical model showing how a correlation between temperature and the size–fecundity relationship affects optimal size at maturation. I parameterize the model using data from a freshwater pulmonate snail from the genus Physa. Nine families were reared from hatching in one of three temperature regimes (daytime temperature of 22, 25 or 28 °C, night‐time temperature of 22 °C, under a 12L : 12D light cycle). Eight of the nine families followed the temperature‐size rule indicating genetic variation for this plasticity. As predicted, the size–fecundity relationship depended upon temperature; fecundity increases steeply with size in the coldest treatment, less steeply in the intermediate treatment, and shows no relationship with size in the warmest treatment. Thus, following the temperature‐size rule is adaptive for this species. Although rarely measured under multiple conditions, size–fecundity relationships seem to be sensitive to a number of environmental conditions in addition to temperature including local productivity, competition and predation. If this form of plasticity is as widespread as it appears to be, this model shows that such plasticity has the potential to greatly modify current life‐history theory.  相似文献   

6.
    
In the sibling species Drosophila melanogaster and D. simulans, growth and development at constant temperatures, from 12 to 30 °C, resulted in extensive variations of adult size and flight parameters with significant differences between species. Changes in body weight, thorax length and wing length were nonlinear, with maximum values of each trait at lower temperatures for D. simulans than for its sibling species. By contrast, the wing/thorax ratio and the wing loading varied monotonically with growth temperature. These traits were negatively correlated, the wing/thorax ratio decreasing with growth temperature while the wing loading increased. Wing/thorax ratio, which is easier to measure, thus appears as a convenient predictor of wing loading. During tethered flight at the same ambient temperature, the wingbeat frequency changed linearly as a function of the wing moment of inertia. More interestingly, the beat rate was strongly correlated with the increase of wing loading at growth temperature above 13 °C. The likely adaptive significance of these morphometrical changes for flight efficiency is discussed.  相似文献   

7.
Peters  Robert H. 《Hydrobiologia》1992,(1):435-455
Over the years, models and concepts developed to explain the behaviour of lake plankton have been generalized and extended to most parts of the limnetic community. This development has now fused with parallel research programs into stream and marine benthos and fish, to yield an imposing literature dealing with complex interactions in aquatic communities. Although the size of this literature has grown, its basic elements, i.e. the allometries of organismal capacity and environmental opportunity, remain those associated with the seminal size efficiency hypothesis. Unfortunately, the difficulties that eventually buried that hypothesis in a welter of detail and special cases were not resolved, so the newer, broader concepts associated with complex interactions remain difficult or impossible to test. Those concepts are so subjective, poorly defined, and variably interpreted that they are more effective in explaining our observations after the fact than in predicting them before-hand. Despite predictive failure, such explanatory models have achieved wide acceptance. Once accepted as substitutes for predictive theory, they mire the advance of science by hiding its deficiencies. One solution to this cloying complexity is insistence that the theories of ecology specify simple, observable response variables so that theories may be evaluated by their predictive power. Components of a general refuge concept illustrate the point. This policy has implications for environmental science well beyond the confines of plankton ecology.Dedicated to Dr Karl Banse, School of Oceanography, University of Washington on his 60th Birthday.  相似文献   

8.
    
Drosophila buzzatii and D. koepferae are two sibling species that breed on the necrotic tissues of several cactus species and show a certain degree of niche overlap. Also, they show differences in several life history traits, such as body size and developmental time, which probably evolved as a consequence of adaptation to different host plants. In this work we investigate the ecological and genetic factors affecting wing morphology variation both within and between species. Three wing traits were scored, distal and proximal wing length and width in isofemale lines reared in two of the most important host cacti: Opuntia sulphurea and Trichocereus terschekii. Our results revealed that differences between species and sexes in wing size and shape were significant, whereas the cactus factor was only significant for wing size. Intraspecific analyses showed that differences among isofemale lines were highly significant for both size and shape in both species, suggesting that an important fraction of variation in wing morphology has a genetic basis. Moreover, the line by cactus interaction, which can be interpreted as a genotype by environment interaction, also accounted for a significant proportion of variation. In summary, our study shows that wing size is phenotypically plastic and that populations of D. buzzatii and D. koepferae harbour substantial amounts of genetic variation for wing size and shape. Interspecific differences in wing size and shape are interpreted in terms of spatial predictability of the different host plants in nature.  相似文献   

9.
Genetic variation of body size along latitudinal clines is found globally in Drosophila melanogaster, with larger individuals encountered at higher latitudes. Temperature has been implicated as a selective agent for these clines, because the body size of laboratory populations allowed to evolve in culture at lower temperatures is larger. In this study, we investigated the hypothesis that larger size is favoured at lower temperature through natural selection on adult males. We measured life‐span and age‐specific fertility of males from lines of flies artificially selected for body size at two different experimental temperatures. There was an interaction between experimental temperature and body size selection for male fitness; large‐line males were fitter than controls at both temperatures, but the difference in fitness was greater at the lower experimental temperature. Smaller males did not perform significantly differently from control males at either experimental temperature. The results imply that thermal selection for larger adult males is at least in part responsible for the evolution of larger body size at lower temperatures in this species. The responsible mechanisms require further investigation.  相似文献   

10.
Many animal lineages exhibit allometry in sexual size dimorphism (SSD), known as ‘Rensch’s rule’. When applied to the interspecific level, this rule states that males are more evolutionary plastic in body size than females and that male‐biased SSD increases with body size. One of the explanations for the occurrence of Rensch’s rule is the differential‐plasticity hypothesis assuming that higher evolutionary plasticity in males is a consequence of larger sensitivity of male growth to environmental cues. We have confirmed the pattern consistent with Rensch’s rule among species of the gecko genus Paroedura and followed the ontogeny of SSD at three constant temperatures in a male‐larger species (Paroedura picta). In this species, males exhibited larger temperature‐induced phenotypic plasticity in final body size than females, and body size and SSD correlated across temperatures. This result supports the differential‐plasticity hypothesis and points to the role phenotypic plasticity plays in generating of evolutionary novelties.  相似文献   

11.
In this paper we use an adjusted ellipse to the contour of the wings of Drosophila as an experimental model to study phenotypic plasticity. The geometric properties of the ellipse describe the wing morphology. Size is the geometric mean of its two radii; shape is the ratio between them; and, the positions of the apexes of the longitudinal veins are determined by their angular distances to the major axis of the ellipse. Flies of an inbred laboratory strain of Drosophila melanogaster raised at two temperatures (16.5°C and 25°C) and two densities (10 and 100 larvae per vial) were used. One wing of at least 40 animals of each sex and environmental condition were analyzed (total = 380), a measurement of thorax length was also taken. Wing size variation could be approximately divided into two components: one related to shape variation and the other shape independent. The latter was influenced primarily by temperature, while the former was related to sex and density. A general pattern could be identified for the shape dependent variation: when wings become larger they become longer and the second, fourth and fifth longitudinal veins get closer to the tip of the wing. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
    
Humans are unusual among mammals in appearing hairless. Several hypotheses propose explanations for this phenotype, but few data are available to test these hypotheses. To elucidate the evolutionary history of human “hairlessness,” a comparative approach is needed. One previous study on primate hair density concluded that great apes have systematically less dense hair than smaller primates. While there is a negative correlation between body size and hair density, it remains unclear whether great apes have less dense hair than is expected for their body size. To revisit the scaling relationship between hair density and body size in mammals, I compiled data from the literature on 23 primates and 29 nonprimate mammals and conducted Phylogenetic Generalized Least Squares regressions. Among anthropoids, there is a significant negative correlation between hair density and body mass. Chimpanzees display the largest residuals, exhibiting less dense hair than is expected for their body size. There is a negative correlation between hair density and body mass among the broader mammalian sample, although the functional significance of this scaling relationship remains to be tested. Results indicate that all primates, and chimpanzees in particular, are relatively hairless compared to other mammals. This suggests that there may have been selective pressures acting on the ancestor of humans and chimpanzees that led to an initial reduction in hair density. To further understand the evolution of human hairlessness, a systematic study of hair density and physiology in a wide range of species is necessary. Am J Phys Anthropol 152:145–150, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
    
Inbreeding is expected to increase the variability in size and shape within populations. The distinct effects of inbreeding on size and shape suggest that they are governed by different developmental pathways. One unresolved question is whether the non‐allometric shape component is partially unconstrained developmentally and therefore whether shape is evolvable. In the present study, we utilized a mass outbred population of Drosophila melanogaster maintained at standard laboratory conditions. Eight lines with equivalent expected levels of inbreeding (F ≈ 0.67) were obtained by restricting the size of each population to two pairs for nine generations. Nine landmarks were measured on Drosophila wings of the inbreed lines and compared with those of the mass population. Wing landmarks comprise an excellent model system for studying evolution of size and shape. Landmark measurements were analyzed with a Procrustes generalized least squares procedure. To visualize global shape changes among samples, we reconstructed the mean shape and the shape changes related to both the allometric and non‐allometric components. An increased variability in the non‐allometric shape component was found with inbreeding. This indicated that shape was not entirely developmentally constrained, and therefore that shape appears to be evolvable. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 626–634.  相似文献   

14.
Replicated lines of Drosophila subobscura originating from a large outbred stock collected at the estimated Chilean epicentre (Puerto Montt) of the original New World invasion were allowed to evolve under controlled conditions of larval crowding for 3.5 years at three temperature levels (13, 18 and 22 degrees C). Several pre-adult life history traits (development time, survival and competitive ability), adult life history related traits (wing size, wing shape and wing-aspect ratio), and wing size and shape asymmetries were measured at the three temperatures. Cold-adapted (13 degrees C) populations evolved longer development times and showed lower survival at the highest developmental temperature. No divergence for wing size was detected following adaptation to temperature extremes (13 and 22 degrees C), in agreement with earlier observations, but wing shape changes were obvious as a result of both thermal adaptation and development at different temperatures. However, the evolutionary trends observed for the wing-aspect ratio were inconsistent with an adaptive hypothesis. There was some indication that wing shape asymmetry has evolutionarily increased in warm-adapted populations, which suggests that there is additive genetic variation for fluctuating asymmetry and that it can evolve under rapid environmental changes caused by thermal stress. Overall, our results cast strong doubts on the hypothesis that body size itself is the target of selection, and suggest that pre-adult life history traits are more closely related to thermal adaptation.  相似文献   

15.
Lee SF  Rako L  Hoffmann AA 《Heredity》2011,107(1):22-29
Many ecologically important traits exhibit latitudinal variation. Body size clines have been described repeatedly in insects across multiple continents, suggesting that similar selective forces are shaping these geographical gradients. It is unknown whether these parallel clinal patterns are controlled by the same or different genetic mechanism(s). We present here, quantitative trait loci (QTL) analysis of wing size variation in Drosophila simulans. Our results show that much of the wing size variation is controlled by a QTL on Chr 3L with relatively minor contribution from other chromosome arms. Comparative analysis of the genomic positions of the QTL indicates that the major QTL on Chr 3 are distinct in D. simulans and D. melanogaster, whereas the QTL on Chr 2R might overlap between species. Our results suggest that parallel evolution of wing size clines could be driven by non-identical genetic mechanisms but in both cases involve a major QTL as well as smaller effects of other genomic regions.  相似文献   

16.
Female gypsy moths (Lymantria dispar) of Asian heritage studied in central Siberia and Germany exhibit a highly synchronous flight at dusk, after light intensity falls to about 2 lux. This critical light intensity sets the timing of flight behaviors independent of ambient temperature. Flight follows several minutes of preflight wing fanning during which females in Germany and those from a laboratory colony (derived from Siberian stock) raised their thoracic temperatures to 32–33°C at ambient temperatures of 19–22°C. Thoracic temperature of females in free flight exceeded the air temperature (19–22°C) by approximately 11–13°C. The duration of wing fanning was strongly dependent on ambient temperature. In Germany, where ambient temperatures at dusk ranged between 21 and 25°C, females wing fanned for only 2.1 ± 0.2 (SE) min; in the much colder temperatures prevalent at dusk in Bellyk, central Siberia (11–13°C), females spent 11.2 ± 0.6 min in preflight wing fanning. The majority (80%) of mated and even virgin females initiated flight during the evening of the day they eclosed. However, in Bellyk, a small proportion (12%) of females wing fanned for an extended time but then stopped, whereas others (8%) never wing fanned and, therefore, did not take flight. Females also were capable of flight when disturbed during the daylight hours in Germany where the maximal temperature was high (27–30°C), but not in Siberia, where temperatures peaked at only 17–19°C. However, Siberian females were able to propel themselves off the tree on which they were perched by executing several vigorous wing flicks when approached by the predaceous tettigoniid, Tettigonia caudata.  相似文献   

17.
On the mechanism of speed and altitude control in Drosophila melanogaster   总被引:1,自引:0,他引:1  
ABSTRACT The total power output of tethered flying Drosophila melanogaster in still air depends on translational velocity components of image flow on the eye, whereas the orientation of the average flight force in the midsagittal plane of the fly is widely independent of visual input (Götz, 1968). The fly does not seem to control the vertical and the horizontal force component independently. Freely flying flies nevertheless generate different ratios between lift and thrust, simply by changing the inclination of their body. By the combined adjustment of the body angle and the total power output a fly appears to be able to stabilize height and speed (David, 1985). Here a possible mechanism is proposed by which the appropriate torque about the transverse body axis could be generated. Translational pattern motion influences the posture of the abdomen and the plane of wing oscillation. Thus the position of the centre of gravity relative to the flight force vector is changed. When abdomen and stroke plane deviate from an equilibrium state, a lever is generated by which the force vector will rotate the fly about its transverse axis.  相似文献   

18.
19.
A problematic aspect of brain/body allometry is the frequency of interspecific series which exhibit allometry coefficients of approximately 0.33. This coefficient is significantly lower than the 0.66 value which is usually taken to be the interspecific norm. A number of explanations have been forwarded to account for this finding. These include (1) intraspecificallometry explanations, (2) nonallometric explanations, and (3) Jerison’s “extraneurons” hypothesis, among others. The African apes, which exhibit a lowered interspecific allometry coefficient, are used here to consider previous explanations. These are found to be inadequate in a number of ways, and an alternative explanation is proposed. This explanation is based on patterns of brain and body size change during ontogeny and phytogeny. It is argued that the interspecific allometry coefficient in African apes parallels the intraspecific one because similar ontogenetic modifications of body growth separate large and small forms along each curve. In both cases, body size differences are produced primarily by growth in later postnatal periods, during which little brain growth occurs. Data on body growth, neonatal scaling, and various lifehistory traits support this explanation. This work extends previous warnings that sizecorrected estimates of relative brain size may not correspond very closely to our understanding of the behavioral capacities of certain species in lineages characterized by rapid change in body size.  相似文献   

20.
    
Studies of sexual selection have tended to concentrate on obvious morphological dimorphisms such as crests, horns, antlers, and other physical displays or weapons; however, traits that show no obvious sexual dimorphism may nevertheless still be under sexual selection. Sexual selection theory generally predicts positive allometry for sexually selected traits. When fighting, male kangaroos use their forelimbs to clasp and hold their opponent and, standing on their tail, bring up their hind legs to kick their opponent. This action requires substantial strength and balance. We examined allometry of forelimb musculature in male and female western grey kangaroos (Macropus fuliginosus) to determine whether selection through male–male competition is associated with sex differences in muscle development. Forelimbs of males are more exaggerated than in females, with relatively greater muscle mass in males than the equivalent muscles in females. Furthermore, while muscles generally showed isometric growth in female forelimbs, every muscle demonstrated positive allometry in males. The significant positive allometry in male forelimb musculature, particularly those muscles most likely involved in male–male combat (a group of muscles involved in grasping: shoulder adduction, elbow flexion; and pulling: arm retraction, elbow flexion), clearly suggests that this musculature is subject to sexual selection. In addition to contributing to locomotion, the forelimbs of male kangaroos can also act as a signal, a weapon, and help in clasping, features that would contribute towards their importance as a sexually selected trait. Males would therefore benefit from well‐developed musculature of the arms and upper body during competition for mates. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 923–931.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号