首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In the sibling species Drosophila melanogaster and D. simulans, growth and development at constant temperatures, from 12 to 30 °C, resulted in extensive variations of adult size and flight parameters with significant differences between species. Changes in body weight, thorax length and wing length were nonlinear, with maximum values of each trait at lower temperatures for D. simulans than for its sibling species. By contrast, the wing/thorax ratio and the wing loading varied monotonically with growth temperature. These traits were negatively correlated, the wing/thorax ratio decreasing with growth temperature while the wing loading increased. Wing/thorax ratio, which is easier to measure, thus appears as a convenient predictor of wing loading. During tethered flight at the same ambient temperature, the wingbeat frequency changed linearly as a function of the wing moment of inertia. More interestingly, the beat rate was strongly correlated with the increase of wing loading at growth temperature above 13 °C. The likely adaptive significance of these morphometrical changes for flight efficiency is discussed.  相似文献   

2.
The body size of an animal is probably its most important functional trait. For arthropods, environmental drivers of body size variation are still poorly documented and understood, especially in tropical regions. We use a unique dataset for two species‐rich, phylogenetically independent moth taxa (Lepidoptera: Geometridae; Arctiinae), collected along an extensive tropical elevational gradient in Costa Rica, to investigate the correlates and possible causes of body‐size variation. We studied 15 047 specimens (794 species) of Geometridae and 4167 specimens (308 species) of Arctiinae to test the following hypotheses: 1) body size increases with decreasing ambient temperature, as predicted by the temperature–size rule; 2) body size increases with increasing rainfall and primary productivity, as predicted from considerations of starvation resistance; and 3) body size scales allometrically with wing area, as elevation increases, such that wing loading (the ratio of body size to wing area) decreases with increasing elevation to compensate for lower air density. To test these hypotheses, we examined forewing length as a proxy for body size in relation to ambient temperature, rainfall, vegetation index and elevation as explanatory variables in linear and polynomial spatial regression models. We analysed our data separately for males and females using two principal approaches: mean forewing length of species at each site, and mean forewing length of complete local assemblages, weighted by abundance. Body size consistently increased with elevation in both taxa, both approaches, both sexes, and also within species. Temperature was the best predictor for this pattern (–0.98 < r < –0.74), whereas body size was uncorrelated or weakly correlated with rainfall and enhanced vegetation index. Wing loading increased with elevation. Our results support the temperature–size rule as an important mechanism for body size variation in arthropods along tropical elevational gradients, whereas starvation resistance and optimization of flight mechanics seem to be of minor importance.  相似文献   

3.
1. Climate change is expected to produce shifts in species distributions as well as behavioural, life-history, and/or morphological adaptations to find suitable conditions or cope with the altered environment. Most of our knowledge on this issue comes from studies on vertebrates, mainly endotherm species. However, it remains uncertain how small ectotherms, such as insects, respond to increased temperature. 2. This study tested whether climate change over the last 100 years (1904–2013) has affected morphological and functional traits in workers of the social wasp Dolichovespula sylvestris in the Iberian Peninsula. 3. Head width and forewing length, as well as body mass and wing area (assuming no change in shape), decreased over time and with increased mean annual temperature, even when controlling for geographical location and altitude. Interestingly, wing size decreased with a steeper slope compared with body size. If there is no change in wing shape, this would lead to an invariable wing loading (body mass:wing area ratio) over time, with potential consequences on flying ability of more recent (and thus smaller) wasp individuals. 4. These results suggest that recent climate change is leaving morphological signatures in social wasps, increasing the evidence for this phenomenon in insects. The data furthermore suggest that the known efficient thermoregulatory ability of social insect colonies may not successfully buffer the effect of global warming.  相似文献   

4.
Reaction norms across three temperatures of development were measured for thorax length, wing length and wing length/thorax length ratio for ten isofemale lines from each of two populations of Drosophila aldrichi and D. buzzatii. Means for thorax and wing length in both species were larger at 24 °C than at either 18 °C or 31 °C, with the reduction in size at 18 °C most likely due to a nutritional constraint. Although females were larger than males, the sexes were not different for wing length/thorax length ratio. The plasticity of the traits differed between species and between populations of each species, with genetic variation in plasticity similar for the two species from one locality, but much higher for D. aldrichi from the other. Estimates of heritabilities for D. aldrichi generally were higher at 18 °C and 24 °C than at 31 °C, but for D. buzzatii they were highest at 31 °C, although heritabilities were not significantly different between species at any temperature. Additive genetic variances for D. aldrichi showed trends similar to that for heritability, being highest at 18 °C and decreasing as temperature increased. For D. buzzatii, however, additive genetic variances were lowest at 24 °C. These results are suggestive that genetic variation for body size characters is increased in more stressful environments. Thorax and wing lengths showed significant genetic correlations that were not different between the species, but the genetic correlations between each of these traits and their ratio were significantly different. For D. aldrichi, genetic variation in the wing length/thorax length ratio was due primarily to variation in thorax length, while for D. buzzatii, it was due primarily to variation in wing length. The wing length/thorax length ratio, which is the inverse of wing loading, decreased linearly as temperature increased, and it is suggested that this ratio may be of greater adaptive significance than either of its components.  相似文献   

5.
Butterflies have distinctively large wings relative to body size, but the functional and fitness consequences of wing size for butterflies are largely unknown. I use natural and experimentally generated variation in wing surface area to examine how decreased wing size affects flight and survival in a population of the western white butterfly, Pontia occidentalis. In the laboratory, experimental reductions in wing area (reduced-wings manipulation) significantly increased wingbeat frequencies of hovering butterflies, whereas a control manipulation had no detectable effects. In contrast, behavioral observations and mark-release-recapture (MRR) studies in the field detected no significant differences in flight activity, initial dispersal rates, or recapture probabilities among treatment groups. Estimated selection coefficients indicated that natural variation in wing size, body mass, and wing loading in the population were not significantly correlated with survival in the two MRR studies. In two mark-recapture studies with manipulated butterflies, survival probabilities were not significantly different for reduced-wings individuals compared with control or unmanipulated individuals. In summary, experimental reductions in wing area significantly altered aspects of flight in the laboratory, but did not detectably alter flight or survival in the field for this population. The large wing size typical of butterflies may reduce the functional and survival consequences of wing size variation within populations.  相似文献   

6.
Reaction norms to growth temperature of two size-related traits, wing and thorax length, were compared in tropical (West Indies) and temperate (France) populations of the two sibling species, Drosophila melanogaster and D. simulans. A major body size difference was found in D. melanogaster, with much smaller Caribbean flies, while D. simulans exhibited little size variation between geographical populations. The concave norms of reaction were adjusted to second- or third-degree polynomials, and characteristic points calculated i.e. maximum value (MV) and temperature of maximum value (TMV). TMVs were confirmed to be higher for thorax than for wing length, higher in D. melanogaster than in D. simulans, and higher in females than in males. For both traits Caribbean populations exhibited higher TMVs in the two species, strongly suggesting an adaptive shift of the reaction norms toward higher temperature in warm-adapted populations. The wing/thorax ratio was also analysed, and found to be significantly lower in tropical populations of both species. This ratio, which is related to wing loading and flight capacity, might evolve independently of body weight itself.  相似文献   

7.
Large amounts of genetic variation for wing length and wing area were demonstrated both within and between Drosophila melanogaster populations along a latitudinal gradient in South America. Wing length and wing area showed a strong positive correlation with latitude in both wild flies and laboratory-raised descendants. Large population differences were observed for heritability and coefficient of variation of these two traits, whereas relatively small population differences were found for development time, viability, pupal mortality, sex ratio and their norms of reaction to four developmental temperatures. No clear-cut latitudinal clines were established for these life-history characters. These results are discussed in the light of Bergmann's Rule and the relation between larval development and adult body size.  相似文献   

8.
For terrestrial vertebrates, gliding imposes unique constraints on the interaction of body mass and structural size, particularly with reference to minimizing wing loading. Females of gliding animals experience increases in wing loading during pregnancy or gravidity, and selection may favour increased structural size to compensate for the added mass. We tested whether pregnant southern flying squirrels Glaucomys volans had similar wing loading as males, and whether females with lower wing loading bore heavier litters, than those with greater wing loading. Males had greater wing loading than females, regardless of the latter's reproductive state (males: 38.4±3.62 N m−2, pregnant females: 30.7±4.21 N m−2 and non-pregnant females: 26.8±5.13 N m−2). The slope of the linear relationship between planar surface area and body mass was similar between pregnant females and males, however ( F =0.383, P =0.322). Thus female flying squirrels may optimize their litter mass to minimize wing loading during pregnancy. Contrary to our prediction, females with greater wing loading had heavier litters than those with lower wing loading, which suggests reproductive output may be influenced by other ecological factors.  相似文献   

9.
Reaction norms across seven constant and one fluctuating temperature of development were measured for thorax length and several wing size traits for up to 10 isofemale lines of each of the cactophilic Drosophila species, D. aldrichi and D. buzzatii, originating from the same locality. Maximum thorax length was reached at different low to intermediate temperatures for the two species, whereas wing length was highest at the lowest temperature in both species. Various ratio parameters showed pronounced species differences. The reaction norm for the wing loading index (wing length/thorax length) decreased monotonically with temperature in both species, but was much steeper and spanned a wider range in D. aldrichi than in D. buzzatii, suggesting either that wing loading is not a good characterization of flight capacity or, more likely, that flight optimization does not occur in the same manner in both species. The vein ratio (distal length/proximal length of the third vein) increased with temperature in D. buzzatii but decreased in D. aldrichi. Wing development in the two species thus is very different, with the proximal part of the wing in D. buzzatii more closely allied to the thorax than to the distal part. Among line variation was significant for all traits in both species, and most pronounced for thorax length and the ratio parameters. Coefficients of variation were significantly different between the species for all traits, with those in D. aldrichi higher than in D. buzzatii. Genetic variance in plasticity was significant for all traits in D. buzzatii, but only for seven out of 12 in D. aldrichi. Additive genetic variances for all traits in both species were significantly larger than zero. Genetic correlations between thorax length and several wing length parameters, and between these and wing area, were positive and generally significant in both species. The genetic correlation between the distal and the proximal length of the third vein was not significantly different from zero in D. aldrichi, but negative and significant in D. buzzatii. Heritabilites varied significantly among temperatures for almost all traits in both species. Phenotypic variances were generally higher in D. aldrichi than in D. buzzatii, and commonly highest at the extreme temperatures in the former species. At the high temperature the genetic variances also were usually highest in D. aldrichi. The data clearly suggest that the process of thermal adaptation is species specific and caution against generalizations based on the study of single species.  相似文献   

10.
Changes in the environmental conditions experienced by naturally occurring populations are frequently accompanied by changes in adaptive traits allowing the organism to cope with environmental unpredictability. Phenotypic plasticity is a major aspect of adaptation and it has been involved in population dynamics of interacting species. In this study, phenotypic plasticity (i.e., environmental sensitivity) of morphological adaptive traits were analyzed in the cactophilic species Drosophila buzzatii and Drosophila koepferae (Diptera: Drosophilidae) considering the effect of crowding conditions (low and high density), type of competition (intraspecific and interspecific competition) and cacti hosts (Opuntia and Columnar cacti). All traits (wing length, wing width, thorax length, wing loading and wing aspect) showed significant variation for each environmental factor considered in both Drosophila species. The phenotypic plasticity pattern observed for each trait was different within and between these cactophilic Drosophila species depending on the environmental factor analyzed suggesting that body size‐related traits respond almost independently to environmental heterogeneity. The effects of ecological factors analyzed in this study are discussed in order to elucidate the causal factors investigated (type of competition, crowding conditions and alternative host) affecting the election of the breeding site and/or the range of distribution of these cactophilic species.  相似文献   

11.
During the Neogene of South America, Anhingidae was represented by several species, mainly with greater sizes than the extant members. In the present contribution, body mass and locomotor habits of Anhinga minuta, the smallest known darter, were inferred. Body mass was estimated using two methods, one with measures of a tibiotarsus (the holotype) and the other, with measurements of a humerus; locomotor habits were inferred through muscular reconstructions and wing parameters (wing span, wing area and wing loading). Estimates of wing span and wing area were based on the length of humerus, assuming a condition of isometry with respect to Anhinga anhinga; wing loading was obtained through a relation formula between wing area and body mass. The results obtained indicate a body mass of about 729 g, a wing span of 0.958 m, a wing area of 0.117 m2 and a corresponding wing loading of 61 N/m2. These values and also the proximal insertion of the musculus pectoralis are consistent with those of a soaring bird but with more frequent flapping than extant anhingids. Furthermore, the inferred musculature for tibiotarsus indicates abilities for swimming, climbing and moving through the vegetation as in extant representatives.  相似文献   

12.

Aim

Recent evidence has shown changes in body size and shape of individuals, which are suggested to be a result of global warming caused by climate change. Here, we explored the spatiotemporal changes in wing length and body mass of 24 wintering bird species in Northern Europe and how these relate to temperature anomaly.

Location

Finland and Sweden, Europe.

Time Period

50 years, 1970 to 2020.

Major Taxa Studied

Birds, 24 species.

Methods

We used site-specific, long-term winter ringing data containing wing length and body mass measurements from across Sweden and Finland for 24 bird species. We modelled wing length and body mass change over time, in relation to the spatioclimatic gradient and as response to temperature anomalies (of [i] the same winter as the ringing took place, [ii] the previous winter and [iii] the previous spring) by accounting for phylogenetic relatedness between species and their species-specific responses to each predictor of interest.

Results

We show that across all species, body size has decreased since the 1970s, with a negative relationship between wing length and temperature anomalies of previous winters, suggesting carry-over effects likely linked to body size-related survival or dispersal. Body mass was negatively related to the temperature anomaly of the same winter, indicating more immediate effects related to reduced fat reserves during mild winters.

Main Conclusions

Our results highlight a climate-driven decrease in body size across several species and its association with positive anomalies in winter temperature in the high latitudes. However, the responses are not spatially uniform and there is considerable species-specific variation, emphasizing the importance of conducting multispecies studies when investigating responses to climate change. The mechanisms of decreasing wing length and body mass seem to differ and underline the immediate and carry-over effects of temperature warming during the nonbreeding season.  相似文献   

13.
  1. Mobility in flying animals can be assessed by variations in morpho–ecological traits such as body, thorax and wing sizes, wing shape and the proportion between body mass and wing area. Habitat loss and fragmentation can promote phenotypic plasticity and microevolutionary divergencies in natural populations. In this context, sexual differences in physiology and behaviour can impose different selection pressure on morphological aspects related to flight.
  2. We evaluated the relative impact of forest patch area and habitat amount in shaping flight-related morpho–ecological traits of the tropical butterfly Hamadryas februa. We find a marked sexual dimorphism in the species, with females being larger, having larger thorax, higher wing loadings and larger wing total area than males. These trait values indicate females as the more dispersive sex. We show that habitat amount modulates body mass allocations in both sexes, leading to an increase in thorax mass with decreasing habitat amount. The effect of habitat amount was more pronounced in females, which increased total mass and wing loading while decreasing thorax allocation with decreasing habitat amount. This outcome suggests that females increase abdominal mass in response to a reduction in habitat amount. The focal forest patch increasing area was linked to increases in hindwing lengths in both females and males.
  3. We advocate that both landscape metrics (i.e., habitat amount and patch area) should be considered in studies evaluating landscapes' impacts on insect mobility. We discuss results in terms of the species' sexual differences in flight behaviour and the relative importance of both landscape metrics.
  相似文献   

14.
The alula is a small structure present on the leading edge of bird wings and is known to enhance lift by creating a small vortex at its tip. Alula size vary among birds, but how this variation is associated with the function of the alula remains unclear. In this study, we investigated the relationship between the size and shape of the alula and the features of the wing in the Laridae and Sternidae. Laridae birds have generally longer wings and greater loadings than Sternidae birds. The two families differed in the relationships between body size or wing length and the size or shape of the alula. In the Laridae, the aspect ratio of the alula was smaller in the species that have relatively longer wings, but the pattern was opposite in the Sternidae. The aspect ratio of the alula was greater in the species that are relatively heavier in the Sternidae but not in the Laridae. Combined, these results suggest that the species with high loading potential and long wings exhibit long alula. We hypothesize that heavier species may benefit from having longer alula if they perform flights with higher attack angles than lighter species, as longer alula would better suppress flow separation at higher attack angles. Our results suggest that the size and shape of the alula can be explained in one allometric landscape defined by wing length and loading in these two closely related families of birds with similar wing shapes.  相似文献   

15.
We analysed linear measurements on various parts of the body and the configuration of 11 landmarks on the wing in a large sample of Ephedrus persicae that had emerged from 13 aphid host species, to assess whether static allometry (a measure of the scaling relationship between traits in a population of individuals at the same ontogenetic stage) accounts for variation in body shape. The analysed specimens came from several localities in Europe, Asia Minor, Japan and South America, and cover a large portion of the distribution area of E. persicae. We found that allometry accounts for variation in body shape among different biotypes within the E. persicae group. The allometric slopes for head size (HD), petiolus width (PETW), mesoscutum width (MSC), and ovipositor sheath length (OVPL) diverged significantly among biotypes, indicating biotype-specific allometries. The analysis of allometric variation in wing shape showed that the pattern and direction of allometric changes also differed among individuals that had emerged from different hosts. Our results (observed divergences in the directions of allometric slopes of particular morphometric traits and wing shape) suggest that allometric relations within E. persicae are not conserved, so that allometry itself changes, evolving differently in aphid parasitoids that emerge from different hosts.  相似文献   

16.
Wing size and shape, expressed as wing loading and aspect ratio respectively, together with bill morphology are parameters that can reveal differences related to the foraging ecology of seabirds. Six species of booby (Sulidae) that inhabit the Pacific are the focus of this study: four mainly pelagic species, Masked Booby Sula dactylatra, Nazca Booby Sula granti, Red‐footed Booby Sula sula and Brown Booby Sula leucogaster, and two coastal species, Blue‐footed Booby Sula nebouxii and Peruvian Booby Sula variegata. Pelagic boobies showed segregation among species in body mass and relative bill size, and they differed in wing morphology (wing loading and aspect ratio) from the coastal boobies. The coastal Peruvian and Blue‐footed Boobies are largely allopatric but overlap in northern Peru. In their area of sympatry, they showed evidence of character displacement in body size and in wing and bill morphology, which suggests that competition plays an important role in sympatry. This study improves our understanding of ecological interactions among Pacific boobies and of how selective pressures have shaped their ecomorphology and foraging behaviours.  相似文献   

17.
Body size is an important biotic factor in evolutionary ecology, since it affects all aspects of insect physiology, life history and, consequently, fitness in ectothermic insects and how species adapt with their environment. It has been linked to temperature, with lower temperatures resulting in larger size. In this study, we tested the combined impact of temperature and plant quality on the body size, and development time from egg to adult of Eccritotarsus eichhorniae (Hemiptera: Miridae), an herbivorous insect used as a biological control agent against the invasive aquatic weed, water hyacinth Eichhornia crassipes (Pontederiaceae). We quantified insect size in individuals exposed to three temperatures (20, 25 and 30°C) combined with three qualities of host plant (high, medium and low) by calculating development time and measuring four traits: tibia length, forewing length, dry body mass and lipid content, and we also determined the wing loading index. The development time, dry body mass and lipid content decreased linearly with increasing temperature and decreasing plant quality. The decrease in size was the greatest when high temperature interacted with low plant quality. Smaller individuals had proportionately less lipid content. Wing loading decreased significantly with lower quality of host plant, resulting in individuals likely to have theoretically higher flight ability. The results support the temperature-size rule (TSR) and that plant quality could influence the relationship between development time and the TSR. Results also provide novel evidence for a possible food quality-size rule for both sexes.  相似文献   

18.
Wingbeat frequency in insects is an important variable in aerodynamic and energetic analyses of insect flight and often is studied on a family‐ or species‐level basis. Meta‐analyses of these studies report order‐level patterns suggesting that flight strategy is moderately well conserved phylogenetically. Studies incorporated into these meta‐analyses, however, use variable methodologies across different temperatures, which may confound results and phylogenetic patterns. In the present study, a high‐speed camera is used to measure wingbeat frequency in a wide variety of species (n = 102) under controlled conditions aiming (i) to determine the validity of previous meta‐analyses showing phylogenetic clustering of flight strategy and (ii) to identify new evolutionary patterns between wingbeat frequency, body mass, wing area, wing length and wing loading at the order level. All flight‐associated morphometrics significantly affect wingbeat frequency. Linear models show that wing area explains the most amount of variation in wingbeat frequency (r2 = 0.59, P ≤ 0.001), whereas body mass explains the least (r2 = 0.09, P ≤ 0.01). A multiple regression model incorporating both body mass and wing area is the best overall predictor of wingbeat frequency (r2 = 0.84, P ≤ 0.001). Order‐level phylogenetic patterns across relationships are consistent with previous studies. Thus, the present study provides experimental validation of previous meta‐analyses and provides new insights into phylogenetically conserved flight strategies across insect orders.  相似文献   

19.
亚洲玉米螟体重和体型的地理变异   总被引:3,自引:0,他引:3  
为探明亚洲玉米螟Ostrinia furnacalis体重和体型地理变异,我们详细比较了来自4个不同地理种群(海南乐东18.8°N, 109.2°E),广西阳朔24.8°N, 110.5°E),江西南昌28.8°N, 115.9°E)和河北廊坊39.5°N, 116.7°E))亚洲玉米螟的体重、体型大小及其与采集地纬度的关系。结果表明:不同地理种群的亚洲玉米螟卵重随纬度的升高而逐渐增大,符合贝格曼法则(Bergmann’s law), 而雌雄蛹重及成虫体长、后足腿节长和前翅长均随纬度的升高而逐渐减小, 符合反贝格曼法则(Converse Bergmann’s law)。雌虫的前翅显著长于雄虫, 其性体型二型性符合任希法则(Rensch’s rule),即在雌虫体型较大的种群中,雄虫前翅比雌虫前翅增长幅度相对较大。本文结果进一步揭示了即使在同一种类昆虫中,其各个虫态体重和体型的地理变异也可能不同。  相似文献   

20.
Phenotypic plasticity of wing size and shape has been evaluated in Aphidius ervi developing in its host, Acyrthosiphon pisum, parasitized at seven different ages. The parasitoid wing size was used as an estimator of both whole body size and its cellular composition. No size difference was observed in A. ervi adults emerged from aphids 1, 2 or 3 days old at parasitization. Body size then increased in A. ervi emerged from hosts older at parasitization. Body size values as related to host age at parasitization were achieved by adjusting developmental time, developmental rate or both. Parasitoids of similar size, but developed in hosts parasitized at different ages, had different wing cellular composition, while the increase of parasitoid body size was related to a general increase in both cell area and cell number. These results seem to suggest a trade‐off between adult size and developmental time, at least for parasitoids developed at the two extremes of host ages at parasitization, and that A. ervi can reach the same adult size via different trajectories, adapting its ontogenetic processes. Wing shape was typical for all the different parasitoid classes considered and differed strongly between males and females, independent of their size. Parasitoid males (haploids) and females (diploids) did not differ in either cell area or cell number, suggesting a possible sex‐determined dosage compensation in somatic tissue endoreplication. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 439–454.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号