首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two experiments reported present new information in the area of classical conditioning experiments with honey bees. Experiment 1 establishes a single unconditioned stimulus (US) technique as a preferred technique for conditioning of the proboscis extension response. Experiment 1 further identifies a new head turn response which occurs when the standard compound US technique is used. Experiment 2 demonstrates that the newly identified head turn response is contingency-based and provides important new response to the repertoire of honey bee learning experiments.  相似文献   

2.
Invertebrates have contributed greatly to our understanding of associative learning because they allow learning protocols to be combined with experimental access to the nervous system. The honeybee Apis mellifera constitutes a standard model for the study of appetitive learning and memory since it was shown, almost a century ago, that bees learn to associate different sensory cues with a reward of sugar solution. However, up to now, no study has explored aversive learning in bees in such a way that simultaneous access to its neural bases is granted. Using odorants paired with electric shocks, we conditioned the sting extension reflex, which is exhibited by harnessed bees when subjected to a noxious stimulation. We show that this response can be conditioned so that bees learn to extend their sting in response to the odorant previously punished. Bees also learn to extend the proboscis to one odorant paired with sugar solution and the sting to a different odorant paired with electric shock, thus showing that they can master both appetitive and aversive associations simultaneously. Responding to the appropriate odorant with the appropriate response is possible because two different biogenic amines, octopamine and dopamine subserve appetitive and aversive reinforcement, respectively. While octopamine has been previously shown to substitute for appetitive reinforcement, we demonstrate that blocking of dopaminergic, but not octopaminergic, receptors suppresses aversive learning. Therefore, aversive learning in honeybees can now be accessed both at the behavioral and neural levels, thus opening new research avenues for understanding basic mechanisms of learning and memory.  相似文献   

3.
The capacity to generalise between similar but not identical olfactory stimuli is crucial for honey bees, allowing them to find rewarding food sources with varying volatile emissions. We studied bees' generalisation behaviour with odours having different biological values: typical floral odours or alarm compounds. Bees' behavioural and peripheral electrophysiological responses were investigated using a combined proboscis extension response conditioning-electroantennogram assay. Bees were conditioned to pure linalool (floral) or to pure isoamyl acetate (alarm) and were tested with different concentrations of both compounds. Electrophysiological responses were not influenced by conditioning, suggesting that the learning of individual compounds does not rely on modulations of peripheral sensitivity. Behaviourally, generalisation responses of bees conditioned to the alarm compound were much higher than those of bees conditioned to the floral odour. We further demonstrated such asymmetrical generalisation between alarm and floral odours by using differential conditioning procedures. Conditioning to alarm compounds (isoamyl acetate or 2-heptanone) consistently induced more generalisation than conditioning to floral compounds (linalool or phenylacetaldehyde). Interestingly, generalisation between the two alarm compounds, which are otherwise chemically different, was extremely high. These results are discussed in relation to the neural representation of compounds with different biological significance for bees.  相似文献   

4.
Due to the changing behavioral contexts at which social insects are exposed during the adult lifespan, they are ideal models to analyze the effect of particular sensory stimuli during young adulthood on later behavior. Specifically, our goal is to understand early influences on later foraging behavior. For that, olfactory memories were established by worker honeybees to different pre-foraging ages using either (1) classical conditioning in the proboscis extension response (PER) paradigm or (2) the offering of scented-sugar solution under different rearing conditions. By testing long-term memories (LTM) through a single PER test in workers of foraging ages (17-25 days), we found that retention of the early olfactory memories in honey bees is age-dependent and not time-dependent. Independently of the environmental conditions in which they were reared (laboratory cages or hives), bees were able to retain food-odor association from 5 days after emergence, but rarely before. In most experiments we observed a bi-modal pattern of response: bees exposed to scented-food at 5-8 and 13-16 days showed better retention than those exposed at 9-12 days. These differences disappeared for bees reared in hives. Retrieval of LTMs depending on the timing and the continuous inputs of appropriate sensory stimuli are discussed.  相似文献   

5.
This video demonstrates novel techniques of RNA interference (RNAi) which downregulate two genes simultaneously in honey bees using double-stranded RNA (dsRNA) injections. It also presents a protocol of proboscis extension response (PER) assay for measuring gustatory perception.RNAi-mediated gene knockdown is an effective technique downregulating target gene expression. This technique is usually used for single gene manipulation, but it has limitations to detect interactions and joint effects between genes. In the first part of this video, we present two strategies to simultaneously knock down two genes (called double gene knockdown). We show both strategies are able to effectively suppress two genes, vitellogenin (vg) and ultraspiracle (usp), which are in a regulatory feedback loop. This double gene knockdown approach can be used to dissect interrelationships between genes and can be readily applied in different insect species.The second part of this video is a demonstration of proboscis extension response (PER) assay in honey bees after the treatment of double gene knockdown. The PER assay is a standard test for measuring gustatory perception in honey bees, which is a key predictor for how fast a honey bee''s behavioral maturation is. Greater gustatory perception of nest bees indicates increased behavioral development which is often associated with an earlier age at onset of foraging and foraging specialization in pollen. In addition, PER assay can be applied to identify metabolic states of satiation or hunger in honey bees. Finally, PER assay combined with pairing different odor stimuli for conditioning the bees is also widely used for learning and memory studies in honey bees.  相似文献   

6.
It has long been assumed that bees cannot see red. However, bees visit red flowers, and the visual spectral sensitivity of bees extends into wavelengths to provide sensitivity to such flowers. We thus investigated whether bees can discriminate stimuli reflecting wavelengths above 560 nm, i.e., which appear orange and red to a human observer. Flowers do not reflect monochromatic (single wavelength) light; specifically orange and red flowers have reflectance patterns which are step functions, we thus used colored stimuli with such reflectance patterns. We first conditioned honey bees Apis mellifera to detect six stimuli reflecting light mostly above 560 nm and found that bees learned to detect only stimuli which were perceptually very different from a bee achromatic background. In a second experiment we conditioned bees to discriminate stimuli from a salient, negative (un-rewarded) yellow stimulus. In subsequent unrewarded tests we presented the bees with the trained situation and with five other tests in which the trained stimulus was presented against a novel one. We found that bees learned to discriminate the positive from the negative stimulus, and could unambiguously discriminate eight out of fifteen stimulus pairs. The performance of bees was positively correlated with differences between the trained and the novel stimulus in the receptor contrast for the long-wavelength bee photoreceptor and in the color distance (calculated using two models of the honeybee colors space). We found that the differential conditioning resulted in a concurrent inhibitory conditioning of the negative stimulus, which might have improved discrimination of stimuli which are perceptually similar. These results show that bees can detect long wavelength stimuli which appear reddish to a human observer. The mechanisms underlying discrimination of these stimuli are discussed. Handling Editor: Lars Chittka.  相似文献   

7.
In honey bees, complex behaviours such as associative learning correlate with responsiveness to sucrose. In these behaviours, the subjective evaluation of a sucrose stimulus influences the behavioural performance. Habituation is a well-known form of non-associative learning. In bees, the proboscis extension response can be habituated by repeatedly stimulating the antennae with a low sucrose concentration. A high sucrose concentration can dishabituate the response. This study tests whether habituation correlates with responsiveness to sucrose in bees of different behavioural states and in bees which are habituated with different sucrose concentrations. Habituation and dishabituation in newly emerged bees, 5-day-old bees and foragers strongly correlated with responsiveness to sucrose. Bees with high responsiveness to sucrose displayed a lower degree of habituation and showed greater dishabituation than bees with low responsiveness. The degree of habituation and dishabituation also depended on the concentration of the habituation stimulus. These experiments demonstrate for the first time in a non-associative learning paradigm that the subjective strength of a sucrose stimulus determines the behavioural performance. Non-associative learning shares this property with associative learning, which suggests that the two processes might rely on similar neural mechanisms.Abbreviations: GRS Gustatory response score - PER Proboscis extension response  相似文献   

8.
Hygienic behavior in honey bees is a behavioral mechanism of disease resistance. Bees bred for hygienic behavior exhibit an increased olfactory sensitivity to odors of diseased brood, which is most likely differentially enhanced in the hygienic line by the modulatory effects of octopamine (OA), a noradrenaline-like neuromodulator. Here, we addressed whether the hygienic behavioral state is linked to other behavioral activities known to be modulated by OA. We specifically asked if, during learning trials, bees from hygienic colonies discriminate better between odors of diseased and healthy brood because of differences in sucrose (reward) response thresholds. This determination had to be tested because sucrose response thresholds are susceptible to OA modulation and may have influenced the honey bee's association of the conditioned stimulus (odor) with the unconditioned stimulus (i.e., the sucrose reward). Because the onset of first foraging is also modulated by OA, we also examined whether bees from hygienic colonies differentially forage at an earlier age compared to bees from non-hygienic colonies. Our study revealed that 1-day- and 15- to 20-day-old bees from the hygienic line do not have lower sucrose response thresholds compared to bees from the non-hygienic lines. In addition, hygienic bees did not forage at an earlier age or forage preferentially for pollen as compared to non-hygienic bees. These results support the idea that OA does not function in honey bees simply to enhance the detection of all chemical cues non-selectively or control related behaviors regardless of their environmental milieu. Our results indicate that the behavioral profile of the hygienic bee is sculpted by multiple factors including genetic, neural, social and environmental systems.  相似文献   

9.
The foraging behaviour of bumble bees is well documented for nectar and/or pollen gathering, but little is known about the learning processes underlying such behaviour. We report olfactory conditioning in worker bumble bees Bombus terrestris L. (Hymenoptera: Apidae) obtained under laboratory conditions on restrained individuals. The protocol was adapted from the proboscis extension conditioning previously described in the honey bee Apis mellifera L. Bumble bees were found to be able to learn a pure odorant when it was presented in paired association with a sugar reward, but not when odour and reward were presented in an explicitly unpaired procedure. This suggests an associative basis for this olfactory learning. Bumble bees showed similar conditioning abilities when stimulated with two different floral odours. An effect of the sugar reward concentration on the learning performances was found.  相似文献   

10.
Summary The effects of dopamine applied to the antennal lobes of the honeybee are investigated using the proboscis conditioning paradigm (Kuwabara 1957). The percentage of bees responding to a conditioned olfactory stimulus after a single conditioning trial is reduced significantly by the application of dopamine (10–6 M) to the antennal lobes of the bee brain. Reduction in response levels is significantly smaller in bees conditioned to the olfactory stimulus in multiple conditioning trials prior to treatment with dopamine. The effects of dopamine on the percentage of bees responding to a conditioned olfactory stimulus are blocked by the butyrophenone, haloperidol (10–5 M). The possible role of dopaminergic interneurones in the antennal lobes of the bee brain is discussed.  相似文献   

11.
Accurate thermoregulation in honey bees is crucial for colony survival. Multiple factors influence how colonies manage in-hive temperature, including genetic diversity. We explored the influence of genetic diversity on thermoregulatory behavior under three conditions: natural foraging, supplemental feeding, and exposure to the fungal pathogen shown to induce a social fever in honey bees. Our data suggest that (1) the degree of genetic diversity expected under normal conditions is not predictive of thermoregulatory stability, (2) the social fever response of honey bees is not a simple stimulus–response mechanism but appears to be influenced by ambient temperature conditions, and (3) a temperature-based circadian rhythm emerges under high nectar flow conditions. Taken together, these data suggest that a richer, context-dependent thermoregulatory system exists in honey bees than previously understood.  相似文献   

12.
The responsiveness of bees to sucrose is an important indicator of honey bee foraging decisions. Correlated with sucrose responsiveness is forage choice behavior, age of first foraging, and conditioned learning response. Pheromones and hormones are significant components in social insect systems associated with the regulation of colony-level and individual foraging behavior. Bees were treated to different exposure regimes of queen and brood pheromones and their sucrose responsiveness measured. Bees reared with queen or brood pheromone were less responsive than controls. Our results suggest responsiveness to sucrose is a physiologically, neuronally mediated response. Orally administered octopamine significantly reduced sucrose response thresholds. Change in response to octopamine was on a time scale of minutes. The greatest separation between octopamine treated and control bees occurred 30 min after feeding. There was no significant sucrose response difference to doses ranging from 0.2 g to 20 g of octopamine. Topically applied methoprene significantly increased sucrose responsiveness. Handling method significantly affected sucrose responsiveness. Bees that were anesthetized by chilling or CO2 treatment were significantly more responsive than control bees 30 min after handling. Sixty minutes after handling there were no significant treatment differences. We concluded that putative stress effects of handling were blocked by anesthetic.Abbreviations BP brood pheromone - JH juvenile hormone - OA octopamine - PER proboscis extension response - PER-RT proboscis extension response threshold - QMP queen mandibular pheromone  相似文献   

13.
To understand the effect of abnormal brood odors on the initiation or control of hygienic behavior in honey bees, we employed the associative learning paradigm, proboscis extension reflex conditioning. Bees from two genetic lines(hygienic and non-hygienic) were able to discriminate between high concentrations of two floral odors equally well. Differential discrimination abilities were observed between the two lines when healthy and diseased brood odors were used, with the bees from the hygienic line discriminating between the pair of brood odors better than the non-hygienic bees. These results suggest that hygienic behavior in individual bees is associated with the bees' responses to olfactory stimuli emanating from diseased brood.  相似文献   

14.
Two organophosphate compounds, coumaphos and diazinon, were examined for effects of sublethal exposure on odor learning and generalization in honey bees, Apis mellifera L. Using proboscis extension response training as a measure of odor learning and discrimination, a series of two experiments tested whether these compounds would inhibit bees from learning a new odor or discriminating between different odors. Bees were exposed to coumaphos or diazinon in acetone applied to the thorax, or to coumaphos or diazinon in hexane injected intracranially. At no dose tested or exposure method used was coumaphos shown to inhibit acquisition of a novel odor stimulus, although it was shown to slightly reduce discriminatory ability when given by intracranial injection. Diazinon had effects on odor learning at several small doses, and a small injected dose was shown to significantly inhibit learning of an odor stimulus paired with a sucrose reward. When bee head acetylcholineasterase activity was measured after dermal applications of both pesticides, only the higher doses of diazinon showed reduced activity, indicating that externally-applied coumaphos shows no significant effect on bee brain acetylcholinesterase activity. These data suggest that acute application of coumaphos has only slight nonlethal effects upon the behavior of honey bees and should have little effect upon bee tasks that involve odor learning.  相似文献   

15.
Naturally occurring odors used by animals for mate recognition, food identification and other purposes must be detected at concentrations that vary across several orders of magnitude. Olfactory systems must therefore have the capacity to represent odors over a large range of concentrations regardless of dramatic changes in the salience, or perceived intensity, of a stimulus. The stability of the representation of an odor relative to other odors across concentration has not been extensively evaluated. We tested the ability of honey bees to discriminate pure odorants across a range of concentrations at and above their detection threshold. Our study showed that pure odorant compounds became progressively easier for honey bees to discriminate with increasing concentration. Discrimination is, therefore, a function of odorant concentration. We hypothesize that the recruitment of sensory cell populations across a range of concentrations may be important for odor coding, perhaps by changing its perceptual qualities or by increasing its salience against background stimuli, and that this mechanism is a general property of olfactory systems.  相似文献   

16.
Associative learning has been studied in many vertebrates and invertebrates. In social insects, the proboscis extension response conditioning of honey bees has been widely used for several decades. However, a similar paradigm has not been developed for ants, which are advanced social insects showing different morphological castes and a plethora of life histories. Here we present a novel conditioning protocol using Camponotus aethiops. When the antennae of a harnessed ant are stimulated with sucrose solution, the ant extends its maxilla-labium to absorb the sucrose. We term this the “maxilla-labium extension response” (MaLER). MaLER could be conditioned by forward pairing an odour (conditioned stimulus) with sucrose (unconditioned stimulus) in the course of six conditioning trials (absolute conditioning). In non-rewarded tests following conditioning, ants gave significantly higher specific responses to the conditioned stimulus than to a novel odour. When trained for differential conditioning, ants discriminated between the odour forward-paired with sucrose and an odour forward-paired with quinine (a putative aversive stimulus). In both absolute and differential conditioning, memory lasted for at least 1 h. MaLER conditioning allows full control of the stimulation sequence, inter-stimulus and inter-trial intervals and satiety, which is crucial for any further study on associative learning in ants.  相似文献   

17.
Olfactory processing of two odorants and their mixture was investigated in bumble bees Bombus terrestris using classical conditioning of the proboscis extension. In a standard procedure, workers were able to learn linalool, phenylacetaldehyde, and the mixture of these two components, with a similar level of response to these three stimuli. Thereafter, when we applied a differential conditioning procedure where one rewarded odorant was presented alternately against an unrewarded one, an asymmetrical discrimination between the two pure odors was found. Bumble bees performed well in the discriminative task when linalool was the rewarded stimulus and phenylacetaldehyde the unrewarded one, but they had difficulty learning phenylacetaldehyde if it was the rewarded odor in the symmetrical procedure. Indeed, unrewarded stimulations with linalool appeared to disrupt the learning of the alternative odor, possibly due to an innate biological meaning of linalool.  相似文献   

18.
Physiological mechanisms of antennal sucrose perception in the honey bee were analysed using behavioural and electrophysiological methods. Following sucrose stimulation of the tip of a freely moving antenna, the latency of proboscis extension was 320–340 ms, 80–100 ms after the first activity in muscle M17 controlling this response. When bees were allowed to actively touch a sucrose droplet with one antenna, contacts with the solution were frequent with durations of 10–20 ms and average intervals between contacts of approximately 40 ms. High sucrose concentrations led to short and frequent contacts. The proboscis response and M17 activity were largely independent of stimulus duration and temporal pattern. Taste hairs of the antennal tip displayed spike responses to sucrose concentrations down to at least 0.1%. The first 25 ms of the response were suitable for discrimination of sucrose concentrations. This time interval corresponds to the duration of naturally occurring gustatory stimuli. Sucrose responses between different hairs on the same antenna showed a high degree of variability, ranging from less than five to over 40 spikes per 0.5 s for a stimulus of 0.1% sucrose. This variability of receptor responses extends the dynamic range of sucrose perception over a large range of concentrations.  相似文献   

19.
Tsuruda JM  Amdam GV  Page RE 《PloS one》2008,3(10):e3397

Background

Honey bees display a complex set of anatomical, physiological, and behavioral traits that correlate with the colony storage of surplus pollen (pollen hoarding). We hypothesize that the association of these traits is a result of pleiotropy in a gene signaling network that was co-opted by natural selection to function in worker division of labor and foraging specialization. By acting on the gene network, selection can change a suite of traits, including stimulus/response relationships that affect individual foraging behavior and alter the colony level trait of pollen hoarding. The ‘pollen-hoarding syndrome’ of honey bees is the best documented syndrome of insect social organization. It can be exemplified as a link between reproductive anatomy (ovary size), physiology (yolk protein level), and foraging behavior in honey bee strains selected for pollen hoarding, a colony level trait. The syndrome gave rise to the forager-Reproductive Ground Plan Hypothesis (RGPH), which proposes that the regulatory control of foraging onset and foraging preference toward nectar or pollen was derived from a reproductive signaling network. This view was recently challenged. To resolve the controversy, we tested the associations between reproductive anatomy, physiology, and stimulus/response relationships of behavior in wild-type honey bees.

Methodology/Principal Findings

Central to the stimulus/response relationships of honey bee foraging behavior and pollen hoarding is the behavioral trait of sensory sensitivity to sucrose (an important sugar in nectar). To test the linkage of reproductive traits and sensory response systems of social behavior, we measured sucrose responsiveness with the proboscis extension response (PER) assay and quantified ovary size and vitellogenin (yolk precursor) gene expression in 6–7-day-old bees by counting ovarioles (ovary filaments) and by using semiquantitative real time RT-PCR. We show that bees with larger ovaries (more ovarioles) are characterized by higher levels of vitellogenin mRNA expression and are more responsive to sucrose solutions, a trait that is central to division of labor and foraging specialization.

Conclusions/Significance

Our results establish that in wild-type honey bees, ovary size and vitellogenin mRNA level covary with the sucrose sensory response system, an important component of foraging behavior. This finding validates links between reproductive physiology and behavioral-trait associations of the pollen-hoarding syndrome of honey bees, and supports the forager-RGPH. Our data address a current evolutionary debate, and represent the first direct demonstration of the links between reproductive anatomy, physiology, and behavioral response systems that are central to the control of complex social behavior in insects.  相似文献   

20.
We studied associative visual learning in harnessed honeybees trained with monochromatic lights associated with a reward of sucrose solution delivered to the antennae and proboscis, to elicit the proboscis extension reflex (PER). We demonstrated five properties of visual learning under these conditions. First, antennae deprivation significantly increased visual acquisition, suggesting that sensory input from the antennae interferes with visual learning. Second, covering the compound eyes with silver paste significantly decreased visual acquisition, while covering the ocelli did not. Third, there was no significant difference in the visual acquisition between nurse bees, guard bees, and foragers. Fourth, bees conditioned with a 540-nm light stimulus exhibited light-induced PER with a 618-nm, but not with a 439-nm light stimulus. Finally, bees conditioned with a 540-nm light stimulus exhibited PER immediately after the 439-nm light was turned off, suggesting that the bees reacted to an afterimage induced by prior adaptation to the 439-nm light that might be similar to the 540-nm light.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号